Let

$$
y=f(x)=A x^{2}+B x+C
$$

be the equation of a parabola.
Let a be a number and h be a positive number.
Assume

$$
f(a-h)=y_{0}, \quad f(a)=y_{1}, \quad f(a+h)=y_{2} .
$$

Find an expression for

$$
I:=\int_{a-h}^{a+h} f(x) d x
$$

involving only y_{0}, y_{1} and y_{2} and h.
(Hint: it makes no difference if you assume $a=0$ (why?))
Solution. Let us assume that $a=0$. The answer will not depend on this assumption, since since we can shift the graph to the left (if $a>0$) or to the right (if $a<0$) without changing the values of h, y_{0}, y_{1} and y_{2}. This will change A, B and C, but not the answer. So we can also use the same letters A, B, and C. We have

$$
I:=\int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=A / 3 x^{3}+B / 2 x^{2}+\left.C x\right|_{-h} ^{h}=2 / 3 A h^{3}+2 C h .
$$

Since $f(0)=y_{1}$, by plugging in $f(x)$, we get $C=y_{1}$ and $I=2 / 3 A h^{3}+2 y_{1} h$.
We have

$$
f(-h)=A h^{2}-B h+y_{1}=y_{0} \quad f(h)=A h^{2}+B h+y_{1}=y_{2}
$$

and adding the second to the first we have

$$
2 A h^{2}=y_{0}+y_{2}-2 y_{1} .
$$

So

$$
I=1 / 3\left(2 A h^{2}\right) h+2 y_{1} h=1 / 3\left(y_{0}+4 y_{1}+y_{2}\right) h .
$$

