MAT 141 FALL 2002
 MIDTERM II

!!! WRITE YOUR NAME, SUNY ID N. AND SECTION BELOW !!! NAME :

SUNY ID N. :
SECTION :
THERE ARE 6 PROBLEMS. THEY DO NOT HAVE EQUAL VALUE. SHOW YOUR WORK!!!

1	40	
2	30	
3	30	
4	40	
5	30	
6	30	
Total	200	

1. [40 points] Differentiate:
a) $y=\sin x^{2} \cdot \cos ^{2} x$
$y^{\prime}=\left(\sin x^{2}\right)^{\prime} \cdot \cos ^{2} x+\sin x^{2} \cdot\left(\cos ^{2} x\right)^{\prime}$
$=\left(2 x \cos x^{2}\right) \cdot \cos ^{2} x+\sin x^{2} \cdot(2 \cos x \sin x)$
b) $y=\ln \left(\sin \left(e^{x}\right)\right)$
$y^{\prime}=\ln ^{\prime}\left(\sin \left(e^{x}\right)\right) \cdot\left(\sin \left(e^{x}\right)\right)^{\prime}=\frac{1}{\sin \left(e^{x}\right)} \cdot\left(\cos \left(e^{x}\right)\right) \cdot\left(e^{x}\right)^{\prime}$
$=\frac{\cos \left(e^{x}\right)}{\sin \left(e^{x}\right)} e^{x}$
c) $y=x^{\sin x}$

Method 1.

$$
\begin{aligned}
& \ln y=\sin x \cdot \ln x \\
& (\ln y)^{\prime}=(\ln x \cdot \sin x)^{\prime} \\
& \frac{y^{\prime}}{y}=\left(\frac{1}{x} \sin x+\ln x \cos x\right) \\
& y^{\prime}=y\left(\frac{1}{x} \sin x+\ln x \cos x\right)=x^{\sin x}\left(\frac{1}{x} \sin x+\ln x \cos x\right)
\end{aligned}
$$

Method 2.

$$
\begin{aligned}
& y=e^{\ln x \cdot \sin x} \\
& y^{\prime}=e^{\ln x \cdot \sin x}(\ln x \cdot \sin x)^{\prime}=e^{\ln x \cdot \sin x}\left(\frac{1}{x} \sin x+\ln x \cos x\right) \\
& =y\left(\frac{1}{x} \sin x+\ln x \cos x\right)=x^{\sin x}\left(\frac{1}{x} \sin x+\ln x \cos x\right)
\end{aligned}
$$

2. [30 points] Find an equation for the line that is tangent to the graph of $y=x^{2} \ln x$ and goes through the origin.

$$
y^{\prime}=2 x \ln x+x^{2} \cdot \frac{1}{x}=2 x \ln x+x
$$

Method 1.
Pick a point on the curve, say $\left(a, a^{2} \ln a\right)$. Then the tangent line is, $y-a^{2} \ln a=(2 a \ln a+a)(x-a)$ $y=(2 a \ln a+a) x-2 a^{2} \ln a-a^{2}+a^{2} \ln a$ $y=(2 a \ln a+a) x-a^{2} \ln a-a^{2}$
Since this line passes $(0,0)$,
$0=-a^{2} \ln a-a^{2}$
$a^{2}(\ln a+1)=0$
So either $a=0$ or $\ln a+1=0$. But, we have that $a>0$, so $\ln a+1=0$.
Hence $\ln a=-1$.
We find that $a=e^{-1}$.
Plugging the value of a back into the equation for the tangent line, we get, $y=\left(2 \frac{1}{e} \cdot(-1)+\frac{1}{e}\right) x+0$
$y=-\frac{1}{e} x$

Method 2.
Suppose the line passed the point $\left(a, a^{2} \ln a\right)$ of the curve. Then the slope of the line is,
$\frac{\Delta y}{\Delta x}=\frac{a^{2} \ln a}{a}=a \ln a$.
Since this line is also tangent to the graph at $\left(a, a^{2} \ln a\right)$, we have $2 a \ln a+a=a \ln a$
Solving this, we get $a=\frac{1}{e}$. So the slope is $-\frac{1}{e}$.
The line that passes $(0,0)$ and has slope of $-\frac{1}{e}$ is $y=-\frac{1}{e} x$.
3. [30 points] Let $f(x)=e^{\sin x}$ for x in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Compute
a) $\left.\frac{d f}{d x}\right|_{x=0}$

$$
\frac{d f}{d x}=\left.\cos x e^{\sin x} \frac{d f}{d x}\right|_{x=0}=\cos 0 e^{\sin 0}=1 \cdot e^{0}=1
$$

b) $\left.\frac{d f^{-1}}{d x}\right|_{x=1}$

Since $\mathrm{f}(0)=1$,
$\left.\frac{d f^{-1}}{d x}\right|_{x=1}=\left.\frac{d f^{-1}}{d x}\right|_{x=f(0)}=\frac{1}{\left.\frac{d f}{d x} \right\rvert\, x=0}=1$
4. [40 points] Sketch the graph of

$$
y=-x^{3}+6 x^{2}-9 x+3
$$

(including: asymptotes if any, absolute and local extrema, if any intervals of increasing and decreasing, concavity).

There are no asymptotes.

$$
\begin{aligned}
& y^{\prime}=-3 x^{2}+12 x-9=-3\left(x^{2}-4 x+3\right)=-3(x-1)(x-3) \\
& y^{\prime \prime}=-6 x+12
\end{aligned}
$$

So we investigate at points $x=1,2,3$.
$y(1)=-1+6-9+3=-1, y^{\prime}(1)=0, y^{\prime \prime}(1)=6$
$y(2)=-8+24-18+3=1, y^{\prime \prime}(2)=0$
$y(3)=-27+54-27+3=3, y^{\prime}(3)=0, y^{\prime \prime}(3)=-6$
So we see that $(1,-1)$ is local min, $(2,1)$ is inflection point, and $(3,3)$ is local maximum.

$$
\mathrm{x}<1 \quad 1<\mathrm{x}<2 \quad 2<\mathrm{x}<3 \quad 3<x
$$

Also, drawing a table, $\begin{array}{lllll}y^{\prime} & - & + & + & - \\ y^{\prime \prime} & + & + & - & -\end{array}$ y \smile

The graph should include all the values of the critical points and inflection points.
5. [30 points] Find the linearization of

$$
f(x)=e^{2 x}-\sin x+2
$$

at $x=0$ and use it to find an approximate value for $f(-0.1)$.

$$
\begin{aligned}
& f^{\prime}(x)=2 e^{2 x}-\cos x \\
& f^{\prime}(0)=2-1=1 \\
& L(x)=f(0)+f^{\prime}(0)(x-0)=3+1(x-0)=x+3 \\
& f(-0.1) \simeq L(-0.1)=-0.1+3=2.9
\end{aligned}
$$

6. [30 points] The height of an object moving vertically is given by

$$
h(t)=-8 t^{2}+48 t+56
$$

where h is in feet and t is in seconds. Find:
a) the object's velocity when $t=0$;

$$
\begin{aligned}
h^{\prime} & =-16 t+48 \\
\text { at } t & =0, h^{\prime}=48(\text { feet } / \mathrm{sec}) .
\end{aligned}
$$

b) its maximum height and when it occurs;
solving $h^{\prime}=0$,
$-16 t+48=0$
$t=3$
At $t=3, h(3)=-72+144+56=128$. Since $h^{\prime \prime}=-8$ this is a local maximum. The domain of h is $[0, \infty)$.
$h(0)=56, \lim h_{t \rightarrow \infty}=-\infty$.
So we see that this is a global maximum. Hence the maximum height is:
128 (feet)
c) its velocity when $h=0$.

$$
\begin{aligned}
& \quad h=0 \\
& -8 t^{2}+48 t+56=0 \\
& t^{2}-6 t-7=0 \\
& (t-7)(t+1)=0
\end{aligned}
$$

So $t=-1$ or $t=7$, but time is positive so $t=7$ (sec).

