MAT 141 FALL 2002
 MIDTERM I

!!! WRITE YOUR NAME, SSN AND SECTION BELOW !!! NAME :

SSN :
SECTION :
THERE ARE 5 PROBLEMS. THEY DO NOT HAVE EQUAL VALUE. SHOW YOUR WORK!!!

1	30	
2	50	
3	40	
4	40	
5	40	
Total	200	

1. [30 points] Let $f(x)=<x>$ be the decimal part function.

For example: if $x=2.65$, then $\langle x\rangle=.65$; if $x=3.567$, then $<x\rangle=.567$.

Determine the following limit.

$$
\lim _{x \rightarrow \infty} \frac{<x>}{x} .
$$

Solution :
$0 \leq<x><1$
$0 \leq \frac{\leq x>}{x}<\frac{1}{x}$
By the Sandwich Theorem, $\lim _{x \rightarrow \infty} 0 \leq \lim _{x \rightarrow \infty} \frac{\leq x>}{x} \leq \lim _{x \rightarrow \infty} \frac{1}{x}$
$0 \leq \lim _{x \rightarrow \infty} \frac{\langle x>}{x} \leq 0$
Answer: $\lim _{x \rightarrow \infty} \frac{\langle x>}{x}=0$
2. [50 points] Let

$$
f(x)=x^{3}\left(\frac{1}{x-1}-\frac{1}{x+1}\right)
$$

Find the asymptotes of $f(x)$ and draw them on the $x y$-plane together with a qualitative sketch of the graph of the curve near the asymptotes.

Solution)

Vertical Asymptotes: $x-1=0$ and $x+1=0$.
$f(x)=\frac{2 x^{3}}{x^{2}-1}=\frac{2 x^{3}-2 x+2 x}{x^{2}-1}=2 x+\frac{2 x}{x^{2}-1}$
Oblique Asymptotes: $y=2 x$

Horizontal Asymptotes: None, since

$$
\lim _{x \rightarrow \infty} \frac{x^{3}}{x^{2}-1}=\infty
$$

and

$$
\lim _{x \rightarrow-\infty} \frac{x^{3}}{x^{2}-1}=-\infty
$$

3. [40 points] Let $f(x)$ be a function defined for every value of x. Assume that
a) $f(x)$ is differentiable for every value of x;
b) for $x \neq 0, f(x)=\frac{\sin \left(x^{3}+x^{2}\right)}{\sqrt{x^{3}+x^{2}}}$.

Find $f(0)$. Justify your answer.
Solution)
Since $\mathrm{f}(\mathrm{x})$ is differentiable, it is continuous. So $\lim _{x \rightarrow 0} f(x)=f(0)$ holds.
Letting $t=x^{3}+x^{2}$,

$$
\lim _{x \rightarrow 0} \frac{\sin \left(x^{3}+x^{2}\right)}{\sqrt{x^{3}+x^{2}}}=\lim _{t \rightarrow 0^{+}} \frac{\sin t}{\sqrt{t}}=\lim _{t \rightarrow 0^{+}} \sqrt{t} \frac{\sin t}{t}=0 \cdot 1=0
$$

Hence, $f(0)=0$.
4. [40 points] Let u and v be differentiable functions.

Assume that

$$
u(1)=1, \quad u^{\prime}(1)=-1, \quad v(1)=2, \quad v^{\prime}(1)=-3
$$

Compute:
a) $\left(\frac{u}{v}\right)^{\prime}(1)$
$\left(\frac{u}{v}\right)^{\prime}(1)=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}(1)=\frac{u^{\prime}(1) v(1)-u(1) v^{\prime}(1)}{v(1)^{2}}$ $=\frac{-1 \cdot 2-1 \cdot(-3)}{2^{2}}=\frac{-2+3}{4}=.25$
b) $\left(u v^{2}\right)^{\prime}(1)$

$$
\begin{aligned}
& \left(u v^{2}\right)^{\prime}(1)=\left\{u^{\prime} \cdot v^{2}+u \cdot\left(v^{2}\right)^{\prime}\right\}(1)=\left\{u^{\prime} \cdot v^{2}+u \cdot\left(v^{\prime} v+v v^{\prime}\right)\right\}(1) \\
= & u^{\prime}(1) v(1)^{2}+u(1) \cdot\left(v^{\prime}(1) v(1)+v(1) v^{\prime}(1)\right)=-1 \cdot 2^{2}+1 \cdot(-3 \cdot 2+2 \cdot-3)= \\
- & 4-12=-16
\end{aligned}
$$

5. [40 points] A body moves along the s-axis with velocity

$$
v=t^{2}-4 t+3
$$

a) Find the body's acceleration each time the velocity is zero.
$v=0$ when $t^{2}-4 t+3=0$. $(t-3)(t-1)=0$, so $t=1$ or $t=3$. $a=v^{\prime}=2 t-4$
So when $t=1$ acceleration is $a=-2$ and when $t=3, a=2$.
b) When is the body moving forward?

Body moves forward when $v>0$. $(t-1)(t-3)>0$. So $t<1$ or $t>3$.
c) When is the body's velocity increasing?
$v^{\prime}>0$. So $2 t-4>0$.
$t>2$. After $\mathrm{t}=2$ velocity increases.

