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Abstract We use the heat flow on the loop space of a closed Riemannian
manifold — viewed as a parabolic boundary value problem for infinite cylinders
— to construct an algebraic chain complex. The chain groups are generated by
perturbed closed geodesics. The boundary operator is defined by counting,
modulo time shift, heat flow trajectories between geodesics of Morse index
difference one. By [13] this heat flow homology is naturally isomorphic to
Floer homology of the cotangent bundle for Hamiltonians given by kinetic
plus potential energy.
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1 Introduction

Let M be a closed Riemannian manifold and denote by V the Levi-Civita con-
nection and by LM the loop space, that is the space of free loops C*° (S, M).
For z : S — M consider the action functional

Sy (w) = / 1 (; @] - V<t,w<t>>) dt.

Here and throughout we identify S' = R/Z and think of x € LM as a smooth
map z : R — M which satisfies z(t + 1) = z(t). Smooth means C* smooth.
The potential is a smooth function V' : S1x M — R and we set V;(q) := V (¢, q).
The critical points of Sy are the 1-periodic solutions of the ODE

where VV; denotes the gradient and V,& denotes the covariant derivative, with
respect to the Levi-Civita connection, of the vector field & := %x along the

loop « in direction &. By P = P(V) we denote the set of 1-periodic solutions
of (1). These solutions are called perturbed closed geodesics, since in the
case V = 0 these are the closed geodesics.

From now on we assume that Sy is a Morse function function on the
loop space, i.e. all critical points are nondegenerate. By [19] the action is Morse
for a generic potential V; and, furthermore, in this case the set

PUV) i={z e P(V)|Sv(z) <a}

is finite for every real number a. By E¥ we denote the eigenspace corresponding
to negative eigenvalues of the Hessian of Sy at « € P(V). The dimension of
EY is finite, called the Morse index of z. Choose an orientation (x) of the
vector space EY for all x € P(V) and denote this set of choices by (P). Now
consider the Z-module graded by the Morse index and given by

CM¢ =CM(V):= € Za.
zePe(V)

If Sy is even Morse-Smale, then CM{ carries the following boundary op-
erator d,. Consider the (negative) L? gradient flow lines of Sy on the loop
space. These are solutions u : R x S' — M of the heat equation

Osu — ViOpu — VVi(u) =0 (2)
satisfying
. _ 4+ . _
sl}lfoou(&t) = x> (t), sl}gloo Osu(s,t) =0, (3)

where both limits are uniform in the ¢ variable and 2* € P(V'). By definition
the moduli space M(z~,x";V) is the space of solutions of (2) and (3). The
action functional Sy is called Morse—Smale below level a if the operator
D, obtained by linearizing (2) is onto as a linear operator between appropri-
ate Banach spaces and this is true for all u € M(z~,2z%;V) and 2+ € P2(V).
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Morse—Smale implies Morse; consider u, := x. Under the Morse-Smale hy-
pothesis the space M(z~,x%;V) is a smooth manifold whose dimension is
equal to the difference of the Morse indices of the perturbed closed geodesics
x*. In the case of index difference one a compactness result implies that the
quotient M(z~,27;V)/R by the (free) time shift action is a finite set. Count-
ing these elements with appropriate signs defines the boundary operator d, on
CM?. We call the Morse complex (CM¢, d,) the heat flow complex and the
corresponding homology groups HM{ (LM, Sy) heat flow homology.

In chapter 5 we explain how to perturb the Morse function Sy by an ab-
stract perturbation v € Oy, (V) to achieve the Morse-Smale condition with-
out changing the set of critical points. By definition heat flow homology of
Sy is then equal to heat flow homology of the perturbed functional. It is an
open question if Sy is Morse-Smale for a generic potential V;. The class of
abstract perturbations for which we can establish transversality is introduced
in the following section 1.1. In contrast we call the potentials V; geometric
perturbations.

Theorem 1 Fiz a potential V. € C*°(S' x M) such that the action Sy is
Morse and take a choice of orientations (P). Assume a € R is a regular value
of Sy and v* € 0%, (V) is a (regular) perturbation. Then 0, = 0.(V, (P),v®)

reg

satisfies 02 = 0. Moreover, heat flow homology defined by
ker 0O,

im 0,

HM®(LM, Sy) =

does not depend on the choice of regular perturbation v* and orientations (P).

The construction of the Morse complex in finite dimensions goes back to
Thom [17], Smale [14,15], and Milnor [9]. It was rediscovered by Witten [23]
and extended to infinite dimensions by Floer [6,5]. We refer to [1] for an
extensive historical account.

1.1 Perturbations
We introduce a class of abstract perturbations of equations (2) and (1) for
which transversality works. The abstract perturbations take the form of

smooth maps V : LM — R. For # € LM let gradV(z) € 2°(S', z*TM)
denote the L2-gradient of V; it is defined by

/ laradV(u), o) di — diwu)
0 S

for every smooth path R — LM : s — u(s,-). The covariant Hessian of V
at a loop z : S' — M is the operator Hy(x) on £2°(S1, 2*T M) defined by

Hy (u)0su := VsgradV(u) (4)
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for every smooth map R — LM : s — u(s,-). The axiom (V1) below asserts
that this Hessian is a zeroth order operator. We impose the following conditions
on V; here |-| denotes the pointwise absolute value at (s,t) € R x St and ||-||1»
denotes the LP-norm over S' at time s. Although condition (V1) and the first
part of (V2) are special cases of (V3) we state the axioms in the form below,
because some of our results don’t require all the conditions to hold.

(VO) V is continuous with respect to the C° topology on LM . Moreover, there
is a constant C' = C(V) such that

sup [V(@)|+ sup [lgradV(@)]] - (s1) < C:
rzeLM zeLM

(V1) There is a constant C' = C'(V) such that
VagradV(u)| < C(|0sul + [10sull 1),
[VigradV(u)| < C(l + |8tu|)

for every smooth map R — LM : s +— u(s,-) and every (s,t) € R x SL.
(V2) There is a constant C' = C'(V) such that

|V VigradV(u)| < C(|vsasu| + ||V335u||L1 + (|8Su| + ||3su||L2)2>,

IV VgradV(u)| < c(|vtasu| + (1 + |0ul) (|05u] + Hasu||L1)),

and
IV, VigradV (u) — Hy (1) Vedsu| < C(|0su] + [|0sul| 12 )
for every smooth map R — LM : s — u(s,-) and every (s,t) € R x S*.
(V3) For any two integers k > 0 and ¢ > 0 there is a constant C = C(k, ¢, V)
such that

i) <0 5 [ TT o] | TT (19500 + 52,
kil \ j

J J
Zj>0 Zj:O

for every smooth map R — LM : s +— u(s, ) and every (s,t) € Rx S*; here
p; > 1and Zz]:o 1/p; = 1; the sum runs over all partitions ki +- - - +kp, =
k and ¢1 4 --- +{,, < ¢ such that k; +¢; > 1 for all j. For k = 0 the same
inequality holds with an additional summand C' on the right.
Remark 1 If V € C®°(S* x M,R) and & € LM, then V(z) := fol Vi (z(t)) dt
satisfies gradV(z) = VV(z) and Hy(x)¢ = Ve VVi(x) for £ € 2°(S, 2*TM).

Remark 2 To prove transversality in section 5 we use perturbations’

V(@) = (o wolls) [ Vitatt)

where p : R — [0,1] is a smooth cutoff function and zg : S* — M is a loop.
Any such perturbation satisfies (V0)—(V3). Here compactness of M enters.

1 Here and throughout the difference 2 — g of two loops denotes the difference in some
ambient Euclidean space into which M is (isometrically) embedded.
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1.2 Main results

There are two purposes of this text (which is the main part of the author’s
habilitation thesis [20]). One is to construct the Morse chain complex for the
action functional on the loop space. The other one is to provide proofs of the
results announced and used in [13] to calculate the adiabatic limit of the Floer
complex of the cotangent bundle. More precisely, in [13] we proved in joint
work with D. Salamon that the connecting orbits of the heat flow are the
adiabatic limit of Floer connecting orbits in the cotangent bundle 7*M with
respect to the Hamiltonian given by kinetic plus potential energy. The key
idea is to appropriately rescale the Riemannian metric on M. Both purposes
are achieved simultaneously by theorems 2-8.

From now on we replace the potential V' by an abstract perturbation V
satisfying (V0)—(V3). Then the action is given by

Sv(@) =5 [l @t =via) (5)

for smooth loops z : ST — M and the set P(V) of critical points of Sy consists
of those loops z : S — M that solve the ODE

V& = —gradV(z). (6)

The subset P*(V) consists of those with Sy(z) < a. Now the heat equation
has the form

Osu — ViOpu — gradV(u) =0 (7)

for smooth cylinders u : R x S' — M. Here gradV(u) denotes the value of
gradV on the loop us : t — u(s,t). Given two nondegenerate critical points
¥ € P(V) denote by M(z~,z%;V) the set of all solutions u of (7) which
satisfy the limit condition (3). Such u are called connecting orbits or con-
necting trajectories. The energy of a connecting trajectory is given by

o) 1
E(u) :[ /O |8ul® dtds = Sy(x~) — Sy (™). (8)

Theorem 2 (Regularity) Fiz a constant p > 2 and a perturbation V :
LM — R that satisfies (V0)—(V3). Let u : R x St — M be a continuous
function of class Wllo’f, that is u, Oyu, ViOyu, Osu are locally LP integrable. As-
sume that u solves the heat equation (7) almost everywhere. Then u is smooth.

Remark 3 It seems unlikely that the assumption u € Wllof can be weakened to
u € VVllof , as announced in [13], unless we also replace p > 2 by p > 3; see [20,
rmk. 2.19]. Fortunately, the stronger assumption u € Wllo’f is satisfied in our
applications of theorem 2. These are [13, proof of lemma 10.2], the Banach
bundle setup introduced in chapter 3, step 1 of the proof of theorem 7, and
the proof of proposition 9 on surjectivity of the universal section.
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Theorem 3 (Apriori estimates) Fizx a perturbation V : LM — R that
satisfies (V0)—=(V1) and a constant co. Then there is a positive constant C =
C(co, V) such that the following holds. If u : R x St — M is a solution of (7)
such that Sy(u(s,-)) < co for every s € R, then

[0cull oo + [ViOrull o + [10s5ullo + IVi0sull oo + IVsOsull < C-

The covariant Hessian of Sy, at a loop z : S — M is the linear operator
Ay W22(SY 2*TM) — L?(S',2*T M) given by

Al = =iV — R(&, 2)& — Hy(z)¢ (9)

where R denotes the Riemannian curvature tensor and the Hessian Hy is
defined by (4). This operator is self-adjoint with respect to the standard L?
inner product. The number of negative eigenvalues is finite. It is denoted by
indy (A4,) and called the Morse index of A,. If x is a critical point of Sy, we
define its Morse index by indy(z) := indy, (A4, ) and we call z nondegenerate
if A, is bijective. Linearizing the heat equation (7) gives rise to the linear
operator D,, : WhP — LP see [18, app. A.2], which in the notation introduced
above is given by

,Dug = vsg + Ausg' (10)

Here us(t) := u(s,t) and the spaces L2 and W)P are defined as the completions
of the space of smooth compactly supported sections of the pullback tangent
bundle ©w*TM — R x S' with respect to the norms

oo 1 1/10
|s|p</ /0|£Pdtds> ,

(11)
oo ol 1/p
€l = (/_ /O §|p+VS£7’—|—|VtVt§|pdtds) .

Theorem 4 (Exponential decay) Fiz a perturbation V : LM — R that
satisfies (V0)—(V3) and assume Sy is Morse.

(F) Let u : [0,00) x St — M be a solution of (7). Then there are positive
constants p and co,c1,Ca, ... such that

H83u||ck([T7m)Xsl) < cke_”T
for every T > 1. Moreover, there is a periodic orbit x € P(V) such that
u(s,-) converges to x in C?(S) as s — 0.

(B) Let u : (—00,0] x S* — M be a solution of (7) with finite energy. Then
there are positive constants p and cqg,c1,co,... such that

1052l o ((—o0,—)x 51) < CrE™PT

for every T > 1. Moreover, there is a periodic orbit x € P(V) such that
u(s,-) converges to x in C?(S') as s — —oo.
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Theorem 5 (Fredholm) Fiz a perturbationV : LM — R that satisfies (VO)—
(V3), a constant p > 1, and two nondegenerate critical points z+ € P(V).
Then for each uw € M(xz~,2";V) the operator D, : WiP — LF is Fredholm
and

indexD,, = indy(z~) — indy(a™).

Moreover, the formal adjoint operator D = —V, + A,, : WP — [P s
Fredholm with index D}, = —indexD,,.

See [21, thm. 3.13] for the stronger version announced in [13, thm. A.4]
which, together with corollary 1 on exponential decay, proves theorem 5.

Theorem 6 (Implicit function theorem) Fiz a perturbation V : LM — R
that satisfies (V0)—(V3). Assume x* are nondegenerate critical points of Sy
and Dy, is onto for every u € M(z~,x%;V). Then M(z~,x%;V) is a smooth
manifold of dimension indy(z~) — indy(x™).

Proposition 1 (Finite set) Fiz a perturbation V : LM — R that satisfies
(V0)—(V3) and assume Sy is Morse-Smale below level a in the sense that every
u € M(xz~,27;V) is regular (i.e. the Fredholm operator D, is surjective) for
every pair xt € P*(V). Then the quotient space

./(/l\(:r*,mﬂ]/) =Mz, 27 V)/R

is a finite set for every such pair of Morse index difference one. Here the (free)
action of R is given by time shift (o,u) — u(oc + -, ).

Theorem 7 (Refined implicit function theorem) Fiz a perturbation V :
LM — R that satisfies (V0)—(V3) and a pair of nondegenerate critical points
€ P(V) with Sy(xT) < Sy(x~) and Morse index difference one. Then, for
every p > 2 and every large constant cy > 1, there are positive constants dg
and ¢ such that the following holds. Assume Sy is Morse—Smale below level
2c2. Assume further that u : R x ST — M is a smooth map such that u(s,-)
converges in WH2(S1) to 2%, as s — +oo, and such that
Co

|0su(s,t)] < o |0ru(s, t)] < co, |Vi0:u(s, t)] < co,

for all (s,t) € R x St and
[0su — ViOyu — gradV(u)||,, < do.
Then there exist u, € M(z~,x7;V) and £ € im D}, N W&’f’ which satisfy
u=-exp, (£), €y < clldsu — ViOpu — gradV(u)]], -

In the previous theorem “cq large” means that the constant ¢y should be
larger than the constant Cj in axiom (VO0). Recall that a subset of a com-
plete metric space is called residual if it contains a countable intersection of
open and dense sets. By Baire’s category theorem a residual subset is dense.
Throughout singular homology H, is meant with integer coeflicients.
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Theorem 8 (Transversality) Fiz a perturbation V : LM — R that satis-
fies (V0)—=(V3) and assume Sy is Morse. Then for every regular value a there
is a complete metric space O%(V) of perturbations supported away from P*(V)
and satisfying (V0)—(V3) such that the following is true. If v € O*(V), then

PUV) =PV +v),  H.({S <a}) = H ({Spr, <a)).

Moreover, there is a residual subset O%, (V) C O*(V) such that for each v €

reg

04, (V) the perturbed functional Sy, is Morse-Smale below level a.

reg

Outlook

The next step is to relate heat flow homology HM, to singular homology of
the loop space. In our forthcoming paper [22] we establish the following result.

Theorem 9 Assume Sy is Morse and a is either a reqular value of Sy or
equal to infinity. Then there is a natural isomorphism

HM(LM, Sy) = H,(L°M),  L£L°M :={y e LM | Sy(y) < al}.

If M is not simply connected, then there is a separate isomorphism for each
component of the loop space. For a < b the isomorphism commutes with the ho-
momorphisms HM® (LM, Sy) — HM® (LM, Sy) and H,(L*M) — H, (L M).

For a C*! gradient flow on a Banach manifold, where the Morse functional is
bounded below and its critical points are of finite Morse index, Abbondandolo
and Majer [1] proved the existence of a natural isomorphism between singu-
lar homology and Morse homology. The geometric idea is that the unstable
manifolds carry the homologically relevant information. A major point is to
construct a cellular filtration of £L*M by open forward flow invariant subsets
Fo C Fy C ... C Fxy C LM such that Fj contains all critical points up to
Morse index k and relative singular homology H,(Fy, Fi—1) is isomorphic to
the free abelian group generated by the critical points of index k in case £ = k
and it is trivial otherwise. The idea of their construction is the following. Let
Fy be a union of disjoint, open, and forward flow invariant neighborhoods of
the critical points of index zero. Then fix small neighborhoods of the index one
critical points and consider the set exhausted by the forward flow (which runs
into Fy by the Morse-Smale condition). Now take the union of this set with
Fy to obtain Fy. Clearly F} is forward flow invariant. Moreover, it is open,
because the time-t-map of the flow is an open map. Continue with the index
two points.

Unfortunately, the time-t-map for the semiflow generated by the heat equa-
tion does not take open sets to open sets due to the extremely strong regular-
izing nature of the heat flow. So new ideas are required. In [22] we define and
use Conley index pairs for the critical points in the infinite dimensional situ-
ation at hand. Recall that solving the forward time Cauchy problem for the
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heat equation (7) for initial values in the Hilbert manifold AM = W12(St M)
leads to existence of a continuous semiflow

¢ :[0,00) x A°M — A*M,

see [20]. Now a simple but crucial consequence of continuity of the time-T-
map is that the preimage o7~ !(Fp) is an open subset of A?M. Here Fy is an
open set consisting of local (strict) sublevel sets near the index zero critical
points. Moreover, for T' > 0 sufficiently large 7 maps the exit set Ly (of the
Conley index pair (N, L) associated to the index one critical points) into Fp.
Hence Fy := Ny Upr 1 (Fp) is semiflow invariant (and open, since N; is open).
Continue with index two.

1.3 Overview

In appendix A we recall for convenience of the reader from [20] the definition
of the relevant parabolic spaces W*? and C*P and the parabolic bootstrap
proposition 12. It is a side remark that its proof, hence theorem 2, relies on
the LP product estimate [21, le. 4.1] which allows to deal with the quadratic
first order part of the heat equation (7).

In chapter 2 we study the solutions u to the heat equation (7). Since dsu
solves the linearized equation the results of [21] are available. In section 2.1
we prove smoothness of Wllo’f solutions and a compactness result for sequences
with uniformly bounded gradient with respect to appropriate norms. In sec-
tions 2.2-2.4 boundedness of the action is a crucial assumption. Fix a positive
constant co. Then all solutions u of (7) with sup,cp Sy(us) < o admit a
uniform apriori estimate for ||Oju| oo (theorem 12), uniform energy bounds
(lemma 2), uniform gradient bounds (theorem 13), and uniform L? exponen-
tial decay (theorem 14). In section 2.5 we study compactness of the moduli
spaces M(z~,xT;V) in the case that Sy : LM — R is a Morse function.

Chapter 3 deals with implicit function theorems. Here, in addition to the
Morse condition, the Morse-Smale condition enters: To prove that the moduli
spaces are smooth manifolds we not only need nondegeneracy of the asymp-
totic boundary data (the critical points z*) but in addition surjectivity of
the linearized operators. Under these assumptions proposition 1 asserts that
modulo time shift there are only finitely many heat flow lines from z~ to =T
whenever the Morse index difference is one. Here the compactness results of
section 2.5 enter. Furthermore, we prove the refined implicit function theo-
rem 7, a major technical tool in [13]. Here the required quadratic estimates
use again the product estimate [21, le. 4.1]. Furthermore, the choice of the
sublevel set on which Sy needs to be Morse-Smale requires care. The reason
is that one starts out only with an approzimate solution u along which the
action is not necessarily decreasing. However, the assumptions guarantee that
all loops ug are contained in the sublevel set {Sy < 2c2}.

Chapter 4 deals with unique continuation for the linear and the nonlinear
heat equation based on an extension of a result by Agmon and Nirenberg.
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Backward unique continuation for a forward semiflow may be surprising. Of
course, there is an assumption: If the action along the two semi-infinite back-
ward trajectories u, v which coincide at time s = 0 is bounded, then v = v.

In chapter 5 we construct a separable Banach space Y of abstract pertur-
bations that satisfy axioms (V0)—(V3). Assume Sy is Morse and a is a regular
value. Then we define a Banach submanifold O%(V) of admissible perturba-
tions v. These have the property that Sy and Sy, do have the same critical
points on their respective sublevel set with respect to a and, moreover, both
sublevel sets are homologically equivalent. The proof that there is a residual
subset Oy, (V) of regular perturbations for which Sy, is Morse-Smale below
level a requires unique continuation for the linearized heat equation and the
fact that the action is strictly decreasing along nonconstant heat flow trajec-
tories.

In chapter 6 we define Morse homology for the heat flow. In section 6.1
we define the unstable manifold of a critical point = of the action functional
Sy : LM — R as the set of endpoints at time zero of all backward halfcylinders
solving the heat equation (7) and emanating from x at —oo. The main result
is theorem 18 saying that if the critical point x is nondegenerate, then this is a
contractible submanifold of the loop space and its dimension equals the Morse
index of x. Here we use unique continuation for the linear and the nonlinear
heat equation. In section 6.2 we put together everything to define the Morse
complex for the negative L? gradient of the action functional on the loop space.

Note that despite the title of this text the fact that the heat equation
generates a forward semiflow is nowhere used. In contrast we study the heat
equation in analogy to Floer theory in terms of a boundary value problem
for infinite cylinders in M which are solutions of the (parabolic) PDE (7).
However, the semiflow point of view will be useful to construct a natural
isomorphism to singular homology of the loop space via Conley theory in our
forthcoming paper [22].

Notation. If f = f(s,t) denotes a map, then fs abbreviates the map f(s,) : t — f(s,1).

In contrast partial derivatives are denoted by Jsf and O f.

2 Solutions of the nonlinear heat equation
2.1 Regularity and compactness

Throughout section 2.1 embed the compact Riemannian manifold M isomet-
rically into some Euclidean space RY and view any continuous map u : Z =
(=T,0] x S* — M as a map into R taking values in M. We indicate this by
the notation u : Z — M < RY. Then the heat equation (7) is of the form

Byt — 9,9u = I'(u) (dyu, dyu) + F. (12)

Here and throughout this section I' denotes the second fundamental form
associated to the embedding M < R™ and the map F : Z — R" is given by

F(s,t) := (gradV(us))(¢). (13)
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Recall the definition of the W*? and the C¥ norm in (79) and (80), respectively.

Proposition 2 Fix a perturbation V : LM — R that satisfies (V0)—(V3),
constants p > 2 and pg > 0, and cylinders

Z = (-T,0] x S, 7' =(-T,0)xS", T>T >0.

Then for every integer k > 1 there is a constant ¢ = cx(p, 1o, T, T, V) such
that the following is true. If u: Z — M < RN is a WP map such that

[ull, + [10sull, + [10cull,, + [[0:Brull, < o (14)
and which satisfies the heat equation (12) almost everywhere, then

||u||Wk=P(Z/7RN) < Ck.

Proposition 2 follows by induction from the bootstrap proposition 12 and
lemma 1 below. By standard arguments it implies the following two results.

Theorem 10 (Regularity) Fiz a perturbation V : LM — R that satis-
fies (V0)—(V3) and constants p > 2 and a < b. Let u be a map (a,b] x S* —
M — RY which is of Sobolev class WP and solves the heat equation (12)
almost everywhere. Then u is smooth.

Theorem 11 (Compactness) Fiz a perturbation V : LM — R that satis-
fies (V0)~(V3) and constants p > 2 and a < b. Let u” : (a,b] x St — M — RY
be a sequence of smooth solutions of the heat equation (12) such that

sup || 0su” |, + sup ||8Su”||p < oo.
v v

Then there is a smooth solution u : (a,b] x ST — M of (12) and a subsequence,
still denoted by u”, such that u” converges to u, uniformly with all derivatives
on every compact subset of (a,b] x S*.

Proof (of Proposition 2) Consider the family 7). := T’ + T;T/, r € [1,00), and
the corresponding nested sequence of cylinders

Z, = (=T,,0] x S*, Z2=721>7Zy>Z3>...02".

Denote by Cy the constant in (V0). More generally, for ¢ > 1 choose Cy
larger than Cy—; and larger than all constants C'(k',¢',V) in (V3) for which
2K+ 0 < (.

Claim. The map F given by (13) is in W5P(Zyy1) for every integer £ > 1.

This implies proposition 2: Given any integer k& > 1, then F' € W*P(Z;41) by
the claim. Furthermore, by inclusion Z;1 C Z and (14)

||u||wl,p(z,€+1) < ||UHW14:(Z) < o-
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Hence by corollary 2 for the pair Zp o C Zi41 there is a constant cgiq de-
pending on p, po, Zi+2, Zk+1, ||I'||cowte, and || F|[yr.p(z,, ) such that

||“||wk+1,p(zf) < ||u||wk+1,z>(zk+2) < Cpta-

It remains to prove the claim. The proof is by induction.

Step £ = 1. We need to prove that F', O,F, O0sF, and 0.0 F are in LP(Zs).
The domain of all norms of I" and its derivatives is the compact manifold M.
The domain of all other norms is the cylinder Z unless indicated differently.
By axiom (V0) with constant Cj it follows (even on the larger domain Z) that

IFllo = sup [lgradV(us)|[ o (s1) < Co (15)

se(—T,0]

and therefore ||F|, < ||F| e (Vol Z)l/p < CoT'/P. Next we use axiom (V1)
with constant Cq; > Cy to obtain that

10:Fl, < || VigradV(w)], + | 1(u) (Bru, gradV(w))
< Cy (14 90ull,) + 171 190l 1P
< C1(1+ po) + 17| oo 10Co-

Iy

Here we used the assumption (14) in the last step. Now by the bootstrap
proposition 12 (i) for £ = 1 and the pair Zs/3 C Z there is a constant a;
depending on p, o, Zy/3, Z, ||I'||c4, and the LP(Z) norms of F' and 0 F' such
that [[O¢ulw1r(z,,,) < a1. Then by the Sobolev embedding Whr s C° with
constant ¢’ = ¢(p, Zs/3) it follows that 0;u is continuous on Z,,3 and

10ull oz, ,4) < € N0ttllyprn(z, ) < arc’. (16)
Again using axiom (V1) we obtain similarly that
10sF|l,, < [[VagradV(u)ll,, + [|1"(u) (9su, gradV(u)) |,
< 201 [|Osull,, + 171l oo |Osull,, [1F1 o
< o (2C1 + |17 Co) -
In order to estimate 0;0;F observe first that

IMOeull Loz, 4y < 100kt Loz, ) + 1 [l o 11Ocul - [Orull Loz )

Zsy3
< po + 1Tl 10rull go z, ) 1000l Lo (2, )
< po + [Tl 1€’ o

Here the last step uses assumption (14) and the C? estimate (16) for d,u which

requires shrinking of the domain. Now by axiom (V3) for k¥ = 0 and ¢ = 2
there is a constant still denoted by C7 = C1(V) such that

VWF| < C1 (14 |0l + Vidru a7
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pointwise for every (s,t). Integrate this inequality to the power p to get that

Ie%Fl 2, ) < Cr (14100l oz, )+ 1000l 1o, )
< C1 (14240 + |17 o @1¢ o) -
By straightforward calculation we obtain
100 F || Loz, ) < IVVIF || Lo + A ]| o [100tell o 0wl o [1F ] o
1o 10:0eull Lo 1 Fll co + 2 ([Tl oo 10¢tll o |0l Lo
+ 115 19eull o 192l o 1l o
where all C° and LP norms are on the domain Zj /3- Now the right hand side

is bounded by a constant ¢ = ¢(p, o, ', C1, || I||c1) by assumption (14), the
estimates for F' and its derivatives obtained earlier, and (16).

Induction step £ = £+ 1. Let £ > 1 and assume that the claim is true for £.
This means that F' is in W*P(Z,,1) and therefore oy := I E'lwer(z,q) < 00
Hence by corollary 2 for the integer £ and the pair of sets Zy11 D Z; 3,2 there
is a constant ¢, = ce(p, po, Tes1, Tr43/2, | I'[| 2642, ) such that

”u”WHI’p(ZHS/z) < HUHCZ(ZHSN) < ce (18)

The second inequality follows from the first by the Sobolev embedding WP —
C° applied to each term in the C* norm. Then choose ¢, larger, if necessary.
It remains to prove that the W%P(Zy,5) norms of 9,F, 0,F, and 0,0, F are
finite. Similarly as in step £ = 1 we obtain that

10 llyyen (2, )0) < IVeF lwew + [117(w) (Gru, F)|[ypen
< Cr(Ithwer + 18eullyyes)
+ el lllee (10ullyyes 1 Fllo + lullee 1 llype.n)

< (Tl/p + Cg) + ¢ HF”CE (CgCo + Cgozg) .

Zpy3)/2

Here the domain of all norms, except the one of I', is Zy 3/5. The first step
is by definition of the covariant derivative and the triangle inequality. Step
two uses axiom (V1) and lemma 1 with constant ¢é. The last step uses the
estimates (15), (18), and the definition of oy in the induction hypothesis. Now
by the refined bootstrap proposition 12 there is a constant a,41 such that

HatU”le,p(ZHz) < apta, ||atu||c1’.(z“2) < Gpya (19)
Next observe that
10, F llypeon 2,
< IVsFllyyes + 117 (w) (Osu, F)[lyyen
< 2C1 [|0sullyyes + C ([T llce (10sullyyew 1 Fllo + (lullce + [10cullce) 1 Fllyye.s)
< 2C1¢r + C'||T|| e (ceCo + (¢ + apy1)ae) .
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Here the domain of all norms, except the one of I', is Z;;12. Again the first
step is by definition of the covariant derivative and the triangle inequality. Step
two uses axiom (V1) and lemma 1 with constant C’. The last step uses the
estimates (15), (18), (19), and the definition of a; in the induction hypothesis.
Similarly as in step £ = 1 we obtain that

10e0cF [lyye.0( 2, )

< IVViFllyyes + 1A (w) (Ou, Opu, F)|lyye.n
+ 117(w) (0:0pu, F)llyye + 2| I'(w) (Opt, 0 F ) [[yype.r
+ 117 (w) (Opu, I'(w) (Opu, F))[lype.n

< O (T2 + 0wl + 100000l + 1l ce |90l 10rulyyes

2
+ldl e 1Oeulice 1 E 1l e
+ || lllee (19:rullyyes 1 Flloe + 10ullee [1F lyype.n)
2 2
+ 2| Cllee [19vullce 10:F ype + 1 llee 19swlice 1 E'llypes -

Here the domain of all norms, except the one of I, is Zy;2. In the second
step we used axiom (V2) with constant C; to estimate the term V;V, F' and we
spelled out the covariant derivative arising in V;0yu. Moreover, crudely pulling
out C* norms worked for all terms but the third one, the one involving 0,0;u,
here we used lemma 1 with constant ¢ for the functions 0,0;u and F. Now
all terms appearing on the right hand side have been estimated earlier. This
proves the induction step and therefore the claim and proposition 2. O

Lemma 1 ([20, le. 2.21, le. 4.4]) Fiz a constant p > 2 and a bounded open

subset §2 C R? with area |£2|. Then for every integer k > 1 there is a constant
¢ = c(k,|92|) such that

10 - vllyyir < e (10tllyyrs V]l + luller [0l pe.r)

105w - vllyyr.p < €llOsullyyip 1]l + € luller + 10euller) vllyyx.s
for all functions u,v € C>=(£2).
Proof (of theorem 10) Fix any point z € Z = (a,b] x S* and a subcylinder
Z' = (a’,b] x S* that contains z and where a’ € (a,b). Set po = |[ullwrr(zrN),
then proposition 2 for the function u(s,t) := u(s + b,t) and the constants

T=b—aand T' = b — o implies that

we (YWH(Z',RY) = (\ Whr(Z',RN) = C=(Z',RV).
k>0 k>0

See [8, app. B.1] for the last step. Hence u is locally smooth. g

Proof (of theorem 2) Theorem 10. O
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Proof (of theorem 11) Shifting the s variable by b and setting T' = b—a, if nec-
essary, we may assume without loss of generality that the maps u” are defined
on (=T,0] and, furthermore, by composition with the isometric embedding
M < RY that they take values in RY. All norms are taken on the domain
(=T,0] x S, unless indicated otherwise. To apply proposition 2 we need to
verify that the maps u” : (=T, 0] x S' — R¥ satisfy the four apriori estimates
in (14) for some constant g independent of v. To see this observe that

[u”]l,, < lu”]lo VOl ((=T,0] x S*) < e TP

for some constant ¢; depending only on the isometric embedding M < RY and
the diameter of the compact manifold M. By assumption there is a constant co
independent of v such that [|9;u”||, < [|0su” | TP < coTYP and ||0su”||, <
¢o. Then it follows by the heat equation (12) that

1900, < s, + lgradV(u)l], < ez + CoT"?.

In the second step we used (V0) to estimate grad)V(u”) in L from above by
a constant Cy = Co(V). By definition of the covariant derivative

[0:0pu” (|, < [[VeDeu” [, + 11| coary 0su” | o Oru” I,
<o+ CoTVP 4 ETY/P Il co(ary -

Now set g := co + CoTV/P 4 3T/P Il o ary + (e + ¢c2)T'/P. Then proposi-
tion 2 asserts that for every constant 77 € (0,7T) and every integer k > 2 there
is a constant ¢ = c(p, po, T, T',V) such that ”uV”W’C?P(Q,RN) < ¢, where
Q = [-T",0] x S. Recall that the inclusion W*?(Q) — C*~1(Q) is compact;
see e.g. [8, B.1.11]. Hence there is a subsequence which converges on @ in the
C* topology. We denote the limit by u € C*(Q). Since this is true for every
k > 2 there is a subsequence, still denoted by u”, converging on @ to u, uni-
formly with all derivatives. Since this is true for every compact subcylinder
Q of (=T,0] x S!, the theorem follows by choosing a diagonal subsequence
associated to an exhausting sequence by such @Q’s. Because, in particular, the
convergence is in C° and the u” take values in M, so does the limit u. By C*
convergence with k > 2 the limit u satisfies the heat equation (12). O

2.2 An apriori estimate

Theorem 12 Fiz a perturbation V : LM — R that satisfies (V0)—-(V1) and
a constant c¢y. Then there is a constant C = C(cg, V) such that the following
holds. Assume u : R x ST — M is a solution of the heat equation (7) such that

sup Sy (u(s, ) < co,
seR

then ||Opul| , < C.
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Proof The idea is to first derive slicewise L? bounds, then verify the differential
inequality in [13, lemma B.1] and apply the lemma using the slicewise bounds
on the right hand side. The slicewise bound for dyu follows easily from the
assumption ¢y > Sy(ug) = %H@tusH%Q(Sl) — V(us) where uy(t) := u(s,t). Let
Cy denote the constant in (VO0), then this implies that

||8tus||%2(51) § 200 + QV(US) S 200 + 20() (20)
for every s € R. Consider the pointwise differential inequality given by
(8,0 — 05) |0wul® = 2 |Vdyul® + 2((ViVs — V) Osu, Oy

= 2|V0,ul® — 2(VigradV(u), dyu)

> =204 (14 |0wul) |Orul

> —Cy —3C |owul?.
To obtain the second step we replaced V;0;u according to the heat equation (7)
and used that V;0su = V,;0;u. The third step is by condition (V1) with con-

stant Cy. Choose (so,tp) € R x S* and apply [13, lemma B.1] in the case r = 1
and with w(s,t) :== 1 + |9u(so + s, to + t)[* and a = 3C to obtain

0 +1 1 9
w(0) < C1€a/ / <3 + [Ou(so + s, to + 1) ) dtds
-1J-1

e ’
S e (3 + 2/1 |\6tu50+s||iz(sl) d5> ’

Theorem 12 then follows from the slicewise estimate (20). O

Lemma 2 Fix a constant ¢y and a perturbation V : LM — R that satis-
fies (VO) with constant Co. If u: R x S' — M is a solution of (7), then

supSy(u(s, ) <co = FE(u) <co+ Co
seR

and Sy (ug) — Sy(up) < 2E(u) + C2 + 2Cq for all reals a < b.

Proof The first assertion is standard. Using the energy identity (8) and the neg-
ative L? gradient flow property of the heat equation we obtain that E_r1(u) =
Sy(u_r) —Sy(ur) < Sy(u_r)+ Cy for every T > 0. The last step is by (VO0).
Next by partial integration and (7) we obtain that

b
d
J0rually = o3 = = [ 5 Grn O} sy ds
= 2<asus; Vtatus>L2
< [0sull3 + 19su — grad V(u)]|;
< 3E(u) +2C2.
The last step is by the energy identity (8) and (V0). Now use that |dyus||3 =
28y (us) + 2V (us) by definition (5) of the action. Apply (V0) again.

O
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2.3 Gradient bounds

Linearizing the heat equation (7) at a solution w provides the linear heat
equation

D& = V& — Vi€ — R(E, Opu)Opu — Hy(u)€ = 0. (21)

for smooth vector fields £ along u. Note that £ := Jsu is a solution. The
definition of D, makes sense for arbitrary smooth maps v : R x S* — M. The
formal adjoint operator with respect to the L? inner product is given by

D¢ = —Vi§ = ViVi§ — R(§, 0yu) 0w — Hy (u)€. (22)

Theorem 13 Fiz a perturbation V : LM — R that satisfies (V0)—(V2) and a
constant cy. Then there is a constant C = C(co, V) > 0 such that the following
holds. If u : R x S* — M s a solution of (7) that satisfies sup,cr Sy (u(s,-)) <
co, then

|(95’U,(S,t)‘2 + |Vtasu(87t)|2 S CE[S—LS] (’LL)
|VeOyu(s, )| + [ViVidsu(s, )| < CEjs,4(u)
for every (s,t) € R x St. Here

aw:jSWMQ
X 1

denotes the energy of the solution u over the set I x S1.

Proof By theorem 12 there is a constant Cy = Cy(co, V) such that ||dpul|, <
Cy. Let C' = C(Cy, V) be the constant of [21, thm. 3.3] with this choice of Cp.
Since ¢ := Osu solves the linearized heat equation, the apriori estimate [21,
thm. 3.3] shows that

|0su(s,t)]> < C* B,y q(u) < C*(co +¢)

for every (s,t) € R x S'. Here the last step is by lemma 2 and axiom (VO0)
with constant ¢’. Use that u solves (7) and satisfies axiom (V0) to obtain that

V0l o < 110sull o + llgradV(u)ll,, < Cv/eo + ¢ + .

Now choose Cj larger than 2Cv/co + ¢/ + ¢’ and let C' = C(Cq, V) be the con-
stant of [21, thm. 3.3] with this new choice of Cy. Then [21, thm. 3.3] proves
the desired estimate for |V,0su|. Hence ||Vi0sul|co is bounded by lemma 2.
Then ||V, V,0,ul|« is bounded by (7) and axiom (V1). Hence the apriori esti-
mate [21, thm. 3.4] applies with a new choice of Cj and proves the remaining
two estimates of theorem 13. O

Proof (of theorem 3) Theorem 12, theorem 13 and lemma 2. Only (V0)—(V1)
are used. Use (7) and (V0) to obtain the estimate for V;0;u. O
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2.4 Exponential decay

First we prove asymptotic exponential decay for solutions u of the heat equa-
tion (7) assuming only an action bound, say a € R, along w. In this case
nondegeneracy of all critical points (at least below level a) is essential.
Subsequently we deal with the case u € M(z~;27;V). Here boundedness
of the action is automatic and, in addition, existence of asymptotic boundary
conditions ¥ is part of the assumption on u. In this case nondegeneracy is

only required for z*.

Theorem 14 (Exponential energy decay) Fiz a perturbation V : LM —
R that satisfies (V0)—(V2). Suppose Sy is Morse and fix a regular value a € R
of Sy. Then there are constants dg,c,p > 0 such that the following holds. If
uw:R x S' = M is a solution of (7) that satisfies sup,cp Sy(u(s,-)) < a and

ER\[—TO,TO] (u) < do (23)
for some Ty > 0, then
B\ —r7y(w) < ce 710 By g, 1) (u)
for every T > Ty + 1.

Lemma 3 (Critical point nearby) Fiz a perturbation V : LM — R that
satisfies (V0), a regular value a € R of Sy, and a constant 6 > 0. Then there
is a constant € > 0 such that the following is true. Suppose v : S' — M is a
smooth loop such that

Sv(v) < a, Vi 0py + gradV(7)]| o, < €.

Then there is a critical point x € P*(V) and a vector field & along x such that
v = exp,(§) and [|€]| + IVigll o + [ViVig]l o < 6.

Proof First note that [|0,7]|3 = 2Sy(v) + 2V(7) < 2(a + C) where C is the
constant in (V0). Now, assuming £ < 1, we obtain the pointwise inequality

d
o 07 = 2(0py, Vidpy + gradV(v)) — (3, grad V(7))
<2(e+0) |0y < (1+C)* + 0]

Integrate this inequality to see that [0y (t1)]2 — |0y (to)]2 < (14 C)* + |02
for tg,t1 € [0,1]. Integrating again over the interval 0 < ¢y < 1 gives

107l < /(1 +C)* + 210075 < ¢ (24)

where ¢2 := (14 C)* +4(a+C).
Now suppose that the assertion is wrong. Then there is a constant § > 0
and a sequence of smooth loops v, : S — M satisfying

oo

Sv(w) <a, lim ([Vidry, + gradV(v)]l.) =0,
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but not the conclusion of the lemma for the given constant §. We know that
sup,, || Vi v || < 00 by (VO0) and sup,, [0y, ], < oo by (24). Hence, by the
Arzela—Ascoli theorem, there exists a subsequence, still denoted by -, that
converges in the C!-topology. Let x € C*(S!, M) be the limit. We claim that
this subsequence actually converges in the C?-topology. In this case V;0;x +
gradV(z) = 0, hence = € P%(V). But this contradicts our assumption on the
sequence v, and proves the lemma.

It remains to prove the claim. For simplicity, we assume that M is isomet-
rically embedded in Euclidean space R for some sufficiently large integer N.
Since sup,, || Vi0yv ||, < 00, the Banach-Alaoglu Theorem asserts existence of
a subsequence, still denoted by 7,, and an element v € L? such that V,0;7,
converges to v weakly in L?. Note that v is equal to the weak t-derivative
Y0y of d;z. Now gradV(v,) converges to gradV(z) in L™ (hence in L?) by
axiom (V0) and to —v weakly in L2?. Thus v = —gradV(z) by uniqueness
of limits. Hence v € C° and therefore V;0;2 € C°. Using our assumption
on the sequence v, it follows that V;0yy, = —gradV (7, ) converges in L* to
—gradV(z) = v = V0, as v — oo, and this proves the claim. O

Proof (of theorem 14) Recall that if u is a solution of the heat equation (7),
then & := Osu solves the linear heat equation (21) and Er(§) = H§||%2(IX51) for
each interval I C R. Hence it remains to check that the assumptions of [21,
thm. 3.9] and [21, rmk. 3.10] on exponential L? decay are satisfied by our given
solution w. In particular, we need to show that us converges asymptotically in
W22(81) to nondegenerate critical points x¥. Here lemma 3 enters.

Given a and V, let C = C(a,V) be the constant in theorem 13 with this
choice. Let Cy = Cy(V) be the constant in axiom (V0). Then E(u) < a + Cy
by lemma 2, hence ||0;ullcc < CE(u) < C(a+ Cp) by theorem 13. Note that

1€slly = 195 uslly < 10s5uslloe < [10sullo < Cla+ Co),

for all s € R, and that for every x € P*(V) it follows that

co:=v2a+2C)+Cy = |0x]ly+ |[ViOz|y < co.

These are already two of the assumptions in [21, thm. 3.9]. Let 6 and p be
the constants in that theorem with this choice of ¢q(a, V). If necessary, choose
§ > 0 smaller than one quarter the minimal C° distance k = r(a) of any two
elements of P%(V). Let ¢ be the constant in lemma 3 associated to a and §
and set

8o :=min {€*/4C,6°/AC} .

Note that d, p, €, and dg depend only on a and V. Now assume (23) holds true
for some constant Ty = Tp(u) > 0 with this choice of 6. Suppose |s| > Ty + 1.
Then Ep,_ q(u) < Er\[—1,,7,] (1) < do by assumption (23). Now theorem 13
(gradient bound) implies that

10sus oo + | Vi0sts|| oo < A/ CEls—1,6(u) < +/Cdy < min{e,d}. (25)
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Hence by lemma 3 for 7 := us using (25) and (7) there are * € P*(V) with

us = exp,e(nF),  [n¥llexs <6,

whenever |s| > Ty + 1. Although the critical points z* apriori depend on s
they are in fact independent, because § < x/4 and P%(V) is a finite set by the
Morse condition. Moreover, injectivity of the operators A, + is equivalent to
nondegeneracy of the critical points * which is true by the Morse condition.
Then [21, thm. 3.9 and rmk. 3.10] conclude the proof of theorem 14. O

To prove theorem 4 it is useful to denote exp,,(§) by E(u,{) and define
linear maps, for £ € T,,M and i,j € {1,2}, by

Ei(u,&) : TuM — Tepp, e M, Eij(u,§) : T,M x T,M — Teyp,e M.

If u : R — M is a smooth curve and &, n are smooth vector fields along u, then
the maps E; and FEj;; are characterized by the identities

(ua g)asu + EQ(U7 g)vs'g

Ey
Ell(uv ) (777 85”) + E12 (’LL, 5) (77, vsg) + El (ua f)VsU (26)
Eo1(u,§) (n, 0su) + Eaa(u, &) (0, Vi) + Ea(u, ) Vin.

d
% €XPy, (g)

Vs (El (’U,, 5)77)
Vs (B2 (u, §)n)

These maps satisfy the symmetry properties

El?(uv 5) (777 77,) = EQl(u’ g) (77/7 ’r]) ) EQQ(“? f) (777 77,) = EQQ(U’ 5) (77/7 ’r])(’ )
27

and the identities
Ell(U,O) = Elg(’u,, 0) = EQQ(U7O) = 0, E1 (U,O) = EQ(U,O) =1 (28)

Proof (of theorem 4) We prove exponential decay in three steps.

I. FINITE ENERGY. If u : [0,00) x St — M, then E(u) < Sy(ug) + Co by
(the proof of) lemma 2 where Cj is the constant in axiom (VO0).

I1. BOUNDED ACTION ALONG % AND EXISTENCE OF ASYMPTOTIC LIMITS.
Consider the backward case (B). By lemma 2 it follows that

sup  Sy(us) < 2E(u) + C2 4 2Cy + Sy (ug) =: co. (29)
s€(—00,0]

Now fix a regular value a > ¢o of Sy. First we prove that dsu(s,t) — 0
uniformly in ¢, as s — —o0. To see this let C' > 0 be the constant in theorem 13
(gradient bounds) and let s > 1, then

10su(s,8)] < CBpy_y.(u) = c/ st s sy ¥ 0
.

where the last step follows by finite energy of u. Thus by the heat equation (7)
also V;0yus + gradV(us) converges to zero in L°(S'). Hence it follows from
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lemma 3 that there is a critical point = € P%(V) and, for every sufficiently
large s, there is a smooth vector field £, along x~ such that

S5— 00

us = exp,- (&), Nlslloo + [Vilslloo + IViVidslloo — 0.

(The set P*(V) is finite, because Sy is Morse.) This and the identities for the
maps F;; in (26) imply that

10sulloe + [10rtlloc + [[ViOrul| oo < oo (30)

In the forward case (F) the action along w is bounded from above by ¢q :=
Sy (up) due to the negative gradient flow property. The remaining part of the
proof goes through unchanged.

ITII. EXPONENTIAL DECAY. Consider the forward case (F). We prove by
induction that for every k € N there is a constant ¢}, > 0 such that

||85u||Wks2([s7oo)><Sl) <c ||aSuHL2([s—k,oo)><Sl) (31)

for every s > k. This estimate, the energy identity (8), and theorem 14 with
constants dg, ¢, p and Ty chosen sufficiently large such that (23) holds, show

that
10sullyyri.2((s,00)x51) < Chpf Els—k,00] (1) < €y cBpePLmR=T0)/2

whenever s > k 4+ Ty + 1. The Sobolev embedding W*? — C*~2 e.g. on
the compact set [s,s + 1] x S!, concludes the proof of forward exponential
decay (F).

It remains to carry out the induction argument. It is based on the following
identity. Linearize the heat equation (7) in the s-direction to obtain that

(Vs — i) Osu = R(Osu, Opu) Opu + Hy (u)Osu. (32)

Observe that [13, le. D.2] applies by (30); formally add to u a smooth half
cylinder imposing a uniform limit as s — —oo. Fix sg > 1 and pick a smooth
nondecreasing cutoff function 5 : R — [0, 1] equal to zero for s < so — 1, to
one for s > sg, and whose slope is at most two. Now [13, le. D.2] for p = 2
applied to B¢ shows that there is a constant ¢ > 0 such that

||Vs§||L2([so,oo)xsl) + ||Vt§||L2([so,oo)xsl) + ||Vtvt§||L2([s(,,oo)xsl)
< ¢ (1% = VRl L2(iap 1,001 5t) + 1022 a0 10y )

for every & € C§°([0,00) x S, u*TM). We used [13, le. D.4] to include V£.
We prove the induction hypothesis (31) for k = 1. Let s > 1 and denote
by Cy > 0 the constant in (V1). By (33) with £ = 0su and (32) it follows that

(33)

[VsOstull L2 (5,00 x 51) T IVEOstll 12 ((5,00) x 51) T [[VEVeDstl| 25 o) x 51)

<d (||(Vs = ViVi)Osull p2(s—1,00)x 51y T ||aSuHL2([s—1,oo)><Sl))

c <||R(3su’ Opu)Opu + Hy (w)Osull L2 (- 1,00)x 51y + ||8SUHL2([S—1,OO)><5'1)>
< ¢ ([Rllooll0rullZ +2C1 + 1) 105t 12 (s 1 00y xc51) -
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Observe that the induction hypothesis (31) for £ = 2 follows similarly.
Assume s > 2. Then by (33) with £ = V,0su and (32) it follows that

||VSVSaSu||L2([S,OO)><Sl) + |‘WV985U|‘L2([57w)XS1) + ||Vtvtvsasu||[‘2([s,oo)xsl)
<d (Hvs (R(Dsu, 0yu)yu + Hy(u)Dsu) + [V, VeVil Ot 2 fs 1 o)1)

+ ||vsasu||L2([S—1,OO)><Sl)>'

Now use s > 2, the apriori estimates (30), axiom (V2), and the case k = 1
to bound the right hand side by a constant times ||Osul| 12 ([s—2,00)xs1)- Then
the L? bound for V,V,0,u obtained earlier in the case k = 1 together with the
identity V,V;0su = V;V,0,u — R(0su, O,u)dsu imply an L? bound for V,V,d,u.

To prove the induction hypothesis (31) for k = 3 requires the yet unkown
fact that ||V;0su|leo < 00. Note that our heat flow solution u admits an upper
action bound, namely Sy (u(0, -)), and this is the essential assumption of theo-
rem 12 and theorem 13. Hence corresponding versions recover (30) and prove
the desired estimate. The latter is crucial, because (33) with £ = V,Vi0su
and (32) lead to terms of the form

HR(vSasua Vtasu)atu”L2([s,oo)><S1)v

whereas our induction hypothesis in the case k = 2 only provides a C° bound
for dsu. The remaining part of proof follows the same pattern as in the case
k = 2. Here we use axiom (V3).

Now fix an integer k¥ > 3 and assume the induction hypothesis (31) is
true for every ¢ € {1,...,k}. In particular, we have W*?2 and C*~2 bounds
for dsu on the appropriate domains. Apply (33) with & = V,k0,u and (32) to
obtain L? bounds for V,**19,u and V,V,*9,u. Here we use axiom (V3) and the
induction hypothesis for £ € {1,...,k}. A problem of the type encountered in
the case k = 3 does not arise, since we have C*=2 bounds for d,u with k > 3.
To obtain L? estimates for the remaining terms of the form V,’ V,k 71 9,u with
j > 2 use (32) to treat any V;V; for one V;. This reduces the order of the term,
hence the induction hypothesis can be applied. This completes the induction
step and proves (F). The backward case (B) follows similarly. O

Corollary 1 Fiz a perturbation V : LM — R that satisfies (V0)—-(V3), two
nondegenerate critical points x+ € P(V), and an element u € M(z~,z7; V).
Then there are positive constants p and cy, c1,Ca, ... such that

Hasunck (R\[—T,T] ><S1) é Ckepr
for every T > 1.
Proof (I) Since u € M(x~,2T;V), its energy is finite by (8). (IT) Use (29) to

see that the action is bounded along w. Existence of asymptotic limits of u
holds by definition. Now (III) in the proof of theorem 14 applies. O

Proof (of theorem 5) By corollary 1, the heat equation (7), and axioms (VO-
V1) the assumptions of the Fredholm theorem [21, thm. 3.13] are satisfied. O
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2.5 Compactness up to broken trajectories

Proposition 3 (Convergence on compact sets) Assume that the pertur-
bation V : LM — R satisfies (V0)—(V3) and Sy is Morse. Fix critical points
T € P(V) and a sequence of connecting trajectories uv¥ € M(z~,2%; V). Then
there is a pair xo,x1 € P(V), a connecting trajectory u € M(zg,x1; V), and a
subsequence, still denoted by u”, such that the following is true.

(i) The subsequence u” converges to u, uniformly with all derivatives on every
compact subset of R x S*. (ii) For all s € R and T > 0 it holds that

Sy (u(s,-)) = Vli_{go Sy(u”(s,"), Eprm(u)= Vli_{go Ei_r1)(u”).

Proof Since the flow lines u” connect = to z+ and the action S) decreases
along flow lines, it follows that sup,cp Sy(u”(s, ) = Sy(x~) =: ¢o. Hence
by the apriori estimates theorem 12 and theorem 13 there is a constant C' =
C(co, V) such that [0;u” (s, t)| < C, and |0su”(s,t)|> < C? (Sp(z7) — Sy(zT)),
for every (s,t) € R x S*. To obtain the second estimate we used the energy
identity (8) for connecting orbits. Now fix a constant p > 2 and pick an integer
¢ > 2. Then the assumptions of theorem 11 are satisfied for the sequence u”
restricted to the cylinder Z, = (—£,¢] x S'. Hence there is a smooth solution
u : Zy — M of the heat equation (7) and a subsequence, still denoted by
u”, such that u” converges to u, uniformly with all derivatives on the compact
subset [—£+1,£] xSt of Z,. Now (i) follows by choosing a diagonal subsequence
associated to the exhausting sequence Zo C Z3 C ... of R x S*.
To prove (ii) note that for every T' > 0 we obtain that

E[fT,T] (u) = lim \8Su”|2 = lim E[fT,T] (u”) S SV(.Z'_) — Sv($+)
[ Zdee] ZT V—r00
where the first step uses that by (i) the sequence dsu” converges to dsu, uni-
formly on compact sets. The second step is by definition of the energy and the
last step is again by the energy identity (8). Hence the limit u : R x ST — M
has finite energy and so by theorem 4 belongs to the moduli space M(zq, z1; V)
for some xg, 21 € P(V). To prove convergence of the action at time s note that
V (u(s,-)) = lim, o V (u”(s, ")), because V is continuous with respect to the
C° topology on LM by axiom (V0). Convergence of the action at time s then
follows from the fact that d,u”(s,-) converges to dyu(s,-) in L>(S1). O

Lemma 4 (Compactness up to broken trajectories) AssumeV : LM —
R satisfies (V0)~(V3) and Sy, is Morse. Fiz distinct critical points x* € P(V)
and a sequence u¥ € M(x~,x"; V). Then there are a subsequence, still denoted
by u”, critical points xq,. ..,y with xg = 2% and x,, = x~, solutions

Uk GM(Ikaxk—l;v)a asukioa kil,...,m,

and sequences sy, such that the shifted sequence u”(sy + s,t) converges to
ug(s,t), uniformly with all derivatives on every compact subset of R x S*.
Moreover, these limit solutions satisfy Y -, E(ux) = Sy(z™) — Sy(a™).

Proof In [13, of lemma 10.3] replace lemma 10.2 by prop. 3. ad
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3 The implicit function theorem

Throughout this section we fix a smooth perturbation V : LM — R that
satisfies (V0)—(V3) and two nondegenerate critical points #¥ of Sy. The idea
to prove the manifold property and the dimension formula in theorem 6 is
to construct a smooth Banach manifold which contains the moduli space
M(z~,27;V) and then carry out the proof locally near each element of the
moduli space.

Fix a real number p > 2 and denote by

BYP = BYP (7 2™ (34)

the space of continuous maps u : R x S' — M, which satisfy the first limit con-
dition in (3), are locally of class WP, and satisfy the asymptotic conditions
¢t e Wl’p(Z%) for some sufficiently large 7' > 0 where Z, = (—o0, —T] x S*
and Z:,'f = [T, ) x St,u*TM); this implies the second limit condition in (3).
Here ¢+ are defined pointwise by the identity eXPy (1) £%(s,t) = u(s,t). The
space BY'P carries the structure of a smooth infinite dimensional Banach mani-
fold. The tangent space T, B? is given by the Banach space W} whose norm
is defined in (11). Around any smooth map u local coordinates are provided by
the inverse of the map ¢, =1 : V,, — BYP given by £ +— [(s,t) — eXPy(s,1) €(5,1)]
where V,, C WL? is a sufficiently small neighborhood of zero. By abuse of nota-
tion we shall denote this map again by £ ~ exp,, €. Observe that any u € B?
which satisfies the heat equation (7) is automatically smooth by theorem 2
and therefore lies in M(z~,z; V).

For x € M and ¢ € T, M denote parallel transport with respect to the
Levi-Civita connection along the geodesic 7 — exp, (7€) by

@(:L’,f) T M — Texpz(f)M'
For u € BY? the map F,, : WhP — LP is defined by

Ful€) = D(u, &) (9s(exp,, €) — ViDi(exp,, €) — gradV(exp, €)) . (35)

It is a smooth map between Banach spaces. Hence the implicit function theo-
rem for Banach spaces applies. The differential dF,(0) : WP — LP is given
by the linear operator D,; see [18, app. A.3]. The map £ — exp, & identifies a
neighorhood V' of zero in F, ' (0) with a neigborhood of u in M(z~,zT; V).

Proof (of theorem 6) Fix p > 2 and u € M(z~,z%;V). Then by theorem 5
the operator dF,(0) = D, : WLP — LP is Fredholm. It is onto by assumption.
Since every surjective Fredholm operator admits a right inverse, the implicit
function theorem for Banach spaces, see e.g. [8, thm A.3.3], applies to F,
restricted to a small neighborhood V of zero. It asserts that F, '(0) NV is
a smooth manifold whose tangent space at zero is given by the kernel of D,,.
Since D, is onto, it follows that dimker D, = index D, by definition of the
Fredholm index. But index D,, = indy (2~ ) — indy (™) by theorem 5. O
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Proof (of proposition 1) Set ¢, = 1(Sy(z~) — Sy(2™)) and identify
/\//\l(x_,x"';V) ~ M* = {ue Mz, 27;V) | Sy(u(0,-)) = i}

Here we use that the action Sy strictly decreases along nonconstant heat flow
trajectories (use the first variation formula for Sy; see e.g. [10, sec. 12]). Note
that M* is a manifold of dimension zero, since M(z~,27;V) is a manifold of
dimension one by theorem 6 on which R acts freely. Now choose a sequence u”
in M*. By lemma 4 there is a subsequence, still denoted by u”, finitely many
critical points g = T, z1,..., T, = =, finitely many connecting trajectories
up € M(zg,zk—1;V) and sequences sy where k = 1,...,m, such that each
shifted sequence u” (s} +s,t) converges to uy(s,t) in CX.. By the Morse-Smale
assumption theorem 6 applies to all moduli spaces and shows that

indy(zy) — indy(xg—1) = dim M(zg, 2513 V) > 1, Vk e {l,...,m},

where the inequality follows from the facts that ds;u; #Z 0 and the heat equa-
tion (7) is s-shift invariant. Hence indy (z~) —indy(z*) > m > 1and som =1
by assumption on z¥. But this means that u” converges to u; € M(z~,2";V)
in CF%.. In fact u; € M* by convergence of the action functional for fixed time

s = 0; see proposition 3 (ii). Hence M* is compact in the C°, topology. O

loc

The refined implicit function theorem

Proposition 4 (The estimate for the right inverse) Fiz a perturbation
V: LM — R that satisfies (VO)—(V3) and nondegenerate critical points v= of
Sy. Assume u € M(z~;x%;V) and D, is onto. Then, for every p > 1, there
is a positive constant ¢ = ¢(p,u) invariant under s-shifts of u such that

€ Iy < el D71, (36)
for every £ € im (D} : W2P — WLp),

The proof of proposition 4 is standard; see e.g. [4, lemma 4.5]. Details in
the parabolic case at hand are provided by [20, prop. 5.1].

Proposition 5 (Quadratic estimate) Fiz a perturbation V : LM — R that
satisfies (V0)—(V1). Let v > 0 be the injectivity radius of M and fix constants
1 <p<ooandcy>0. Then there is a constant C = C(p,co) > 0 such that
the following is true. If u : R x St — M is a smooth map and £ is a compactly
supported smooth vector field along u such that

10sullog + 10sull o + MiOrull oo < co, €]l <25

then

1Fu(€) = Ful0) = dFu(0)€], < C N1l I€lwar (1+ IElwpr ) -
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Proof Recall the definition (26) of the maps E; and E;; and write
Ful®) = Ful0) = G| g Fulr®) = (€)= (&) — h(©)

where

F(€) == D(u, &) OB (u,€) — Osu — | __ P(u, 7€) T Osu — | _ OsE(u, TE)
9(&) = D(u, &) Vi E(u, 5) Vt hu+ (Vo (u,0)€) Vedeu — EIOV@E(U»T@
h(&) i= P(u, &) 'grad V(E(u, €)) — grad V(u) + (Vad|(u,0)€) grad V(u)

——’ OgradV( (u, 7E)).

Here we used that @(u,0) = 1. Straightforward calculation using the identi-
ties (28) shows that f(ﬁ) = fl(f)Vf + f2(&) where

= (D(u, &) " Ea(u, &) — 1) Vi
= (D(u, &) "B (u, &) — 1+ Vd(u, 0)§) Osu,
that
g = g1 0 V20w + g2 0 (Opu, Opu) + g3 © Vi Vi€ + ga o (Oru, Vi€) + g5 o (i€, Vi)

where

g1(6) = D(u, &) Er(u, &) — 1+ %d(u,0)¢
92(§) = (u, &)~ 1Eu(u §) — i|T:0E11(U7T§)
g3(&) = D(u, &) Ea(u, &) —

94(§) = 20(u, &) Era(u, §)

g5(§) = P(u, &)~ 1E22(u £),

and that

h(€) = @(u, &) grad V(E(u, §)) — (1 — (Va®(u, 0)€)) grad V(u) — Hy (u)€.

Here Hy denotes the covariant Hessian of V given by (4). It follows by in-
spection using the identities (28) that the maps fo, g1, g2, and h together with
their first derivative are zero at & = 0. Therefore there exists a constant ¢ > 0
which depends continuously on |¢] and the constant in (V1) such that

(2 + 91+ 92+ WO < clef (105ul + [Nyl + [l +1)

pointwise at every (s,t). Similarly, it follows that the remaining functions are
zero at £ = 0 and therefore

1+ 95+ 94+ 95)(©)] < €] (V€] + V%] + i€ [orul + W]

Take these pointwise estimates to the power p, integrate them over R x S*
and pull out L* norms of dsu, dyu, and V.0;u to obtain the conclusion of
proposition 5. The term |€] - |V;¢|? involving a product of first order terms is
taken care of by the product estimate [21, le. 4.1] and [21, rmk. 4.2]. Here we
use the fact that the (compact) support of ¢ is contained in some set (a, b] x S*.

O
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Proof of the refined implicit function theorem 7

Fix V and 2% satisfying the assumptions of theorem 7 and assume by contra-
diction the conclusion of the theorem was not true. Denote the constant in (V0)
by C§ > 1. Then there are constants p > 2 and ¢y > C{) and a sequence of
smooth maps u, : R x St — M such that u,(s,-) converges asymptotically to
¥ in WH2(S1) and

Co

a0l < 72 Ol S Vol S, (37
for all (s,t) € R x S* and
1
05wy — ViOpu, — grad V(u, )|, < = (38)

but which does not satisfy the conclusion of theorem 7 for ¢ = v. This means
that for every u € M(z~,2";V) and every £ € im D} N W, which satisfy
u, = exp, (&) it holds that

1
Hasul/ - vtatul/ - gradV(u,,)Hp < ; ||€VHW . (39)

The time shift of a smooth map u : R x S* by ¢ € R is defined pointwise by
(ux0)(s,t) :=u(s,t) :=u(s+o,t).

Set ag := 2¢3 and observe that

. 1 1
Sv(a™) = lm_Su(u(s,)) = 5 105,13 = V(wn(s,) < 5+ Ch < ao

S——00
by asymptotic W2 convergence, estimate (37), axiom (V0), and ¢q > Cj.
Now fix a regular value ¢, of Sy between Sy(z™) and Sy(z~); use that the
set P (V) is finite, because Sy is Morse-Smale below level ag by assumption.
Applying time shifts, if necessary, we may assume without loss of generality
that

Sy (un(0,-)) = ¢ (40)

Furthermore, choose ¢, := a and denote by Cy = Cy(a, V) > 0 the constant in
theorem 3 (apriori estimates) with that choice. Hence

100l oo + 100, + [ Vertul, < Co (41)

for all u € M(z,y;V) and z,y € P*(V).

Claim. There is a subsequence, still denoted by u,, a constant C, a trajectory
u € M(z=,2";V), and a sequence of times o, such that the sequence n,
determined by the identity u, = exp,., (1,) satisfies n, € im Do, NWye. and

Tim (o + Inll,) =0, il < C. (42)
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The claim leads to a contradiction as follows. Consider the time shifted tra-
jectories u?v := wu * 0, and vector fields 7, provided by the claim and note
that u®» € M(x~,z";V). Note further that the assumptions of the quadratic
estimate proposition 5 are satisfied by (41) and by choosing a further sub-
sequence, if necessary, to achieve that ||n, (e < ¢. Set ¢ := Cp(a,V) and let
Cy = Ca(p, ) be the constant in proposition 5 with that choice. Furthermore,
since M(z~,2";V)/R is a finite set by proposition 1 and P*(V) is a finite set
as well, the estimate for the right inverse proposition 4 applies with constant
C depending only on p, a, and V. Now definition (35) of the map F, and
parallel transport being an isometry imply the first step of the estimate

05wy — ViOpuy, — gradv(uV)Hp = ”]:u(nV)Hp
> ||Du77VHp = [[Fulnw) — Fu(0) — dfu(o)nqu

1
> by (g = Collnllc 1+l

> L
=20, Nl -

Step two uses that F,(0) = dsu — V,Oyu — gradV(u) = 0 and dF,(0) = D,.
Step three is by proposition 4 and proposition 5. By (42) the last step holds
for sufficiently large v. For v > 2C; the estimate contradicts (39) and this
proves theorem 7. It remains to prove the claim and this takes four steps.

Step 1. There is a subsequence of u,, still denoted by u,, and a trajectory
ue M(z~,2;V) such that

w=expy (&), lim (&l + 160,) = 0. (43)

Proof We embed the compact Riemannian manifold M isometrically into some
Euclidean space RY and consider u, : R x S* — M as a map to RV thereby
conveniently obtaining LP and L norms for u, . By translation we may assume
that M contains the origin. By compactness of M and the L bounds (37) we
obtain on every compact cylindrical domain Zz := [T, T] x S! the estimates

1. 1
”ul/”Lp(ZT) < (2T)» diam M, HatuDHLP(ZT) + ||Vtatuu||Lp(zT) < 2¢0(27)7,

and
10sun ||, < 4eq Vr e (1,00]. (44)

The latter follows from [ (1+s%)7"ds <242 [[7s72"ds =4(2—1/r)"! <4
whenever r > 1. Hence the sequence u, is uniformly bounded in WP(Z7r).
Thus by the Arzela-Ascoli and the Banach-Alaoglu theorem a suitable subse-
quence, still denoted by wu,,, converges strongly in C° and weakly in WP on
every compact cylindrical domain Zr to some continuous map v : Rx S1 — M
which is locally of class W'P. Hence Osu, — V;0;u, — gradV(u,) converges
weakly in LP to Osu — V,0su — gradV(u). On the other hand, by (38) it con-
verges to zero in LP. By uniqueness of limits u satisfies the heat equation (7)
almost everywhere. Thus u is smooth by theorem 2.
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Fix s € R and observe that by (37) there are uniform C'(S') bounds for
the sequence Ou,(s,-). Hence by Arzela-Ascoli a suitable subsequence, still
denoted by dyu,(s,-), converges in C°(St) to dyu(s,-). Thus

Tim Sy (u, (s,)) = Sylu(s. )
and therefore Sy (u(0,-)) = ¢, by (40). Recall that d;u = V;0ru + grad V(u).
When restricted to s = 0 this means that the vector field dsu(0,-) is equal
to the L? gradient of Sy at the loop u(0,-). But Sy(u(0,-)) = ¢, and ¢, is a
regular value. Hence 0su(0,-) cannot vanish identically.

On the other hand, by (37) and axiom (VO0) it follows exactly as above that

1
sup Sy (u,(s,-)) = sup 3 |0ru, (s, )Hg —V(uy) < ap.

This shows that all relevant trajectories, including relevant limits over s or v,
lie in the sublevel set £L* M on which Sy is Morse-Smale by assumption. In
particular, we have that sup,cp Sy(u(s,-)) < ap and therefore the energy of
w is finite by lemma 2. Hence by the exponential decay theorem 4 there are
critical points y* € P (V) such that u(s, -) converges to y* in C2(S'), as s —
+00. Moreover, the limits y~ and y* are distinct, because the action along a
nonconstant trajectory is strictly decreasing and the trajectory is nonconstant,
since Jsu is not identically zero as observed above.

More generally, a standard argument shows the following, see e.g. [13,
lemma 10.3]. There exist critical points 2~ = 20, 2!, ..., 2" = 2T € P (V)
and trajectories u* € M(zF=1 2%, V), d,uF £ 0, for k € {1,...,4}, a subse-
quence, still denoted by u,, and sequences sl’f eR, ke {1,...,¢}, such that
the shifted sequence wu, (s* 4 s,t) converges to u*(s,t) in an appropriate topol-
ogy. The point here is that d,u* # 0 and therefore the Morse index strictly
decreases along the sequence 2~ = 2%, 2!, ... 2 = 1. Namely, each operator
D, is onto by Morse—-Smale and Fredholm by theorem 5. Hence the Fred-
holm index is equal to the dimension of the kernel which is strictly positive,
because the kernel contains the nonzero element O,u”. On the other hand,
again by theorem 5, the Fredholm index is given by the difference of Morse
indices indy (zF~1) —indy (z*). Hence £ = 1, since the pair % has Morse index
difference one. Thus u € M(xz~,27;V) and this proves the first assertion of
step 1.

It remains to prove (43). The key observation is that w,(s,-) not only
asymptotically converges in W12(S1) to %, but the rate of convergence is
independent of v. The fundamental theorem of calculus and uniform decay (37)
show that

|$+(t) - uu(sat)‘RN =

/ Osuy(0,t) do

OOCO Co
< Dge=2 45
RNL Dar=L ()

forallt € S', v € N, and s > 1. Since the restriction of the Euclidean distance
in RV to the compact manifold M and the Riemannian distance d in M are
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locally equivalent, estimate (45) shows the following. Consider the injectivity
radius ¢ > 0 of M and assume € € (0,¢/2), then

5> 6% = d (uy(s,t),2% (1)) < %
for allt € S* and v € N; similarly for x~. Now denote by Z := [6¢g /e, 00) x St
the positive end of the cylinder R x S* and by Z- the negative end. Observe
that the ends u, (ZF) are contained in the (¢/6)-neighborhood of x*(S1), for
all v. We may assume without loss of generality that this is also true for the
ends u(ZX) of u; otherwise replace 6cy by a larger constant. Now, since u,,
converges to u uniformly on Z(g) := [—6cg /e, 6co /] x S, there exists vp(c) € N
such that [|€, |z (z()) < €/3 for every v > 1y(e). Hence

”fl/Hoo = ”quLm(zg) + ||£V||L°°(Z(e)) + ||£V||L°°(Z§r)

< sup (d(uy,:p*) + d(a:f,u)) + ||§V||Loo(z(5))
Ze
T sup (d(un, o) + d(a u)
7z
<e

for every v > vy(e). Next pick a sequence €, — 0 and choose a sequence
v — oo such that v, > vg(eg). Then, without changing notation, replace w,
by the subsequence u,, and observe that the corresponding L limit in (43)
is indeed zero. To prove that the LP limit is zero use again the decomposition
of R x S! into the compact part Z(g) and the two ends Z*. Observe that the
right hand side of (45) is p-integrable over the ends ZZ. Again the key facts
are that the values of both integrals do not depend on v and they converge
to zero, as |s| — oo. In the case of u use the exponential decay theorem 4
to obtain a similar asymptotic estimate in terms of an exponentially decaying
function. O

Step 2. Consider the constant Cy in (41) and v and the sequence &, provided
by Step 1. Set e, = ||&ulloo+ € |lp- Then there is a constant oo > 0 and integer
vo > 1 such that n = n(s,t;0,v), determined by the identity u, = exp,.(n),
satisfies ||n||co < t/2 for all o € [—00, 00] and v > vy. Furthermore, there is a
constant co = ca(ag,09) > 0 such that

1Ml < v+ Colal,lnll, < 260 + 2o

and
IVonll, < ez, Vil < c2, IVVinll, < c2
for all o € [—0¢,00] and v > 1.
Proof Existence of og and v follows from the fact that n(v,0) = £,, continuity

of time shift, and the L limit in (43). Now denote by L the length functional.
Then for all 0 € R and v(r) := u(s + ro,t) with r € [0, 1] we have that

d(u(s,t),u(s+o,t)) < L(y) = |U\/O |0su(s +ro,t)|dr < |o| ||0sull, . (47)
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Since d (uy(s,t),u(s,t)) = [€,(s,t)| < €., the first estimate of step 2 follows
from |n(s,t)| = d(uy(s,t),u(s + o,t)), the triangle inequality, and (41). To
prove the second estimate note that the triangle inequality also implies that

[e%e] 1
Il < 274 e, | + 2p—1/ / d(uls,t),u(s + o, )" dids.
—o0 J0

By theorem 4 on exponential decay there are constants p, cg > 2 such that for
all (3,t) € R x S we have that

|05u(3,t)| < cge™ P, |0sull, < e Vr>1. (48)

Note that the constants p and c3 depend only on ag, since the set P (V)
is finite and there are only finitely many elements of M(z~,z%;V) which
satisfy (40). By the first inequality in (47) and the first estimate in (48) with
S=s4+710

1
d(u(s,t),u(s+o,t)) < |0’|/ |0su(s + 1o, t)| dr < |o|cgePT0e Pl
0

But the right hand side is LP integrable and this concludes the proof of the
second estimate of step 2. To prove the next two estimates we differentiate the
identity exp,. 17 = u, with respect to s and ¢ to obtain that

E1(u”,m)dsu” + Ea(u”,1)Vn = dsu,, (49)
Eq1(u?,n)0u® + Eo(u?,n)Vin = Oy, (50)

where the maps E; are defined by (26). Since ||0,u”||, < c3 by (48) and
10suy|lp < 4co by (44), the LP norm of Vi is uniformly bounded as well.
Similarly, since ||0¢u? ||oo < Co by (41) and ||z, ||eo < co by (37), the L norm

of V;n is uniformly bounded. To prove the last estimate of step 2 differentiate
(50) covariantly with respect to ¢t and abbreviate E;; = E;;(u”,n) to obtain

E1(u?,n) (Opu”, 0iu”) + Era(u,n) (eu”, Vim) + E1(u”,n) Vidyu”
+ Ea1(u”,m) (Vin, Ouu”) + E2a(u”, ) (Vin, Vin) + E2(u”,n) Vi
+ grad V(u,) — Osuy,

= V0w, + grad V(u, ) — Osuy.

This identity implies a uniform LP bound for V;V;n as follows. The right hand
side is bounded in LP by 1/v and the last term of the left hand side by 4c¢g
according to (44). Since E;;(u?,0) = 0 and since we have uniform L> bounds
for each of the two linear terms to which E,;(u?,n) is applied, we can estimate
the L? norm by a constant times ||n||,. The only terms left are term three and
term seven of the left hand side. By the heat equation (7) their sum equals

Ey(u”,m) Osu” — Eqy(u?,n) grad V(u?) + gradV(uy).

Since ||0su” ||, < c3 by (48), the L” norm of the first term is uniformly bounded.
Consider the remaining two terms as a function f of . Then f(0) = 0, because
Ey(u”,0) =1 and n = 0 means u,, = u”. Hence || f||,, is uniformly bounded by
a constant times ||n||,. Here we used axiom (V0). This proves step 2. O
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Step 3. For o € [—0g,00] and v > vy consider the function 6, (o) = —(9su’,n)
where n = n(s,t;o,v) is determined by the identity u, = expy-(n), see step 2,
and (-,-) denotes the L*>(R x St) inner product. This function satisfies

0,(c) =0 <= neimDj,.

Moreover, there exist new constants og > 0 and vg € N such that
d

16,(0)] < caeo, Ay o) g _ Sy(z™) — Sy(a™)

0
do - 2 -

for all o € [—00,00] and v > vy where c3 = c3(ap) is the constant in (48).

Proof ‘<=’ follows by definition of the formal adjoint operator using that
0su’® € ker Dyo. We prove ‘=’. The kernel of D, is 1-dimensional; the op-
erator is Fredholm of index one by theorem 5 and onto by the Morse—Smale
condition. The kernel is spanned by the (nonzero) element dsu’. Now con-
sider D, on the domain W?? and apply [21, prop. 3.18] to obtain that
WP = ker Do @ im D}, . The implication =’ now follows immediately by
contradiction.

By (48) and the definition of the sequence €, — 0 in step 2 it follows that

10, (0)] = [(Dsu, &) 2| < [[0sull 16011, < esen

where ¢ € (1,2) is determined by 1/g + 1/p = 1. Abbreviate E; = E;(u’,n).
Then straightforward calculation using the identity (49) for V,n shows that

%01,(0) = —(V,0su®,n) — (0su”, —0su’ + Osu’ — By * B 0,u”)

v

[eg g 2 g g
— %0507, Il + 12, 5 = 105, 197 [
2
0sull3 = il (196050l + e 0sull, l10,ull.,)

> [ 95ully — (22, + ealo])(e5 + Gea)

for some constant ¢4 = c4(ag,09) > 0. The last step is by (48) with constant
c3. We also used that ||V,0sull; < c5 for some positive constant ¢; = c5(ao),
which follows from exponential decay of V;0s;u according to theorem 4. The
energy identity (8) shows that ||0sul|3 = p > 0. Now choose oy > 0 sufficiently
small and vy sufficiently large to conclude the proof of step 3. O

Step 4. We prove the claim.
Proof By step 3 there exists, for every sufficiently large v, an element o, €

[—00, 00] such that 0,(0,) =0 and |o,| < €,(2¢3/p). Then 1, = n(-,-;0,,v)

*

lies in the image of D}, by step 3 and

1 lloe + 10 ll, < 20 (34 (e + Co)2es/p) s lnwlly < C,

by step 2. This proves (42), hence the claim, and therefore theorem 7. O
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4 Unique continuation

To prove unique continuation for the nonlinear heat equation (7) we slightly
extend a result of Agmon and Nirenberg [2] to the case C; # 0. Indeed the
heat equation (7) leads to (51) with Cy # 0; see (56). In contrast, for the linear
heat equation (21) the original result (C; = 0) suffices.

Theorem 15 Let H be a real Hilbert space and let A(s) : dom A(s) — H
be a family of symmetric linear operators. Assume that ¢ : [0,T] — H is
continuously differentiable in the weak topology such that {(s) € dom A(s) and

I¢'(s) = Al)(s)]| < e [IC(s)]| + Ca [(A(s)¢(s), G (s))]2 (51)

for every s € [0,T] and two constants ¢;,Cy; > 0. Here ('(s) € H denotes
the derivative of ¢ with respect to s. Assume further that the function s
(C(s), A(s)C(s)) is also continuously differentiable and satisfies

d
25(6AQ =2 AQ = —ea ALK = e I¢Ii® (52)

pointwise for each s € [0,T] and constants ca, c3 > 0. Then the following holds.
(1) If ¢(0) = 0 then ((s) =0 for all s € [0,T].
(2) If ¢(0) # 0 then ((s) # 0 for all s € [0,T] and, moreover,

o v~ (LA )

where a = 2012 + ¢y and b = 4¢1? + 2% /2 + 2cs.

—2c18

Proof A beautyful exposition in the case C; = 0 was given by Salamon in [11,
appendix E]. It generalizes easily. A key step is to prove that the function

ols) = loglo(o)|? - [ DDA

a

satisfies the differential inequality
O +ald|+b>0 (53)

for two constants a,b > 0.
In [11] it is shown that assumption (52) implies the inequality

2|/¢" = A¢I®

"> 2 — (n, E)E|° —
© I — (n, &€l i

2¢z ||| — 2¢3

where £ := ”—g” and n = III%II' Now it follows by assumption (51) that
2|¢’ — A¢|)? AC,
”C'C'2 CH < 4012 +4012 |<|§|2C>| _ 4012 +4Cl2 |<777€>‘
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and therefore

0" > 2n— (0, OEI” — der® — 4C1* (0, €)] — 2¢2 Inl| — 2cs.

To obtain the inequality (53) it remains to prove that

2|l — (0, )€I* — 4er® — 4C12 [(n, )] = 2¢2 ||nl| - 2¢5 > —a|¢'| —b.

Since ¢’ = 2(£,n), this is equivalent to

callnll < lln = (m, &I + (a = 201%) [(n, )] + (/2 = 2¢1% — e3).

Abbreviate u = ||n — (n, £)¢]|? and v := [(n,£)|, then ||n]|> = u® + v? and the
desired inequality has the form

cavu2 +v2 <u?+ (a— 2012w+ (b/2 = 2¢1% — ¢3).

Since cavu? +v2 < cou + cov < u? + v + 22 /4, this is satisfied with a =
2012 + o and b= 4¢,2 + 22 /2 + 2¢3. This proves (53). The remaining part of
the proof of theorem 15 carries over from [11] unchanged. ]

4.1 Linear equation

Unique continuation for the linear heat equation is used to prove transversality
of the universal section (proposition 9) and the unstable manifold theorem 18.

Proposition 6 Fiz a perturbation V : LM — R that satisfies (V0)—(V2) and
two constants a < b. Assume u : [a,b] x St — M is a smooth map and & is
a vector field along u which satisfies D& = 0 or D¢ = 0 almost everywhere;
see (21) and (22). Denote £(s,-) by &(s). Then the following is true.

(a) If&(s«) =0 for some sy, then &(s) =0 for all s € [a, b].
(b) If &(s«) # 0 for some s, then &(s) # 0 for all s € [a,b].

Proof We represent D,, by the Atiyah-Patodi-Singer type operator Dyi¢ =
4+ A(s)+C(s) defined in [21, sec. 3.4]. Here the family A(s) consists of self-
adjoint operators on the Hilbert space H := L?(S*, R™) with dense domain W
see (ii) and (iv) in [21, sec. 3.4] where also the space W is defined. Recall that,
if the vector bundle u*TM — [a,b] x S! is trivial, then W = W22(S1 R"),
otherwise some boundary condition enters. In either case W =: dom A(s) is
independent of s.

(b) Assume & € ker D¢ satisfies £(s.) # 0. Assume by contradiction
that &(sg) = 0 for some sg € [a, b]. If sg > s., replace £(s) by &(s+ s«) and set
T = b—s, and s1 = s9—ss, otherwise use £(—s+5.), T = —a+sy, S1 = —So+5s.
Hence we may assume without loss of generality that £ € ker D 4 ¢ maps [0, T
to H and satisfies £(0) # 0 and £(s1) = 0 for some s; € (0,77.

We verify the conditions in theorem 15. Firstly, the vector field £ is smooth
by assumption. Secondly, the family A(s) consists of self-adjoint operators
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by (ii) in [21, sec. 3.4]. Thirdly, the function s — (£(s), A(s)&(s)) is continu-
ously differentiable. Here we use the first condition in axiom (V2), which tells
that the Hessian Hy, is a zeroth order operator, and the fact that by compact-
ness of the domain the vector fields dyu, dsu, V;0su, and V;V;0su are bounded
in L>°([0,7] x S*) by a constant cr. Now (51) is satisfied with C; = 0, because

1€'(s) = A()E(s)ll = IC(s)E(s)]l < e ()]

where the constant ¢ = supjg 7y, 51 [|C(s,t)[|£(gn) is finite by compactness of
the domain. To verify the inequality (52) note that its left hand side is given
by (£(s), A'(s)€(s)); see [2, Rmk. in sec. 1] and [11, Rmk. F.3]. Now

(€(s), A'()€(9)) = = lIE() 1A' ()€ ()l
> = €6 €I+ 110:5()]) -

where the second step is by straightforward calculation of A’(s). Replacing
|0:€(s)|| according to the elliptic estimate for A(s) yields (52).

Now the Agmon-Nirenberg theorem 15 applies. Part (2) tells that £(s) # 0
for all s € [0,7]. This contradiction proves (b) for elements in the kernel of
D,,. The same argument covers the case of the operator D] represented by
—D_a_c.

(a) Use a time reversing argument (see proof of the Agmon-Nirenberg The-
orem in [11]) and apply (b). Alternatively, use a line of argument analoguous
to the proof of (b) replacing in the final step part (2) of theorem 15 by part (1).

O

4.2 Nonlinear equation

Unique continuation for the nonlinear heat equation is used to prove the un-
stable manifold theorem 18.

Theorem 16 (Unique continuation for compact cylindrical domains)
Fiz two constants a < b and a perturbation V : LM — R that satisfies (VO)
and (V1). If two smooth solutions u,v : [a,b]x St — M of the heat equation (7)
coincide along one loop, then u = v.

Proof Abbreviate us = u(s,:) and assume u, = v, : S' — M for some
o € [a,b]. If Osu is identically zero, then u coincides with a critical point
z € P(V) and by v, = u, = x so does v and we are done; similarly if 9sv = 0.
Now assume that dsu is nonzero somewhere and so is d,v. Hence

5= -
2+ [10sull o + 1950l

€ (0,0/2). (54)

Here ¢ > 0 denotes the injectivity radius of our compact Riemannian manifold.

The first step is to prove that the restrictions of v and v to [0 —6, 0 +4] x St
are equal. (In fact we should take the intersection with [a, b] x ST, but suppress
this throughout for simplicity of notation.) The key idea is to show that the



36 Joa Weber

difference ((s) of us and v, (with respect to geodesic normal coordinates based
at u,) and a suitable operator A satisfy the requirements of theorem 15 with
constants ¢1,C; > 0. Then, since ((0) = 0, part (1) of the theorem shows
that ¢ = 0 and therefore u = v on [0 — 6,0 + ] x S1. Once this is proved we
successively restrict u and v to cylinders of the form [0 + (2k — 1)d,0 + (2k +
1)6] x S*, where k € Z. The argument above shows that u = v on each of these
cylinders. Due to compactness of [a,b] x S!, firstly, the same constants ¢; and
Cy can be chosen in (51) for all cylinders and, secondly, after finitely many
steps the union of these cylinders covers [a,b] x S!. This proves the theorem.

It remains to carry out first one. Consider the interval I = [0 — §,0 + ]
and restrict u and v to the cylinder Z = I x S = [0 — 6,0 + ] x S*. Observe
that the Riemannian distance between u(o,t) and u(s,t) is less than ¢/2 for
every (s,t) € Z; similarly for v. Hence the identities

U(S, t) = eXpu(o’,t) §(87 t)? U(S’ t) = eXpu(o’,t) 77(57 t)a

for every (s,t) € Z uniquely determine smooth families of vector fields £ and n
along the loop u, = v,. In particular, the difference ( = £ — 7 is well defined.
Moreover, the domain of £ and 7 is Z and they satisfy
L L
N

57 E(T:O:T’zr

Now consider the Hilbert space H = L?(S!,u,*TM) and the symmetric dif-
ferential operator A = V,V; with domain W = W22(S' u,*TM). Here V,
denotes the covariant derivative along the loop u,. Hence the operator A is
independent of s and condition (52) in the Agmon-Nirenberg theorem 15 is
vacuous. If we can verify condition (51) as well, then ((¢) = 0 implies that
¢(s) = 0 for every s € I by theorem 15 (1). Since ¢ is smooth, this means that
on Z we have £ = n pointwise and therefore w = v. It remains to verify (51).
By (26) we get
Osu = EZ(UUu 5)855
Vi0yu = E11(tg, &) (Ouo, Ouo) + 2E12(us, €) (Ortig, ViE) (55)
+ El (’LLO-, g)vtatuo + E22(u07 f) (Vt§7 th) + EQ(uov g)vtvtg

pointwise for (s,t) € Z and similarly for v and 7. In the second identity we
used the symmetry property (27) of Ejs. Now consider the heat equation (7),
replace dsu and V,Opu according to (55), then solve for 9;¢ — V; V€. Do the
same for v and 7 to obtain a similar expression for —dsn + V,;V;n. Add both
expressions to get the pointwise identity

(05 = V%) (€ =)
= (Eg(umg)_lEu(ug,g) — Eg(ug,n)_lEu(uJ,n)) (8tua78tug)
+ (B2 (uo, &) Er(uq, &) — Ea(ug,n)” " E1(us,n)) ViOruy
+ 2 (B2 (ug, &) ™" Eo1 (o, ) Vi€ — Ea(ug,n) ™" Ea1 (g, n)Vin) Orus
+ B (uq, &)~ 'gradV(exp,,, €) — Ea(ug, 1)~ gradV(exp,, n)
+ By (us, &) B (uo, &) (Y&, Vi€) — Ea(ug,n) ™ Eaz (e, n) (Vin, Vin).
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Now by compactness of the domain Z there is a constant C' > 0 such that
[0stie || Lo (s1) < [|Ovullpee(z) < C, [ViOruol| Lo (s1) < C.

Moreover, since the maps F; and Ej;; are uniformly continuous on the radius
¢/2 disk tangent bundle @ C TM, in which ¢ and 7 take their values, there
exists a constant ¢; > 0 such that

105§ — 1) — ViVi(§ — 1)
< (aC?+ a1 0) €|
+2C | Ex (g, &) Ea1 (o, §) Vi — Ea(ug,n) ™' Ea1(ue, n)Vin)|
+ | B2 (uo, &)~ gradV(exp,,, &) — Ea(uq,n)” ' gradV(exp,, )|
+ | B2 (uo, &) Bag (g, £) (Vi€, Vi) — Bz (us,n) ™" Eaa(us,n) (Vin, Vin)|

pointwise for (s,¢) € Z. It remains to estimate the last three terms in the sum.
First we estimate term three. Use linearity and the symmetry property (27)
of Foy to obtain the first identity in the pointwise estimate

|E2(Ua,§)71E22(Um§)(th,th) - EQ(uaan)71E22(uaan)(Vt777th)|
= | B2 (uq, €)™ Eaa(u,, &) (Vi€ = Vin, Vi€)
+ B (uo,n) " B (uo,n) (Vi€ — Vin, Vin)
+ (B2 (uo, &) B (uo, &) — Ea(us,n) ™ Eaz(us,n)) (Vi€ Vin)|
< ||Bs Bl o (19 + [ 9l0) IS5 — )
+ e [Vl Vil o 1€ — 7l
< V(€ = m)| 4 p2[€ — ]
where 111 = 2¢22C(1 + ¢2), 2 = c1¢22C?(1 + ¢2)?, and the constant co > 0 is
chosen sufficiently large such that for j = 0,1 we have
||Ej||Loc(c9) + ||E271||L°°(O) + ||E271E22||L°°(O) + ||E271E21||L°°(O) < c2.
Moreover, we used that by the first identity in (26)
Vi€ = Es(uo, &) 7' (Opu — By (ug, £)Opuy) .

Hence |Vi€|loo < ¢2C(1 + ¢2) and similarly for Vin. Next we estimate term

one. Replace V;¢ by Vi§ — Vin + V1, then similarly as above we obtain that
2C | Bx (g, &)™ Eai (o, §) Vi€ — Ba(ug,n) ™' Ea1(ug, 1) Vin|
< 262C[Vi(€ = )| + 2c1¢2C%(1 + e2) € — 1]

pointwise for (s,t) € Z. Next rewrite term two setting X := n—¢ and replacing
n accordingly to obtain pointwise at (s,t) € Z the identity

L (Ey(ug, &+ 7X) 'gradV(exp, &+ 7X))

= B(u,, &) gradV(exp,, €) — Ba(uq, & + X) ™ 'gradV(exp,, &+ X)

=t f(X) = f(0) + £ f(rX)
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for some 7 € [0, 1]. Since f(0) = 0, this implies that
(X)) < ||E271E22||L00(0) |X] - ||E271||LOO(O) |gradV(expuU &+ TX))|
+ HE2_1HL°°(O) ‘VTgradV(eXpuU(f + TX))’
< &CHIX|+ 301 (1X1+ 1 Xl 1))

pointwise at (s,t) € Z. Here C} and C denote the constants in axiom (VO0)
and (V1), respectively. To obtain the final step we applied the first estimate
in axiom (V1) to the curve 7 exp,_(§s + 7X;) in the loop space LM.
Putting things together we have proved that due to compactness of the
domain Z there is a positive constant u = p(Z, g) such that for every s € T

1" = AC < (IS + 1) < o (ISl + 1(AGOIM) . (56)

Here the norms are in L?(S*,u,*TM), we abbreviated ( = ((s), and the
final step uses that || V;¢||? = <VtC Vi¢) = —(A(, ¢) < |(A(,¢)|. Hence (51) is
satisfied and this concludes the proof of theorem 16. O

In the proof of the unstable manifold theorem 18 we use backward unique
continuation for the nonlinear heat equation.

Theorem 17 (Forward and backward unique continuation) Fiz a per-
turbation V : LM — R that satisfies (V0)—(V1).

(F) Assume u and v are solutions of the heat equation (7) defined on the for-
ward halfeylinder [0,00) x St. If u and v agree along the loop at s = 0,
then u = v.

(B) Assume u and v are solutions of the heat equation (7) defined on the back-
ward halfeylinder (—oo, 0] x St. Assume further that

sup Sy (u(s, ")) < co, sup Sy (v(s, ) < co,
s€(—00,0] s€(—00,0]

for some constant ¢y > 0. Then the following is true. If u and v agree along
the loop at s =0, then u = v.

Proof The idea is to decompose, as in the proof of theorem 16, the halfcylinder
into small cylinders of width § and then show w = v on each piece (by the
method developed in the first step of the proof of theorem 16). The only
additional problem is noncompactness of the domain. One way to deal with
this is to choose the same width for each piece (in order to arrive at any given
time s in finitely many steps). Here we need uniform bounds for |dsu| and
|0sv]. Once we have these we can define ¢ again by (54). Check the proof of
theorem 16 to see that the only further ingredients in proving v = v on each
small cylinder are uniform bounds for the first two t-derivatives of u and of v.
Hence to complete the proof it remains to show that

105 ull o + 10ull o + [ViOrull o + 1050l + 1000l + [ViOrv]l o < C
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for some constant C' > 0.
ad (F) Let Cj be the constant in axiom (V0) and observe that Sy, > —Cj.
Now by theorem 13 with constant C; (more precisely, by checking its proof)

|asu(57t)|2 < ClE[s—l,s] (u) = Ol (SV(us—l) - SV(US)) S Cl (SV(UO) + CO)

for (s,t) € [1,00) x S1. In the second and the last step we used that u is a
negative gradient flow line and the action decreases along u. Note that the
proof of theorem 13 shows that the estimate at a point depends on its past.
This is why we get the above estimate only on [1,00) x S. However, the
missing part [0,1] x S1 is compact and u is smooth. Hence ||0sul s < C and
therefore

IVidhull., < [19ul, + llgradV(w)] . < €+ Co.

Here we used the heat equation (7) and axiom (V0) with constant Cy. It follows
similarly by (checking the proof of) theorem 12 that |0;u(s,t)| is uniformly
bounded on [1,00) x S*. The corresponding estimates for v are analoguous.
ad (B) The proof of the L> estimates follows the same steps as in (F). We
even get all estimates right away on the whole backward halfcylinder, because
this halfcylinder contains the past of each of its points. O

5 Transversality

Throughout this section the action functional is a map
Sy : LM — R, LM = C>(§', M),

defined on the free loop space of M. In section 5.1 we construct a separable
Banach space Y of abstract perturbations satisfying axioms (V0)-(V3). In
section 5.2 we fix a perturbation V such that (V0)—(V3) hold and Sy is Morse.
Choosing a closed L? neighborhood U of the critical points of the function Sy
we define the subspace Y (V,U) C Y cousisting of those perturbations which
are supported away from U. Then, given a regular value a of Sy, we define
a separable Banach manifold O% = O%(V,U) of admissible perturbations. In
fact O% is the open ball about zero in the Banach space Y (V,U) for some
sufficiently small radius r*. For any admissible perturbation v it holds that

PIV) = PV +0)

—in particular a is also a regular value of Sy, — and the sublevel sets {Sy < a}
and {Sy4+, < a} are homologically equivalent. For such a triple (V,U, a) we
prove in section 5.3 that there is a residual subset Oy, C O® of regular pertur-
bations v. These, in addition, have the property that the perturbed functional
Sy4v is Morse-Smale below level a. The crucial step is to prove surjectivity
of the universal section F (proposition 9). Here unique continuation for the
linear heat equation enters. A further key ingredient in the 'no return’ part
of the proof is the (negative) gradient flow property which implies that the
functional is strictly decreasing along nonconstant heat flow solutions.
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5.1 The universal Banach space of perturbations

We fix, once and for all, the following data.

a) A dense sequence (z;),  in LM = C>(S*, M).

b) For every x; a dense sequence (nij)jeN in C°°(SY, 2:TM).

c) A smooth cutoff function p : R — [0,1] such that p = 1 on [—1,1] and
p = 0 outside [—4,4] and such that [|p'||oc < 1. Then set py,(r) = p(rk?)
for k € N; see figure 1.

Moreover, recall that ¢+ > 0 denotes the injectivity radius of the closed Rie-
mannian manifold M. Fix a smooth cutoff function S such that f = 1 on
[—(¢/2)%,(¢/2)?] and B = 1 outside [—:2,:?]; see figure 2.

p1/k(r) = p(rk?)

0 L= 0 =
(1/k)? (2/k)? (t/2)? 2
Fig. 1 The cutoff function py /p Fig. 2 The cutoff function 3

Now for any choice of 7, j,k € N there is a smooth function on the loop
space given by

1
Vi) = Vign(o) = puge (o = aills) [ Vitea®)a  67)
0
where V¥ is the smooth function on S* x M defined by

g ) e {5(|§;(t)|2) HON ROV NI HAGIE
VH(t,q) =

0 , else.
Here the vector & (t) is determined by the identity g = exp,, ) &, (t) when-
ever the Riemannian distance between ¢ and x;(t) is less than ¢. To simplify
notation we fixed a bijection ¢ : N> — Np. Note that the support of V;jj is
contained in the L? ball of radius 2/k about z;. Each function V, : LM — R is
uniformly continuous with respect to the C° topology and satisfies (V0)—(V3).
This follows by compactness of M, smoothness of V¥, and by the identity

(aradV(w), Oyu) 2 = V(W)

=29’ (- wall) ( Viu(s, 1) i) = 20,00,
+ (e = 2ollz) (VY (). Do

which determines gradV. Here R — LM : s — u(s, ) is any smooth map.
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Given Vy, we fix a constant C’ZO > 1 which is greater than its constant
of uniform continuity and for which (V0) holds true. Then we fix a constant
C} > €Y for which both estimates in (V1) hold true and a constant C? > C}
to cover the three estimates of (V2). Furthermore, for every integer i > 3, we
choose a constant C§ > C; " that covers all estimates in (V3) with &'+ ¢ =i
(here k" and ¢’ denote the integers k and ¢ that appear in (V3)). To summarize,
for each integer £ > 0 we have fixed a sequence of constants

1<CP<C}<..<C{<... VLEN,. (58)

The universal space of perturbations is the normed linear space

Y = {m =Y AV ‘ A= () CRand [juy] = |\|CF < oo} . (59)
£=0 £=0

Proposition 7 The universal space Y of perturbations is a separable Banach
space and every vy € Y satisfies the axzioms (V0)—(V3).

Proof The map vy — ()\ng)geNo provides an isomorphism from Y to the
separable Banach space ¢! of absolutely summable real sequences. This proves
that Y is a separable Banach space. That every element vy = Y AV, of
Y satisfies (V0)—(V3) follows readily from the corresponding property of the
generators Vy. To explain the idea we give the proof of the second estimate
in (V2), namely

Vi Vegradua (u)] < Al - [V VagradVe(u)]
£=0

< <|A0| Co +IMICT+ ) I\ Cj’) f(u)

=2
< (JMl C§ + A1 CF + J|uall) f(u)

for every smooth map R — LM : s +— u(s,-) and every (s,t) € R x S!. We
abbreviated f(u) = (|V0su| + (1 + |0u|)(|0su] + ||Osul[£1)). Step two uses
the second estimate in (V2) for each V; with constant C7. Step three follows
from C§ < Cf whenever ¢ > k, see (58). The remaining estimates in (V0)-
(V3) follow by the same argument. Continuity of vy with respect to the C°
topology follows similarly using uniform continuity of the functions V. O

5.2 Admissible perturbations

Throughout we fix a perturbation V that satisfies (V0)—(V3) and such that
Sy : LM — R is Morse. Denote the critical values ¢; of Sy, by

o< <c<..<cg<a<cgy<....
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Note that there is no accumulation point, because Sy admits only finitely
many critical points on each sublevel set. Fix a regular value a > ¢y (otherwise
{Sy < a} =0 and we are done) and let ¢; be the largest critical value smaller
than a. If there are critical values larger than a let cxy1 be the smallest such,
otherwise set cr+1 at the same distance above a as cj sits below a, that is
Ck+1 = a + (a — ¢). The idea to prove the transversality theorem 8 is to
perturb Sy outside some L? neigborhood U of its critical points in such a
way that no new critical points arise on the sublevel set {Sy < ¢xy1}. To
achieve this we fix for every critical point = a closed L? neighborhood U, such
that U, N U, = ) whenever x # y. This is possible, because on any sublevel
set there are only finitely many critical points (Sy is Morse and satisfies the
Palais-Smale condition; see e.g. [19, app. A]). Set

U=UW):= |J U (60)
zeP(V)

and consider the Banach space of perturbations Y given by (59). We are in-
terested in the subset of those perturbations supported away from U, namely

Y(V,U)::{v,\zz:/\gWEY ‘suppVgﬁU#(Z) = /\(20}.
=0

Lemma 5 Y(V,U) is a closed subspace of the separable Banach space Y .

Proof Pick o, € R and vy,v, € Y(V,U). By definition of Y'(V,U) the fol-
lowing is true for every £ € Ny. If suppV, N U # 0, then A\, = 0 and p, = 0.
Hence a\¢ + Bpe = 0 and therefore avy + pv, € Y(V,U). To see that the
subspace Y (V,U) is closed let v§ = > A}V, be a sequence in Y (V,U) which
converges to some element vy = > AV of Y. This means that )\é — Mg, as
i — oo, for each ¢. Assume suppVy N U # 0. It follows that A}, = 0, because
v € Y(V,U), and this is true for all i. Hence the limit A, is zero and therefore
vy €YV, U). O

For ¢ < a < cx41 as above set
a a 1 : a
3 =94(V) = 3 min{a — ¢, k41 —a} > 0, ay =a=+d% (61)

Hence the distance between any two of ¢, < a— < a < ay < ¢4 is at least
6.

Lemma 6 Fiz a perturbation V satisfying (V0)—(V3). Assume Sy is Morse.
Define U by (60), fiz a regular value a of Sy, and consider the reals cy, cii1,
ax, 6% defined above. If vy € Y(V,U) and ||vsl| < &%, then there are inclusions

{Sv <} C{Svqu, Sa-} C{Sy < a} C{Svtv, S aq} C{Sy < crsr}
{Sv <a} C{Svyu, <a} C{Sy <a4}.



Morse homology for the heat flow 43

Proof Fix vy € Y(V,U) with |lvy|| < 6*. Observe that for each v € LM

A < DAV <D Nl CF < D7 1Al CF = o] < 5
(=0 (=0 =0

Here we used axiom (V0) with constant C? for V, the fact that Cf < Cf
by (58), and definition (59) of the norm on Y. Observe further that Sy4,, =
Sy — vx. The proofs of the asserted inclusions all follow the same pattern. We
only provide details for the last two inclusions in the first line of the assertion of
the lemma. Assume Sy (y) < a, then Sy, (7) = Sp(7) —va(7) < a+0* = ayt
where the last step is by definition of ay. Now assume Sy, (7) < a4, then
Sy(y) < ayx +va(y) < a+20* < ¢4 again by definition of a. The last step
is by definition of §®. O

Consider the positive constants given by

k* =r*V,U) := inf radS: >0
V)= it rdsu()l,
and
1
rt=r*WV,U) = imin{(Sa,f-fa} > 0. (62)

To prove the strict inequality k* > 0 assume by contradiction that k® =
0. Then by Palais-Smale there exists a sequence (1) C {Sy < cpr1} \ U
converging in the W2 topology to a critical point z. It follows that x €
U, because U contains all critical points. Since W12 convergence implies L?
convergence and U is a L? neighborhood of the critical points, we arrive at a
contradiction to v ¢ U whenever k € N.

Proposition 8 Fix a perturbation V satisfying (V0-V3). Assume Sy is Morse
and a is a regular value. If vx € Y(V,U) and |jva|| < r®, then

PYYV) =PV +vy), H. ({Sy < a}) 2 H, ({Sy+v, <a}).

Proof Fix vy € Y(V,U) with |[vy]| < 1 min{?, £?}. Define a by (61).

I) We prove that P+ (V) = P+ (V+wv)) which immediately implies the first
assertion of the proposition. On U both functionals Sy and Syy,, coincide,
because Sy4,, = Sy — vy and vy is not supported on U. Now Sy does not
admit any critical point on {Sy4,, < cg+1} \ U by definition of U. Assume
the same holds true for Sy, . Then, since {Syi,, < ay} C{Sy < g1} by
lemma 6, it follows that all critical point of Syy,, below level ay are contained
in U. But there it coincides with Sy. Hence P4+ (V + vy) = P+ (V).

It remains to prove the assumption. Suppose by contradiction that there
is a critical point = of Sy4,, on {Syiy, < g1} \ U. Hence

0 = grad Sy 4, () = grad Sy (x) — grad vy (z)
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and therefore ||grad vy (z)||2 = ||grad Sy (x)||2 > &% by definition of k*. On the
other hand, since vy is of the form Y AV it follows that

oo oo 1
leradvs(@)ll, < 3 1Al - lgrad Ve(a) e < 1Al CF < on| < 55°.
=0 £=0

Here we used axiom (VO0) with constant CY for V,, and the fact that CY < Cf
by (58). The last two steps are by definition (59) of the norm on Y and the
assumption on |[vy]|.

II) We prove that H, ({Sy+v, <a}) = H,. ({Sy < a}). By step I) all el-
ements of the intervall [a_,ay] are regular values of Sy, . Hence classical
Morse theory for the negative W2 gradient flow on the loop space shows that

H, ({Sv1v, < a}) = He ({Syroy S aq}).

On the other hand, using the inclusions provided by lemma 6 this isomorphism
factors through the inclusion induced homomorphisms

H. ({Sv10y < a_}) = Ho ({Sy < a}) = H, ({Sysoy <ar}).

Therefore the first homomorphism is injective and the second one surjective.
Since a lies in the interval of regular values of Sy, , the first one leads to an
injective homomorphism H, ({Sy4.,, < a}) = H, ({Sy < a}). By construction
the intervall [a_, a] consists of regular values of Sy,. Hence the same argument
using again lemma 6 to obtain the inclusion induced homomorphisms

H. ({Sv <a-}) = Ha ({Svqo, < a}) = Ho ({Sv < ay})
provides a surjection Hy ({Sy 1+, < a}) = H, ({Sy < a}). O

By definition the set of admissible perturbations is given by the open
ball O in the Banach space Y (V,U) of radius r* defined by (62), namely

O =0V, U) :={vy € Y(V,U) : |lusl| <r°}. (63)

Since Y(V,U) is a separable Banach space by lemma 5, the closed subset O%
inherits the structure of a complete metric space. Proposition 8 then concludes
the proof of the first part of theorem 8. Namely, if vy € O% then Sy and
Sy+u, have homologically equivalent sublevel sets with respect to a and the
same critical points when restricted to these sublevel sets.

Remark 4 If a < b are regular values of Sy and v € OP satisfies ||v|| < §%/2,
then v € O%. To see this note that k* < k% and therefore |[v]| < r° < k?/2 <
K%/2. Hence |v|| < 1 min{§?, £} = ro.

Remark 5 Since we chose to cut off our abstract perturbations in section 1.1
with respect to the L? norm, we cannot naturally control the support of v € O¢
in terms of sublevel sets of Sy. This would be possible if we cut off using
the W12 norm, because the action functional Sy is continuous in the W12
topology.
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5.3 Surjectivity

Proof (of theorem 8) Assume that the perturbation V satisfies (V0)—(V3) and
the function Sy : LM — R is Morse. Consider the neighborhood U of the
critical points of Sy defined by (60) and fix a regular value a of Sy. For
0% = O%V,U) defined by (63) the first assertion of theorem 8 is true by
proposition 8. To prove the second one fix in addition a constant p > 2 and two
critical points x,y € P*(V). We denote by BL? the smooth Banach manifold
of cylinders between = and y defined by (34) in section 3. This manifold is
separable and admits a countable atlas. Now consider the smooth Banach
space bundle

EP — Byh x O
whose fibre over (u, vy ) are the LP vector fields along u. The formula
F(u,vx) = Osu — Vidyu — grad (V + vy ) (u) (64)

defines a smooth section of this bundle. Note that F(u,vy) = 0 is equivalent
to u € M(x,y;V + vy). The zero set

Z=Z(x,y;V,U,a) = F1(0)

is called the universal moduli space. It does not depend on p > 2, since all
solutions of the heat equation (7) are smooth by theorem 2. The key fact is
that the space of perturbations O% is rich enough such that zero is a regular
value of F. By definition the latter means that either there is no zero of F
at all or dF(u,v)y) is onto and ker dF (u, vy ) admits a topological complement
whenever F(u,vy) = 0. In the first case we set Oy, (z,y) := O%.

The second case decomposes into two classes. First we need to sharpen our
notation. By D,y we denote the operator previously denoted by D,,. In this
notation the linearization of F at the zero (u,v)) is given by

dF (u,vy) (&,V) = dFy, (u) €+ dFu(vx) V = Dyyin, & — gradV(u)  (65)
where F,, (u) := F(u,vy) =: Fy(vy) and
DE = Dy, & = Vil = Vi€ — R(E, 0yu)dpu — Hy o, (W)€, (66)

1. Automatic transversality of constant trajectories. The first class consists
of pairs (u,v)) where vy € O% and u is a constant heat flow trajectory.
The latter means that u is of the form wu, := z(= y). Now for these pairs
transversality holds automatically, since Sy is Morse. To see this observe first
that the constant trajectory w, solves the heat equation (7) for V and likewise
for V+4wuy, since vy € O% is supported away from z. Hence (uy, vy ) is a zero of F
to start with. Similarly it follows that dF (ug,vs) = D, v. But D, v acts on
each time slice by the covariant Hessian A, given by (9). Since A, is injective
by the Morse assumption on Sy, it follows that D, is injective. Now the
cokernel of Dy, v is equal to the kernel of the formal adjoint operator Dy, .,
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by [21, prop. 3.15] and [21, prop. 3.18]. But D} ,, = D,, v by self-adjointness
of A,. Hence D,y is surjective and we set (’),‘?ég (x,2) := O

IT. The second class consists of zeroes (u,vy) of (64) with dsu # 0. Note
that Sy, is Morse below level a by proposition 8 and since vy is supported
away from x and y. Surjectivity of dF (u,vy) is covered by proposition 9 below.
Existence of a topological complement follows, see e.g. [19, prop. 3.3], using
surjectivity, boundedness (69), and the fact that Dy, v, : WEP — LP is Fred-
holm by theorem 5. Hence zero is a regular value of F. By the implicit function
theorem Z is a smooth Banach manifold; see e.g. [8, theorem A.3.3]. Now by
Thom-Smale transversality theory the projection onto the second factor

m:Z—= 0% (u,vy) — vy,

is a smooth Fredholm map whose index at (u,vy) is given by the Fredholm
index of Dy, y4v, ; see e.g. [8, lemma A.3.6]. This index is equal to the difference
of the Morse indices of x and y by theorem 5. Since Z is separable and admits a
countable atlas, we can apply the Sard-Smale theorem [16] to countably many
coordinate representatives of 7. It follows that the set of regular values of 7 is
residual in O%. Denote this set by O% (x,y) and observe that

reg
Oreg(z,y) = {ox € 0% | Dy, onto Yu € M(x,y; V + i)}

again by standard transversality theory; see e.g. [19, prop. 3.4].
We define the set of regular perturbations by

Oy =08,V = (| Obyla.y). (67)
z,yeP*(V)

It is a residual subset of 0%, since it consists of a finite intersection of residual
subsets. This proves theorem 8 up to proposition 9. g

Proposition 9 (Surjectivity) Fiz a perturbation V that satisfies (V0)—(V3)
and assume Sy is Morse. Fiz a regular value a, critical points x,y € P*(V),

and a constant p > 2. Define U by (60) and the section F by (64). Then
dF(u,vy) : WP x Y (V,U) — LE
is onto at every zero (u,vx) € BLb x OV, U) of F.

Proof Fix (u,vy) € F~1(0) such that dsu does not identically vanish (the case
Osu = 0 is treated in I. above). Now Sy, decreases strictly along u, thus

ek > Sv() = Syt (T) > Sytuy (Us) > Sy, (¥) = Sv(y) (68)

where the two identities exploit that vy is not supported near z and y. Hence
x #y. Define 1 < ¢ <2by 1/p+1/q = 1. Recall that u € M(x,y;V + vy)
and Sy, is Morse below level a by proposition 8 and the fact that vy is
not supported near critical points. Hence D,, v, is Fredholm by theorem 5.
Recall from (65) the linearization of F at (u,vy). Note that the second operator

Y(V,U) = LP : Ve —gradV(u) (69)
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is bounded. To see this observe that, since the support of VY is disjoint to the
neighborhood U of z and y, there is a constant 7" = T'(u) > 0 such that
gradV(us) = 0 whenever |s| > T. Now V is of the form >, 10V, Hence

1/p
P
ds)
p

< @)YP Y el - flgradVe(uy)||,
=0

< 20)"7 3 |melCY
=0

<@V

ngadV(U)HLp(Rxsl) = (/j; ngadf)(us)

where for each V; we used the last condition in (V0) with constant C’? < Cf.
The last step uses the definition (59) of the norm in Y.

Now the range of dF(u,vy) is closed by a standard result; see e.g. [19,
proposition 3.3]. Hence it suffices to prove that it is dense. But density of the
range is equivalent to triviality of its annihilator. By definition this means
that, given n € £L¢ and setting D := D,, y,, to simplify notation, then

(n,D€) =0,  VEe W, P, (70)

and
(n,gradV(u)) =0, VYV eY(V,U), (71)

imply that n = 0.

Assume by contradiction that n € £ satisfies (70) and n # 0. In five
steps we derive a contradiction to (71). Steps 1-3 are preparatory, in step 4 we
construct a model perturbation V. violating (71) and in step 5 we approximate
V. by the fundamental perturbations V;;; of the form (57). To start with
observe that 7 is smooth by (70) and the regularity theorem [21, thm. 3.1].
Furthermore, integrating (70) by parts whenever £ € C§°(Rx S, u*T M) shows
that D*n = 0 pointwise, where the operator D* arises by replacing Vi by —V;
in (66). Throughout we use the notation n,(t) = n(s,t). Hence 7, is a smooth
vector field along the loop us.

Step 1. (Unique continuation) ns # 0 and Osus # 0 for every s € R.

Because 1 is smooth, nonzero, and D*n = 0, proposition 6 on unique continu-
ation shows that 1, # 0 for every s € R. Next observe that Osu is smooth and
0= d%]:v , (u) = DOsu. Since u connects different critical points, the derivative
dsu cannot vanish identically on R x S*. Apply proposition 6 to £(s) 1= Dsus.

Step 2. (Slicewise Orthogonal) (ns, dsus) = 0 for every s € R.
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Throughout step 2 we denote the L?(S!) inner product by (-, -). Observe that

d
7<775785us> = <VS775, asus> + <"757 Vsasus>

ds
= <_vtvtns - R(nsa 8tus)atus - HV+'U,\ (us)nsa 8sus>
+ <ns; Vtvtasus - R(asusa atus)atus - ’HV—‘,-’L))\ (us)asus>
=0

by straightforward calculation. In the second equality we replaced Vins ac-
cording to the identity D*n = 0 and V;0sus according to Ddsu = 0; see (66).
The last step is by integration by parts, symmetry of the Hessian #H, and the
first Bianchi identity for the curvature operator R. Thus (n,, dsu) is constant
in s. Now this constant, say ¢, must be zero, because

/ cds = / (ns, Osus) ds = (n, Dsu)

and the right hand side is finite, since n € £ and d,u € LF with % + % =1
This proves step 2.

Note that 1, and Jsus are linearly independent for every s € R as a conse-
quence of step 1 and step 2.

Step 3. (No Return) Assume the loop us, is different from the asymptotic
limits x and y. Assume § > 0. Then there exists € > 0 such that for every
seR

lus —usyll, <38 = s € (sog—0,s0+9).

In words, once s leaves a given §-interval about sg the loops us cannot return
to some L? e-neighborhood of us,.

Key ingredients in the proof are smoothness of u, existence of asymptotic lim-
its, and the gradient flow property. Recall the footnote in remark 2 concerning
the difference of loops us — us,. Now assume by contradiction that there is
a sequence of positive reals £; — 0 and a sequence of reals s; which satisfy
lus, — usyll2 < 3e; and s; & (s — 0, So + 0). In particular, this shows that
L? .
Us, —> Ug, aS i —> 00. (72)

Assume first that the sequence s; is unbounded. Hence there is a subse-
quence, still denoted by s;, which converges to +0o0 or —oco. In either case
ug, converges to one of the critical points x or y and the convergence is in
C?(S1) by theorem 4. Hence (72) implies that us, € {z,y} contradicting our
assumption.

If the sequence s; is bounded, there is a subsequence, still denoted by s;,
which converges to some element s1 ¢ (sp — 0, 9 + ¢). On the other hand, the
sequence u,, converges to ug, in C9(S') by smoothness of u. Thus u,, = us,.
But the action strictly decreases along nonconstant negative gradient flow
lines. Therefore s; = so and this contradiction concludes the proof of step 3.
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Step 4. There is a time so € R such that ug, lies outside U. Moreover, there
is a constant € > 0 and a smooth function Vo : LM — R supported in the L?
ball of radius 2 about us, such that

Vo (U‘So) =0, dVo (USO)%U = ”7780 ||3 ) (gradVo (u)7 77> 7& 0

where the inner product is in L*(R x S1).

The first assertion follows from x #* y and the fact that the closed sets U,,
where z € P(V), are pairwise disjoint. Clearly the graph ¢ — (¢, us,(t)) of
the loop us, is embedded in S x M. We define a smooth function V on
S! x M supported near this graph as follows. Denote by ¢ > 0 the injectivity
radius of the closed Riemannian manifold M. Pick a smooth cutoff function
B:R — [0,1] such that 3 =1 on [—(¢/2)?, (+/2)?] and B = 0 outside [—¢?,:?];
see figure 2. Then define

B(I€a (1)) (€q(t),ns0 (1)) &) <,

73
0 , else, (73)

Vi(g) =V (t,q) = {

where the vector §,(t) is determined by the identity ¢ = exp, (4, ;) &¢(t) when-
ever the Riemannian distance d between ¢ and wus, (t) is less than ¢. Note that
the function V vanishes on the graph of the loop us,.

Use that all maps involved are smooth to choose a constant § > 0 suffi-
ciently small such that for every s € (s — 9, sop + 9) the following is true

i) deo(us,usy) = [|€sll o < ¢/2 where the vector field &, along the loop us, is
uniquely determined by the pointwise identity us = XDy, s,

.. _ 2
ii) (Ba(usg, &) sy Mse) = 3h0 Where pig := |95, [l5 > 0,
|

Us—Usg
[s—sol

iii) L < 2 < S where py := [|9sus, |l > 0.

Recall the definition (26) of Ey and the identities (28). For s € (sg — 6, so +9),
we obtain that

dVi(ug)ns = ZE| _ Vilexp,, mns)
= 2B'(I&:[%) (&, Ba(usy: &)™) - (€53 Mso )
+ B(IEI?) (Ba(usy, &)™ s, s
= (Ea(usy, &)™ 155 Mso )

(74)

pointwise for every ¢ € St. The final step uses i) and the definition of 3. Note
that dV;(us,) ns, = |1s,]* pointwise.

Integrating V' along a loop defines a smooth function on the loop space
which vanishes on us,. To cut this function off with respect to the L? distance
fix a smooth cutoff function p : R — [0,1] such that p =1 on [-1,1], p =0
outside [—4,4], and ||p]lcc < 1. Then, for the constant ¢ fixed above, choose
e > 0 according to step 3 (No Return) and set p.(r) = p(r/e?); see figure 1 for
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e = +. Note that [|pL|| < 72 Observe that we can choose & > 0 smaller and
the assertion of step 3 remains true. Now define a smooth function on LM by

1
(@)= pe (o = ua 3) [ Vieao)a
where V' is given by (73). The function Vy vanishes on the loop us, and satisfies

dVO(us) Ns = % TZOVO(eXpuS 7"775)

1
= 200, ([tts — a0 12) (s — g, 7s) / Vi(us (1)) dt

t (= ) [ Vil ®)n()ar

Hence dVy(us,)ns, = |5, ||3 and this proves another assertion of step 4.
To prove the final assertion of step 4 observe that s ¢ (so—9, so+9) implies
lus — us,|l2 > 3e by step 3, hence us ¢ supp Vy. It follows that

S()-‘ré
(grad Vo(u),n) = / dVo(us)ns ds

So—(s

So+5
= / 2p/6<||u5 - uw”%)(“s - U30>773><§s>7730> ds (75)

90—6

so+98
[ el = g 3) (Bl ) ) .
So—

We shall estimate the two terms in the sum separately. Let so > sg be such
that |Jus, — us,||2 = € and |Jus — us,||2 < € whenever s € (sg, s2). This means
that s, is the forward exit time of u, with respect to the L? ball of radius €
about us,. Let 51 < 50 be the corresponding backward exit time; see figure 3.
Use ii) and p. > 0 to obtain that

S()-‘rts 9 1
[ el = ) oty £ ) ds

S0
s2

Z/ 1~%ds:%(82*«90+80*81)
s1

20
|U'82 - uSoH2 + HU'SO — Usy H2) = ﬂ‘g'

Here the second inequality uses iii). To estimate the other term in (75) let o
be the time of first entry into the L? ball of radius 2¢ starting from sy — § and
let o9 be the corresponding time when time runs backwards and we start from
so + 6; see figure 3. Then it follows that
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Bae (uso )

5075

Usy+6

Fig. 3 Exit times s1, s2 and entry times o1, 02

so+98 5
| 2 = ) = ) €

S0

o2
> =2 [ oLl s = ) o) ds
1 v
> *26162672/ (s — so)ds
o1
20102 5 2010285 3
:—?(0‘2—80—%80—0’1) > — 5#?

It remains to explain the second and the final inequality. In the final one we
use that by iii) there is the estimate oo — s¢ < 2||tug, — Us, ||2/p1 = 4€/p1 and
similarly for sy —o1. The second inequality is based on the geometric fact that
Osu and n are slicewise orthogonal by step 2. Namely, let f(s) = (us — sy, 1s)
and h(s) = <£577750>1 then f(S(]) = h(SO) =0 and

f/(s) = <85us,773> + <’U,S — Usg, Vsns> = <us — Usgp, vs"73>
hl(s) = <E2(usoa€s)7lasus,7730>~

Hence f’(so) = h'(s0) = 0 and so there exist constants ¢; = ¢1(f) > 0and ¢ =
ca(h) > 0 depending continuously on ¢ such that for every s € (sg — 6,80+ 0)

£ (s)] < er(s —s0)%, h(s)] < ca(s — s0)*.

This proves the second inequality. Now choose € > 0 sufficiently small such
that £2 < poui/cice. This implies that (grad Vo(u),n) > 0 and proves step 4.

Now recall that ug, ¢ U. Choose ¢ > 0 again smaller such that the L? ball
of radius 3¢ about us, is disjoint from the L? closed set U, that 3¢ is smaller
than the injectivity radius ¢ of M, and that e = 1/k for some integer k.

Step 5. Given k = 1/£Aa3 in the paragraph above, there exist integers i,j > 0
such that the function V := Vi, given by (57) lies in Y (V,U) and satisfies

(grad Vijk)(u)7 77> > 0.

This contradicts (71) and thereby proves proposition 9.
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Consider the loop us, where sy is the time in step 4. In section 5.1 we fixed
a dense sequence z; in C*°(S1, M) and for each i a dense sequence 1™ in
C*> (81, 23TM). Choose a subsequence, still denoted by z;, such that

Ti — Usy, as ¢ — 00.

Now we may assume without loss of generality that every x; lies in B.(us,) the
L? ball of radius e about wu,,. Hence Ba.(z;) C Bae(us,). Let 5@0 be defined
by the identity us, = exp,, £ pointwise for every ¢ € S*. Choose a diagonal
subsequence, denoted for simplicity by n"*, such that

Dy, (€50 = gy s as i — oo.
Here @,(€) is parallel transport from x to exp, £ along 7 — exp,, 7€ pointwise
for every t € S'. Let (Vir)ien be the corresponding sequence of functions
where each Vi is given by (57). Now observe that

suppViik C Ba i (i) = Bac(;) C Bae(us,).

But Bse(us,) N U = () by the choice of ¢ in the paragraph prior to step 4 and
so Viur € Y(V,U). Next recall that the constant § > 0 has been chosen in
the proof of step 4 in order to exclude any return of the trajectory s — ug to
the ball Bs.(us,) once s has left the interval (sg — 6, sg + d). Since supp Vi, C
Bs.(us, ), this shows that Vi (us) = 0 whenever s ¢ (sg — d, sg + d). Hence

50+6 . ..
(grad Vi) = [ 200 (e = il3) (e = i) () s

S0

so+0 ) -
+/ ol = ) (Bala ) ) ds
so—

where ¢! is determined by us = exp,, £i. Now the right hand side converges
for ¢ — oo to the right hand side of (75), which equals (grad Vy(u),n) > 0.
This proves step 5 and proposition 9. O

6 Heat flow homology

In section 6.1 we define the unstable manifold of a critical point = of the action
functional Sy : LM — R as the set of endpoints at time zero of all backward
halfcylinders solving the heat equation (7) and emanating from z at —oo. The
main result is theorem 18 saying that if x is nondegenerate, then this is a
submanifold of the loop space and its dimension is the Morse index of x.

In section 6.2 we put together everything to construct the Morse complex
for the negative L? gradient of the action functional on the loop space £LM.
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6.1 The unstable manifold theorem

Fix a perturbation V : LM — R that satisfies (V0)—(V3) and consider the
backward halfcylinder Z~ = (—o0,0] x S!. Given a critical point z of the
action functional Sy, the moduli space

M~ (x;V) (76)

is, by definition, the set of all solutions u™ : Z~ — M of the heat equation (7)
which satisfy the asymptotic limit condition (3), as s — —oo. Note that the
moduli space is not empty; it contains the stationary solution v (s,-) = x.
The unstable manifold of « is defined by

W (23 V) = fu=(0,-) | u™ € M (a5 V).

Theorem 18 Fiz a perturbation V : LM — R that satisfies (V0)—(V3). If x
is a nondegenerate critical point of the action functional Sy, then the unstable
manifold W (xz; V) is a smooth contractible embedded submanifold of the loop
space and its dimension is equal to the Morse index of x.

The first step in the proof of theorem 18 is to show that the moduli space
M~ (z;V) is a smooth manifold of the desired dimension whenever z is nonde-
generate (proposition 10). A crucial ingredient is proposition 11 on surjectivity
of the operator D,,~ : WP — LP whenever u~ € M~ (z;V) and p > 2. Here
the operator D,,- is given by (21) and arises by linearizing the heat equation at
the backward trajectory u~. A further key result to prove theorem 18 is unique
continuation for the linear and the nonlinear heat equation, proposition 6 and
theorem 17. Namely, unique continuation implies that the evaluation map

evg : M~ (x;V) = LM, u” —u(0,-)
is an injective immersion, hence an embedding by the gradient flow property.

Proposition 10 (Moduli space) Fiz a perturbation V : LM — R that
satisfies (V0)—(V3) and assume x is a nondegenerate critical point of Sy. Then
the moduli space M~ (x;V) is a smooth contractible manifold of dimension
indy(x). Its tangent space at u™ is equal to the vector space X~ given by (77).

Proposition 11 (Surjectivity) Fiz a perturbation V : LM — R that satis-
fies (V0)—(V3) and a nondegenerate critical point x of Sy. Assume p > 2 and
u~ € M~ (x;V). Then the following is true. The operator D, : WP — LP
is Fredholm, onto, and its kernel is given by

X = {g €C™(Z ,u""TM)| D, £€=0,3¢,6>0Vs<0:

(77)
€6ll oo + INh€ell oo + IV Vit o + 1Vl < e}

Moreover, the dimension of X~ is equal to the Morse index of x.
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Proposition 11 is in fact a corollary of theorem 19 below which asserts
surjectivity in the special case of a stationary solution u™(s,t) = x(t), where
x is a nondegenerate critical point of Sy. The idea is that if a solution u™ is
nearby the stationary solution x in the W' topology, then the corresponding
linearizations D,- and D, are close in the operator norm topology. But sur-
jectivity is an open condition with respect to the norm topology. The case of
a general solution reduces to the nearby case by shifting the s-variable.

Remark 6 Abbreviate H = L?(S,R™) and W = W?22(S! R") and consider
the operator
d2
AS = _@ -S:H—-H

with dense domain W. Here we assume that S : W — H is a symmetric and
compact linear operator. Under these assumptions it is well known (see (ii)
in [21, sec. 3.4]) that Ag is self-adjoint and that its Morse index ind(Ag) is
finite.

Theorem 19 Let S and Ag be as in remark 6. Fixz p > 2 and assume that
the linear operator S : WHP(S1 R™) — LP(SY R") is bounded with bound cs.
Then the following is true. If Ag is injective, then the operator

D =0, — 0,0, — S:W'P(Z~ ,R") = LP(Z~,R")
is onto. In the case p = 2 the map E~ — ker D, v — e~ %45y is an isomorpism.

For the details of the proof of theorem 19 we refer to [20, thm. 8.5]. The
proof is rather lengthy, but follows closely the proof of the corresponding result
in Floer theory, namely [12, lemma 2.4]. The proof takes four steps. Step 1 is to
prove the theorem for p = 2. The proof of [12, lemma 2.4 step 1] carries over
with minor but important modifications. These are related to the fact that
our domain Z~ does have a boundary. Moreover, the proof uses the theory of
semigroups. Step 4 is to generalize surjectivity from p = 2 to p > 2. This uses
an argument due to Donaldson [3]. Here the estimates provided by step 2 and
step 3 enter. Here we follow again the presentation in [12, lemma 2.4 steps 2—4]
up to minor but subtle modifications. One subtlety is related to the parabolic
estimate of step 2 which, in contrast to the elliptic case, requires the domain
to be increased only towards the past.

Proof (of proposition 11) The arguments in the proof of [21, prop. 3.15] show
that the kernel of D,- : WY'P — LP is equal to X . But X~ does not depend
on p. On the other hand, for p = 2 the dimension of the kernel is equal to the
Morse index of x by theorem 19. Surjectivity of D,- follows in three stages.

THE STATIONARY CASE. Consider the stationary solution (s,t) — z(t). Then
D, is onto by theorem 19. To see this represent D, with respect to an or-
thonormal frame along x; see [21, sec. 3.4].

THE NEARBY CASE. Surjectivity is preserved under small perturbations with
respect to the operator norm. Moreover, the operator family D,- depends
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continuously on u~ with respect to the WP topology (here we use p > 2).
Hence, if u= € M~ (x;V) satisfies u~ = exp,(n) and |[n|yy1.» is sufficiently
small, it follows that D, - is onto.

THE GENERAL CASE. Given u € M~ (z;V) and o < 0, consider the shifted
solution u%(s,t) := u(s + o,t). Then (D,&)° = D,-£° by shift invariance of
the linear heat equation. This means that surjectivity of D, is equivalent to
surjectivity of D,-. But the latter is true by the nearby case above, because
u? converges to = in the WUP topology, as ¢ — —o0o. To see this apply theo-
rem 14 (B) on exponential decay to u and note that u?(0,t) = u(o,t). O

Proof (of proposition 10) The proof follows the same (standard) pattern as
the proof of theorem 6; see also the introduction to section 3. The first step
is the definition of a Banach manifold B = BL? of backward halfcylinders
emanating from z such that B contains the moduli space M~ (x; V) whenever
p > 2. The second step is to define a smooth map F,- between Banach spaces
as in (35). Its significance lies in the fact that its zeroes correspond precisely
to the elements of the moduli space near v~ and that dF,-(0) = D,-. By
proposition 11 this operator is Fredholm, surjective, and the dimension of its
kernel is equal to the Morse index of x. Hence M~ (z;V) is locally near v~
modeled on ker D,,~ by the implicit function theorem for Banach spaces. To
see that the moduli space is a contractible manifold observe that backward
time shift provides a contraction

h:M™(z;V) x [0,1] = M (z;V)
(u,r) > u(-—+/r/(L="1),")

onto the stationary solution x, that is h is continuous and satisfies h(u,0) = u
and h(u,1) = z for every u € M~ (z; V). |

Proof (of theorem 18) We abbreviate M~ = M~ (z;V) and W* = W*(z; V).
Recall that the moduli space M~ is a smooth manifold of dimension equal
to indy(z) by proposition 10 and, furthermore, by definition the unstable
manifold W* is equal to the image of the evaluation map evg : M~ — LM
given by u — u(0,-) =: ug(+). It remains to prove that evy and its linearization
are injective and that evg is a homeomorphism onto W*.

To prove that evg is injective let u,v € M~ and assume that evy(u) =
evp(v), that is ug = wvg. Hence v = v by theorem 17 on backward unique
continuation.

We prove that the linearization d(evg), of evy at u € M~ is injective.
Pick ¢&,n € TyuM™, then D6 = 0 = Dyn by proposition 10. Now assume
that d(evg).& = d(evg)un, that is &g = no. Therefore £ = 7 by application of
proposition 6 (a) on linear unique continuation to the vector field & — 7.

To prove that evg : M~ — LM is a homeomorphism onto its image fix
u € M7™. Since every immersion is locally an embedding, there is an open
disk D in M~ containing u such that evo|p : D — LM is an embedding. It
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remains to prove that there is an open neighborhood U of ug = evo(u) in LM
such that

UNW*=UnNeuvy(D). (78)

There are two cases. In case one wu is constant in s, that is u = x. In this case
we exploit the fact that the restricted function Sy|w« takes on its maximum
precisely at the critical point by the (negative) gradient flow property. Case
two is the complementary case in which u depends on s. To deal with this case
we use a convergence argument based on the compactness theorem 11.

Case 1. (u = x) Set ¢ = Sy(z), then a set U having the desired property (78) is
given by U := {c—¢& < Sy < c+¢}, where 2¢ := min,cqp\p (Sv(z) — Sy (uo)).
Here the compact set clD \ D is the topological boundary of the open disc D.
Note that the elements of W* \ evg(D) have action at most ¢ — 2¢.

Case 2. (u £ x) Assume by contradiction that there is no U which satis-
fies (78). Then there is a sequence v¥ € W \ evg(D) that converges to ug in
LM, as v — oo. Note that v¥ = evg(u”) where u¥ € M~ \ D. In particular,
each trajectory u” converges in backward time asymptotically to x. Thus

sup  Sy(uy) < Sy(z) =:¢
s€(—00,0]

for every v. Together with the energy identity this implies that
B(u”) = Sy(x) = Sy(uf) = ¢ — 5 0|75y + V() < ¢+ Co

where Cy > 1 is the constant in axiom (V0). Adapting the proofs of the apriori
theorem 12 and the gradient bound theorem 13 to cover the case of backward
half cylinders it follows that there is a constant C' = C(¢,V) > 0 such that

10"l <€, (105u”]lo < CVE(u”) < Cle+ Co),

for every v. Here the norms are taken on the domain (—o0,0] x S'. Adapting
also the proof of the compactness theorem 11 we obtain — in view of the
uniform apriori L*° bounds for d;u” and dsu” just derived — the existence of
a smooth heat flow solution v : (—00,0] x S' — M and a subsequence, still
denoted by u”, such that u” converges to v in C}%.. In particular, this implies
that ug = vy and that d;u” converges to J;vs, as v — oo, uniformly with all
derivatives on S! and for each s. This and our earlier uniform action bound
for u? show that

Sy(vs) = lim Sy(uy) <c
V—r00
for every s. To summarize, we have two backward flow lines v and v defined
on (—o00,0] x St along which the action is bounded from above by ¢ and which
coincide along the loop wg = vg. Hence theorem 17 (B) on backward unique
continuation asserts that u = v. Because u” converges to v = u in C},, it
follows that u" lies in the open disk D containing u, whenever v is sufficiently
large. For such v we arrive at the contradiction v” = evg(u”) € evy(D). |
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6.2 The Morse complex

Assume that the action Sy is a Morse function on the loop space. This is
true for a generic potential V € C°°(S! x M) by [19]. For each critical point
x € P(V) fix an orientation (x) of the tangent space at  to the (finite dimen-
sional) unstable manifold W*"(z; V). We denote this choice of orientations
by (P). Fix a regular value a of Sy. Then the Morse chain groups are the
Z-modules
CMj=CM;(V):= € zZz keZ

zeP*(V)

indy (z)=k
These modules are finitely generated and graded by the Morse index. We set
Cf = {0} whenever the direct sum is taken over the empty set. We define

N
oMe = P omy,
k=0

where N is the largest Morse index of an element of the finite set P*(V).

Set Vy(z) = fol Vi(z(t)) dt and note that Vy satisfies (V0)—(V3). Now
consider the associated set O% (V') of admissible perturbations of Vi defined
by (63). Furthermore, consider its dense subset O, (V') of regular pertur-
bations provided by theorem 8; see (67) for the definition. Now for any v €
07y (V) we have the following key facts. The functionals Sy and Sy 4, co-
incide near their critical points and have the same sublevel set with respect
to a. Moreover, the perturbed functional Sy, is Morse-Smale below level a.
(Occasionally we denote ¥V +v in abuse of notation by V' 4 v to emphasize that
we are actually perturbing a geometric potential.)

To define the Morse boundary operator 9 on CM¢ it suffices to define it on
the set of generators P¢(V) and then extend linearly. Fix a regular perturba-
tion v € Oy, (V). Note that each chosen orientation (z) not only orients the
unstable manifold W*(x; V'), but also the perturbed one W*(z;V 4 v). This
is because the tangent spaces at x to W*(x; V) and W"(z;V + v) coincide
(v is not supported near x) and unstable manifolds are finite dimensional and
contractible (theorem 18), hence orientable. Now given two critical points z*
of action less than a, consider the heat moduli space M(z~,z7;V +v) of so-
lutions u of the heat equation (7) with ) replaced by V 4 v and subject to the
boundary condition (3). Recall from [13, ch. 11] that a choice of orientations
for all unstable manifolds determines a system of coherent orientations in
the sense of Floer-Hofer [7] on the heat moduli spaces.

From now on we assume that z& are of Morse index difference one. In
this case M(x~,z";V +v) is a smooth 1-dimensional manifold by theorem 6
and its quotient M(z~,2z7;V + v)/R by the (free) time shift action con-
sists of finitely many points by proposition 1. For [u] € M(z™,2%;V +v)/R
time shift naturally induces an orientation of the corresponding component of
M(z~,2T;V + v); compare [13] and note that dsu is a nonzero element of
the one-dimensional vector space ker D,, = det(D,,). The characteristic sign
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N, of the heat trajectory u is defined to be +1, if the time shift orientation
coincides with the coherent orientation, and n, := —1 otherwise. The charac-
teristic sign depends on the chosen orientations (x~) and (z*). Consider the
(finite) sum of characteristic signs corresponding to all heat trajectories from
2~ to 1, namely

n<w—>)<m+> = Z Ny -

[uleM(z— ,zt;V+v)/R

If the sum runs over the empty set, we set n = 0. For € P*(V) define the
Morse boundary operator 9 = 9(V, v, (P)) by the (finite) sum

O = > M), (y) Y

yeP(V)
indy (z)—indy (y)=1

and set 0xr = 0 whenever the sum runs over the empty set.

Proof (of theorem 1.) As mentioned above the heat moduli spaces are oriented
coherently. This means that these orientations are compatible with glueing,
which implies that 9 0 @ = 0; see [7, §5].

The fact that heat flow homology is independent of the choice of regular
perturbation v € Oy, (V) and orientations (P) of the unstable manifolds
follows from the continuation argument which is standard in Floer theory; see
again e.g. [5,12]. Here it is crucial to observe that our admissible perturbations
v € O% are supported away from the level set {Sy = a} on which the L?
gradient of Sy (hence of Sy4,) is nonvanishing and inward pointing with

respect to L*M. Alternatively, independence will follow from theorem 9. 0O

A Parabolic regularity

By H~ we denote the closed lower half plane, that is, the set of pairs of reals (s,t) with
s < 0. For now all maps are real-valued and the domains of the various Banach spaces which
appear are understood to be open subsets {2 of R2 or H™. To deal with the heat equation it is
useful to consider the anisotropic Sobolev spaces W;f’zk. We call them parabolic Sobolev
spaces and denote them by WP, For constants p > 1 and integers k > 0 these spaces are
defined as follows. Set WP = LP and denote by WP the set of all w € LP which admit
weak derivatives dsu, Oru, and 0¢0ru in LP. For k > 2 define

WHhP .= fu € WYP | B,u, Bru, 8;0pu € WF—1PY

where the derivatives are again meant in the weak sense. The norm

1/p
el = (// S |oratuts, b)) dtds) (79)

2v+p<2k

gives WHP the structure of a Banach space. Here v and p are nonnegative integers. For
k = 1 we obtain that

[[ull = llully + 19sully + 19:ullf + 110:O¢ully

P
wl.p
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and occasionally we abbreviate W = WP, Note the difference to (standard) Sobolev space
Wk:P where the norm is given by ||u||£7p =2 u<k 020 ullp. A rectangular domain is
a set of the form I x J where I and J are bounded intervals. For rectangular (more generally,
Lipschitz) domains £2 the parabolic Sobolev spaces W¥*? can be identified with the closure
of C*(£2) with respect to the W*P norm; see e.g. [8, app. B.1]. Similarly, define the C*
norm by

fuller == > [|0¥0f ]l - (80)
2v+u<2k

Assume N — RV is a closed smooth submanifold and I" : M — RN XNXN ig 3 smooth
family of vector-valued symmetric bilinear forms. Set W¥*P(Z) = W*P(Z RN) and for
T>T >0set Z=Zr = (~T,0] x S' and Z’ = Zqpr.

Proposition 12 (Parabolic regularity) Fiz constants p > 2, po > 1, and T > 0. Fiz a
map F : Z — RY such that F and 8 F are of class LP. Assume that u : Z — RN is a WLP
map taking values in N with ||ullyy1,, < po and such that the perturbed heat equation

Osu — 00w = I'(u) (Opu, Opu) + F (81)

is satisfied almost everywhere. Then the following is true for every integer k > 1 such that
F,0iF € Wk=12(Z) and every T' € (0,T).

(i) There is a constant ay, depending onp, po, T, T', | I'|| c2k+2, and the WE—LP(Z) norms
of F' and O+F such that

||‘9t“Hwk,p(z/) < ag.

(ii) If 9sF € WF—LP(Z) then there is a constant by, depending on p, po, T, T', ||| c2k+2,
and the WE=LP(Z) norms of F, 0:F, and OsF such that

||8sunk,p(Z/) S bk-

(iii) If Or0:F € W*—LP(Z) then there is a constant ¢y, depending onp, uo, T, T", 17| g2ber2
and the Wk_l’p(Z) norms of F', OtF, and 0t0tF such that

”6t6t’U,HWk,p(z/) S Ck.

Since p > 2, the Sobolev embedding theorem guarantees that every WP map u is
continuous. Hence it makes sense to say that u takes values in N.

Corollary 2 Under the assumptions of proposition 12 the following is true. Assume k > 1
and F € WFP(Zy). Then for every T' € (0,T) there is a constant ¢, = c(k,p, po, T —
T, HFHc2k+2(N)7 ”F”kaP(ZT)) such that

lullywr+1p(z,,) < ck

Proof The W¥t1LP norm of u is equivalent to the sum of the W*? norms of u, dsu, dsu,
and 0¢0¢u. Apply proposition 12 (i-iii). O
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