If you use the max-min inequality to find upper and lower bounds for integrals you find

$$
0.5 \leq \int_{0}^{1} 1 /\left(1+x^{2}\right) \leq 1
$$

Use the fact that you can break the interval $[0,1]$ into the two parts $[0,0.5]$ and $[0.5,1]$ to find an improved estimate

$$
? ? ? ? \leq \int_{0}^{1} 1 /\left(1+x^{2}\right) \leq ? ? ?
$$

Solution. The function $f=1 /\left(1+x^{2}\right)$ is monotonic decreasing on $[0,1]$.
$\max f=1$ on the interval $[0,0.5]$
$\min f=4 / 5$ on the interval $[0,0.5]$.
The min-max inequality on $[0,0.5]$ gives

$$
2 / 5 \leq \int_{0}^{0.5} 1 /\left(1+x^{2}\right) \leq 1 / 2 .
$$

$\max f=4 / 5$ on the interval $[0.5,1]$
$\min f=1 / 2$ on the interval $[0.5,1]$.
The min-max inequality on $[0.5,1]$ gives

$$
1 / 4 \leq \int_{0.5}^{1} 1 /\left(1+x^{2}\right) \leq 2 / 5
$$

Putting together
$13 / 20=2 / 5+1 / 4 \leq \int_{0}^{0.5} 1 /\left(1+x^{2}\right) d x+\int_{0.5}^{1} 1 /\left(1+x^{2}\right) d x=\int_{0}^{1} 1 /\left(1+x^{2}\right) d x \leq 1 / 2+2 / 5=9 / 10$.

