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Abstract We use the heat flow on the loop space of a closed Riemannian
manifold – viewed as a parabolic boundary value problem for infinite cylinders
– to construct an algebraic chain complex. The chain groups are generated by
perturbed closed geodesics. The boundary operator is defined by counting,
modulo time shift, heat flow trajectories between geodesics of Morse index
difference one. By [13] this heat flow homology is naturally isomorphic to
Floer homology of the cotangent bundle for Hamiltonians given by kinetic
plus potential energy.
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E-mail: joa@math.sunysb.edu Fax: +55-11-30916131



2 Joa Weber

1 Introduction

Let M be a closed Riemannian manifold and denote by ∇ the Levi-Civita con-
nection and by LM the loop space, that is the space of free loops C∞(S1,M).
For x : S1 → M consider the action functional

SV (x) =

∫ 1

0

(
1

2
|ẋ(t)|2 − V (t, x(t))

)
dt.

Here and throughout we identify S1 = R/Z and think of x ∈ LM as a smooth
map x : R → M which satisfies x(t+ 1) = x(t). Smooth means C∞ smooth.
The potential is a smooth function V : S1×M → R and we set Vt(q) := V (t, q).
The critical points of SV are the 1-periodic solutions of the ODE

∇tẋ = −∇Vt(x), (1)

where ∇Vt denotes the gradient and ∇tẋ denotes the covariant derivative, with
respect to the Levi-Civita connection, of the vector field ẋ := d

dtx along the
loop x in direction ẋ. By P = P(V ) we denote the set of 1-periodic solutions
of (1). These solutions are called perturbed closed geodesics, since in the
case V = 0 these are the closed geodesics.

From now on we assume that SV is a Morse function function on the
loop space, i.e. all critical points are nondegenerate. By [19] the action is Morse
for a generic potential Vt and, furthermore, in this case the set

Pa(V ) := {x ∈ P(V ) | SV (x) ≤ a}

is finite for every real number a. By Eu
x we denote the eigenspace corresponding

to negative eigenvalues of the Hessian of SV at x ∈ P(V ). The dimension of
Eu

x is finite, called the Morse index of x. Choose an orientation 〈x〉 of the
vector space Eu

x for all x ∈ P(V ) and denote this set of choices by 〈P〉. Now
consider the Z-module graded by the Morse index and given by

CMa
∗ = CMa

∗(V ) :=
⊕

x∈Pa(V )

Zx.

If SV is even Morse–Smale, then CMa
∗ carries the following boundary op-

erator ∂∗. Consider the (negative) L2 gradient flow lines of SV on the loop
space. These are solutions u : R× S1 → M of the heat equation

∂su−∇t∂tu−∇Vt(u) = 0 (2)

satisfying
lim

s→±∞
u(s, t) = x±(t), lim

s→±∞
∂su(s, t) = 0, (3)

where both limits are uniform in the t variable and x± ∈ P(V ). By definition
the moduli space M(x−, x+;V ) is the space of solutions of (2) and (3). The
action functional SV is called Morse–Smale below level a if the operator
Du obtained by linearizing (2) is onto as a linear operator between appropri-
ate Banach spaces and this is true for all u ∈ M(x−, x+;V ) and x± ∈ Pa(V ).
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Morse–Smale implies Morse; consider ux := x. Under the Morse–Smale hy-
pothesis the space M(x−, x+;V ) is a smooth manifold whose dimension is
equal to the difference of the Morse indices of the perturbed closed geodesics
x±. In the case of index difference one a compactness result implies that the
quotient M(x−, x+;V )/R by the (free) time shift action is a finite set. Count-
ing these elements with appropriate signs defines the boundary operator ∂∗ on
CMa

∗. We call the Morse complex (CMa
∗, ∂∗) the heat flow complex and the

corresponding homology groups HMa
∗(LM,SV ) heat flow homology.

In chapter 5 we explain how to perturb the Morse function SV by an ab-
stract perturbation v ∈ Oa

reg(V ) to achieve the Morse–Smale condition with-
out changing the set of critical points. By definition heat flow homology of
SV is then equal to heat flow homology of the perturbed functional. It is an
open question if SV is Morse–Smale for a generic potential Vt. The class of
abstract perturbations for which we can establish transversality is introduced
in the following section 1.1. In contrast we call the potentials Vt geometric
perturbations.

Theorem 1 Fix a potential V ∈ C∞(S1 × M) such that the action SV is
Morse and take a choice of orientations 〈P〉. Assume a ∈ R is a regular value
of SV and va ∈ Oa

reg(V ) is a (regular) perturbation. Then ∂∗ = ∂∗(V, 〈P〉, va)
satisfies ∂2 = 0. Moreover, heat flow homology defined by

HMa
∗(LM,SV ) :=

ker ∂∗
im ∂∗

does not depend on the choice of regular perturbation va and orientations 〈P〉.

The construction of the Morse complex in finite dimensions goes back to
Thom [17], Smale [14,15], and Milnor [9]. It was rediscovered by Witten [23]
and extended to infinite dimensions by Floer [6,5]. We refer to [1] for an
extensive historical account.

1.1 Perturbations

We introduce a class of abstract perturbations of equations (2) and (1) for
which transversality works. The abstract perturbations take the form of
smooth maps V : LM → R. For x ∈ LM let gradV(x) ∈ Ω0(S1, x∗TM)
denote the L2-gradient of V; it is defined by

∫ 1

0

〈gradV(u), ∂su〉 dt =
d

ds
V(u)

for every smooth path R → LM : s 7→ u(s, ·). The covariant Hessian of V

at a loop x : S1 → M is the operator HV(x) on Ω0(S1, x∗TM) defined by

HV(u)∂su := ∇sgradV(u) (4)
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for every smooth map R → LM : s 7→ u(s, ·). The axiom (V1) below asserts
that this Hessian is a zeroth order operator. We impose the following conditions
on V; here |·| denotes the pointwise absolute value at (s, t) ∈ R×S1 and ‖·‖Lp

denotes the Lp-norm over S1 at time s. Although condition (V1) and the first
part of (V2) are special cases of (V3) we state the axioms in the form below,
because some of our results don’t require all the conditions to hold.

(V0) V is continuous with respect to the C0 topology on LM . Moreover, there
is a constant C = C(V) such that

sup
x∈LM

|V(x)|+ sup
x∈LM

‖gradV(x)‖L∞(S1) ≤ C.

(V1) There is a constant C = C(V) such that

|∇sgradV(u)| ≤ C
(
|∂su|+ ‖∂su‖L1

)
,

|∇tgradV(u)| ≤ C
(
1 + |∂tu|

)

for every smooth map R → LM : s 7→ u(s, ·) and every (s, t) ∈ R× S1.
(V2) There is a constant C = C(V) such that

|∇s∇sgradV(u)| ≤ C
(
|∇s∂su|+ ‖∇s∂su‖L1 +

(
|∂su|+ ‖∂su‖L2

)2)
,

|∇t∇sgradV(u)| ≤ C
(
|∇t∂su|+

(
1 + |∂tu|

)(
|∂su|+ ‖∂su‖L1

))
,

and
|∇s∇sgradV(u)−HV(u)∇s∂su| ≤ C

(
|∂su|+ ‖∂su‖L2

)2

for every smooth map R → LM : s 7→ u(s, ·) and every (s, t) ∈ R× S1.
(V3) For any two integers k > 0 and ℓ ≥ 0 there is a constant C = C(k, ℓ,V)

such that

∣∣∇ℓ
t∇k

sgradV(u)
∣∣ ≤ C

∑

kj ,ℓj



∏

j
ℓj>0

∣∣∣∇ℓj
t ∇kj

s u
∣∣∣



∏

j
ℓj=0

(
∣∣∇kj

s u
∣∣+
∥∥∇kj

s u
∥∥
Lpj

)

for every smooth map R → LM : s 7→ u(s, ·) and every (s, t) ∈ R×S1; here
pj ≥ 1 and

∑
ℓj=0 1/pj = 1; the sum runs over all partitions k1+ · · ·+km =

k and ℓ1 + · · ·+ ℓm ≤ ℓ such that kj + ℓj ≥ 1 for all j. For k = 0 the same
inequality holds with an additional summand C on the right.

Remark 1 If V ∈ C∞(S1 × M,R) and x ∈ LM , then V(x) :=
∫ 1

0
Vt (x(t)) dt

satisfies gradV(x) = ∇Vt(x) and HV(x)ξ = ∇ξ∇Vt(x) for ξ ∈ Ω0(S1, x∗TM).

Remark 2 To prove transversality in section 5 we use perturbations1

V(x) := ρ
(
‖x− x0‖2L2

)∫ 1

0

Vt(x(t)) dt,

where ρ : R → [0, 1] is a smooth cutoff function and x0 : S1 → M is a loop.
Any such perturbation satisfies (V0)–(V3). Here compactness of M enters.

1 Here and throughout the difference x − x0 of two loops denotes the difference in some
ambient Euclidean space into which M is (isometrically) embedded.
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1.2 Main results

There are two purposes of this text (which is the main part of the author’s
habilitation thesis [20]). One is to construct the Morse chain complex for the
action functional on the loop space. The other one is to provide proofs of the
results announced and used in [13] to calculate the adiabatic limit of the Floer
complex of the cotangent bundle. More precisely, in [13] we proved in joint
work with D. Salamon that the connecting orbits of the heat flow are the
adiabatic limit of Floer connecting orbits in the cotangent bundle T ∗M with
respect to the Hamiltonian given by kinetic plus potential energy. The key
idea is to appropriately rescale the Riemannian metric on M . Both purposes
are achieved simultaneously by theorems 2–8.

From now on we replace the potential V by an abstract perturbation V
satisfying (V0)–(V3). Then the action is given by

SV(x) =
1

2

∫ 1

0

|ẋ(t)|2 dt− V(x) (5)

for smooth loops x : S1 → M and the set P(V) of critical points of SV consists
of those loops x : S1 → M that solve the ODE

∇tẋ = −gradV(x). (6)

The subset Pa(V) consists of those with SV(x) ≤ a. Now the heat equation
has the form

∂su−∇t∂tu− gradV(u) = 0 (7)

for smooth cylinders u : R × S1 → M . Here gradV(u) denotes the value of
gradV on the loop us : t 7→ u(s, t). Given two nondegenerate critical points
x± ∈ P(V) denote by M(x−, x+;V) the set of all solutions u of (7) which
satisfy the limit condition (3). Such u are called connecting orbits or con-
necting trajectories. The energy of a connecting trajectory is given by

E(u) =

∫ ∞

−∞

∫ 1

0

|∂su|2 dtds = SV(x
−)− SV(x

+). (8)

Theorem 2 (Regularity) Fix a constant p > 2 and a perturbation V :
LM → R that satisfies (V0)–(V3). Let u : R × S1 → M be a continuous
function of class W1,p

loc , that is u, ∂tu,∇t∂tu, ∂su are locally Lp integrable. As-
sume that u solves the heat equation (7) almost everywhere. Then u is smooth.

Remark 3 It seems unlikely that the assumption u ∈ W1,p
loc can be weakened to

u ∈ W 1,p
loc , as announced in [13], unless we also replace p > 2 by p > 3; see [20,

rmk. 2.19]. Fortunately, the stronger assumption u ∈ W1,p
loc is satisfied in our

applications of theorem 2. These are [13, proof of lemma 10.2], the Banach
bundle setup introduced in chapter 3, step 1 of the proof of theorem 7, and
the proof of proposition 9 on surjectivity of the universal section.
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Theorem 3 (Apriori estimates) Fix a perturbation V : LM → R that
satisfies (V0)–(V1) and a constant c0. Then there is a positive constant C =
C(c0,V) such that the following holds. If u : R× S1 → M is a solution of (7)
such that SV(u(s, ·)) ≤ c0 for every s ∈ R, then

‖∂tu‖∞ + ‖∇t∂tu‖∞ + ‖∂su‖∞ + ‖∇t∂su‖∞ + ‖∇s∂su‖∞ ≤ C.

The covariant Hessian of SV at a loop x : S1 → M is the linear operator
Ax : W 2,2(S1, x∗TM) → L2(S1, x∗TM) given by

Axξ = −∇t∇tξ −R(ξ, ẋ)ẋ−HV(x)ξ (9)

where R denotes the Riemannian curvature tensor and the Hessian HV is
defined by (4). This operator is self-adjoint with respect to the standard L2

inner product. The number of negative eigenvalues is finite. It is denoted by
indV(Ax) and called the Morse index of Ax. If x is a critical point of SV we
define its Morse index by indV(x) := indV(Ax) and we call x nondegenerate
if Ax is bijective. Linearizing the heat equation (7) gives rise to the linear
operator Du : W1,p

u → Lp
u, see [18, app. A.2], which in the notation introduced

above is given by

Duξ = ∇sξ +Aus
ξ. (10)

Here us(t) := u(s, t) and the spaces Lp
u andW1,p

u are defined as the completions
of the space of smooth compactly supported sections of the pullback tangent
bundle u∗TM → R× S1 with respect to the norms

‖ξ‖p =

(∫ ∞

−∞

∫ 1

0

|ξ|p dtds
)1/p

,

‖ξ‖W1,p =

(∫ ∞

−∞

∫ 1

0

|ξ|p + |∇sξ|p + |∇t∇tξ|p dtds
)1/p

.

(11)

Theorem 4 (Exponential decay) Fix a perturbation V : LM → R that
satisfies (V0)–(V3) and assume SV is Morse.

(F) Let u : [0,∞) × S1 → M be a solution of (7). Then there are positive
constants ρ and c0, c1, c2, . . . such that

‖∂su‖Ck([T,∞)×S1) ≤ cke
−ρT

for every T ≥ 1. Moreover, there is a periodic orbit x ∈ P(V) such that
u(s, ·) converges to x in C2(S1) as s → ∞.

(B) Let u : (−∞, 0] × S1 → M be a solution of (7) with finite energy. Then
there are positive constants ρ and c0, c1, c2, . . . such that

‖∂su‖Ck((−∞,−T ]×S1) ≤ cke
−ρT

for every T ≥ 1. Moreover, there is a periodic orbit x ∈ P(V) such that
u(s, ·) converges to x in C2(S1) as s → −∞.



Morse homology for the heat flow 7

Theorem 5 (Fredholm) Fix a perturbation V : LM → R that satisfies (V0)–
(V3), a constant p > 1, and two nondegenerate critical points x± ∈ P(V).
Then for each u ∈ M(x−, x+;V) the operator Du : W1,p

u → Lp
u is Fredholm

and
indexDu = indV(x

−)− indV(x
+).

Moreover, the formal adjoint operator D∗
u = −∇s + Aus

: W1,p
u → Lp

u is
Fredholm with indexD∗

u = −indexDu.

See [21, thm. 3.13] for the stronger version announced in [13, thm. A.4]
which, together with corollary 1 on exponential decay, proves theorem 5.

Theorem 6 (Implicit function theorem) Fix a perturbation V : LM → R

that satisfies (V0)–(V3). Assume x± are nondegenerate critical points of SV

and Du is onto for every u ∈ M(x−, x+;V). Then M(x−, x+;V) is a smooth
manifold of dimension indV(x

−)− indV(x
+).

Proposition 1 (Finite set) Fix a perturbation V : LM → R that satisfies
(V0)–(V3) and assume SV is Morse–Smale below level a in the sense that every
u ∈ M(x−, x+;V) is regular (i.e. the Fredholm operator Du is surjective) for
every pair x± ∈ Pa(V). Then the quotient space

M̂(x−, x+;V) := M(x−, x+;V)/R

is a finite set for every such pair of Morse index difference one. Here the (free)
action of R is given by time shift (σ, u) 7→ u(σ + ·, ·).

Theorem 7 (Refined implicit function theorem) Fix a perturbation V :
LM → R that satisfies (V0)–(V3) and a pair of nondegenerate critical points
x± ∈ P(V) with SV(x

+) < SV(x
−) and Morse index difference one. Then, for

every p > 2 and every large constant c0 > 1, there are positive constants δ0
and c such that the following holds. Assume SV is Morse–Smale below level
2c20. Assume further that u : R × S1 → M is a smooth map such that u(s, ·)
converges in W 1,2(S1) to x±, as s → ±∞, and such that

|∂su(s, t)| ≤
c0

1 + s2
, |∂tu(s, t)| ≤ c0, |∇t∂tu(s, t)| ≤ c0,

for all (s, t) ∈ R× S1 and

‖∂su−∇t∂tu− gradV(u)‖p ≤ δ0.

Then there exist u∗ ∈ M(x−, x+;V) and ξ∗ ∈ imD∗
u∗

∩W1,p
u∗

which satisfy

u = expu∗
(ξ∗), ‖ξ∗‖W ≤ c ‖∂su−∇t∂tu− gradV(u)‖p .

In the previous theorem “c0 large” means that the constant c0 should be
larger than the constant C0 in axiom (V0). Recall that a subset of a com-
plete metric space is called residual if it contains a countable intersection of
open and dense sets. By Baire’s category theorem a residual subset is dense.
Throughout singular homology H∗ is meant with integer coefficients.
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Theorem 8 (Transversality) Fix a perturbation V : LM → R that satis-
fies (V0)–(V3) and assume SV is Morse. Then for every regular value a there
is a complete metric space Oa(V) of perturbations supported away from Pa(V)
and satisfying (V0)–(V3) such that the following is true. If v ∈ Oa(V), then

Pa(V) = Pa(V + v), H∗ ({SV ≤ a}) ∼= H∗ ({SV+v ≤ a}) .

Moreover, there is a residual subset Oa
reg(V) ⊂ Oa(V) such that for each v ∈

Oa
reg(V) the perturbed functional SV+v is Morse–Smale below level a.

Outlook

The next step is to relate heat flow homology HM∗ to singular homology of
the loop space. In our forthcoming paper [22] we establish the following result.

Theorem 9 Assume SV is Morse and a is either a regular value of SV or
equal to infinity. Then there is a natural isomorphism

HMa
∗(LM,SV ) ∼= H∗(LaM), LaM := {γ ∈ LM | SV (γ) ≤ a}.

If M is not simply connected, then there is a separate isomorphism for each
component of the loop space. For a < b the isomorphism commutes with the ho-
momorphisms HMa

∗(LM,SV ) → HMb
∗(LM,SV ) and H∗(LaM) → H∗(LbM).

For a C1 gradient flow on a Banach manifold, where the Morse functional is
bounded below and its critical points are of finite Morse index, Abbondandolo
and Majer [1] proved the existence of a natural isomorphism between singu-
lar homology and Morse homology. The geometric idea is that the unstable
manifolds carry the homologically relevant information. A major point is to
construct a cellular filtration of LaM by open forward flow invariant subsets
F0 ⊂ F1 ⊂ . . . ⊂ FN ⊂ LaM such that Fk contains all critical points up to
Morse index k and relative singular homology Hℓ(Fk, Fk−1) is isomorphic to
the free abelian group generated by the critical points of index k in case ℓ = k
and it is trivial otherwise. The idea of their construction is the following. Let
F0 be a union of disjoint, open, and forward flow invariant neighborhoods of
the critical points of index zero. Then fix small neighborhoods of the index one
critical points and consider the set exhausted by the forward flow (which runs
into F0 by the Morse–Smale condition). Now take the union of this set with
F0 to obtain F1. Clearly F1 is forward flow invariant. Moreover, it is open,
because the time-t-map of the flow is an open map. Continue with the index
two points.

Unfortunately, the time-t-map for the semiflow generated by the heat equa-
tion does not take open sets to open sets due to the extremely strong regular-
izing nature of the heat flow. So new ideas are required. In [22] we define and
use Conley index pairs for the critical points in the infinite dimensional situ-
ation at hand. Recall that solving the forward time Cauchy problem for the
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heat equation (7) for initial values in the Hilbert manifold ΛM = W 1,2(S1,M)
leads to existence of a continuous semiflow

ϕ : [0,∞)× ΛaM → ΛaM,

see [20]. Now a simple but crucial consequence of continuity of the time-T -
map is that the preimage ϕT

−1(F0) is an open subset of ΛaM . Here F0 is an
open set consisting of local (strict) sublevel sets near the index zero critical
points. Moreover, for T > 0 sufficiently large ϕT maps the exit set L1 (of the
Conley index pair (N1, L1) associated to the index one critical points) into F0.
Hence F1 := N1∪ϕT

−1(F0) is semiflow invariant (and open, since N1 is open).
Continue with index two.

1.3 Overview

In appendix A we recall for convenience of the reader from [20] the definition
of the relevant parabolic spaces Wk,p and Ck,p and the parabolic bootstrap
proposition 12. It is a side remark that its proof, hence theorem 2, relies on
the Lp product estimate [21, le. 4.1] which allows to deal with the quadratic
first order part of the heat equation (7).

In chapter 2 we study the solutions u to the heat equation (7). Since ∂su
solves the linearized equation the results of [21] are available. In section 2.1
we prove smoothness of W1,p

loc solutions and a compactness result for sequences
with uniformly bounded gradient with respect to appropriate norms. In sec-
tions 2.2–2.4 boundedness of the action is a crucial assumption. Fix a positive
constant c0. Then all solutions u of (7) with sups∈R SV(us) ≤ c0 admit a
uniform apriori estimate for ‖∂tu‖∞ (theorem 12), uniform energy bounds
(lemma 2), uniform gradient bounds (theorem 13), and uniform L2 exponen-
tial decay (theorem 14). In section 2.5 we study compactness of the moduli
spaces M(x−, x+;V) in the case that SV : LM → R is a Morse function.

Chapter 3 deals with implicit function theorems. Here, in addition to the
Morse condition, the Morse–Smale condition enters: To prove that the moduli
spaces are smooth manifolds we not only need nondegeneracy of the asymp-
totic boundary data (the critical points x±) but in addition surjectivity of
the linearized operators. Under these assumptions proposition 1 asserts that
modulo time shift there are only finitely many heat flow lines from x− to x+

whenever the Morse index difference is one. Here the compactness results of
section 2.5 enter. Furthermore, we prove the refined implicit function theo-
rem 7, a major technical tool in [13]. Here the required quadratic estimates
use again the product estimate [21, le. 4.1]. Furthermore, the choice of the
sublevel set on which SV needs to be Morse–Smale requires care. The reason
is that one starts out only with an approximate solution u along which the
action is not necessarily decreasing. However, the assumptions guarantee that
all loops us are contained in the sublevel set {SV ≤ 2c20}.

Chapter 4 deals with unique continuation for the linear and the nonlinear
heat equation based on an extension of a result by Agmon and Nirenberg.
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Backward unique continuation for a forward semiflow may be surprising. Of
course, there is an assumption: If the action along the two semi-infinite back-
ward trajectories u, v which coincide at time s = 0 is bounded, then u = v.

In chapter 5 we construct a separable Banach space Y of abstract pertur-
bations that satisfy axioms (V0)–(V3). Assume SV is Morse and a is a regular
value. Then we define a Banach submanifold Oa(V) of admissible perturba-
tions v. These have the property that SV and SV+v do have the same critical
points on their respective sublevel set with respect to a and, moreover, both
sublevel sets are homologically equivalent. The proof that there is a residual
subset Oa

reg(V) of regular perturbations for which SV+v is Morse–Smale below
level a requires unique continuation for the linearized heat equation and the
fact that the action is strictly decreasing along nonconstant heat flow trajec-
tories.

In chapter 6 we define Morse homology for the heat flow. In section 6.1
we define the unstable manifold of a critical point x of the action functional
SV : LM → R as the set of endpoints at time zero of all backward halfcylinders
solving the heat equation (7) and emanating from x at −∞. The main result
is theorem 18 saying that if the critical point x is nondegenerate, then this is a
contractible submanifold of the loop space and its dimension equals the Morse
index of x. Here we use unique continuation for the linear and the nonlinear
heat equation. In section 6.2 we put together everything to define the Morse
complex for the negative L2 gradient of the action functional on the loop space.

Note that despite the title of this text the fact that the heat equation
generates a forward semiflow is nowhere used. In contrast we study the heat
equation in analogy to Floer theory in terms of a boundary value problem
for infinite cylinders in M which are solutions of the (parabolic) PDE (7).
However, the semiflow point of view will be useful to construct a natural
isomorphism to singular homology of the loop space via Conley theory in our
forthcoming paper [22].

Notation. If f = f(s, t) denotes a map, then fs abbreviates the map f(s, ·) : t 7→ f(s, t).

In contrast partial derivatives are denoted by ∂sf and ∂tf .

2 Solutions of the nonlinear heat equation

2.1 Regularity and compactness

Throughout section 2.1 embed the compact Riemannian manifold M isomet-
rically into some Euclidean space R

N and view any continuous map u : Z =
(−T, 0]× S1 → M as a map into R

N taking values in M . We indicate this by
the notation u : Z → M →֒ R

N . Then the heat equation (7) is of the form

∂su− ∂t∂tu = Γ (u) (∂tu, ∂tu) + F. (12)

Here and throughout this section Γ denotes the second fundamental form
associated to the embedding M →֒ R

N and the map F : Z → R
N is given by

F (s, t) := (gradV(us))(t). (13)
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Recall the definition of theWk,p and the Ck norm in (79) and (80), respectively.

Proposition 2 Fix a perturbation V : LM → R that satisfies (V0)–(V3),
constants p > 2 and µ0 > 0, and cylinders

Z = (−T, 0]× S1, Z ′ = (−T ′, 0]× S1, T > T ′ > 0.

Then for every integer k ≥ 1 there is a constant ck = ck(p, µ0, T, T
′,V) such

that the following is true. If u : Z → M →֒ R
N is a W1,p map such that

‖u‖p + ‖∂su‖p + ‖∂tu‖p + ‖∂t∂tu‖p ≤ µ0 (14)

and which satisfies the heat equation (12) almost everywhere, then

‖u‖Wk,p(Z′,RN ) ≤ ck.

Proposition 2 follows by induction from the bootstrap proposition 12 and
lemma 1 below. By standard arguments it implies the following two results.

Theorem 10 (Regularity) Fix a perturbation V : LM → R that satis-
fies (V0)–(V3) and constants p > 2 and a < b. Let u be a map (a, b] × S1 →
M →֒ R

N which is of Sobolev class W1,p and solves the heat equation (12)
almost everywhere. Then u is smooth.

Theorem 11 (Compactness) Fix a perturbation V : LM → R that satis-
fies (V0)–(V3) and constants p > 2 and a < b. Let uν : (a, b]×S1 → M →֒ R

N

be a sequence of smooth solutions of the heat equation (12) such that

sup
ν

‖∂tuν‖∞ + sup
ν

‖∂suν‖p < ∞.

Then there is a smooth solution u : (a, b]×S1 → M of (12) and a subsequence,
still denoted by uν , such that uν converges to u, uniformly with all derivatives
on every compact subset of (a, b]× S1.

Proof (of Proposition 2) Consider the family Tr := T ′+ T−T ′

r , r ∈ [1,∞), and
the corresponding nested sequence of cylinders

Zr := (−Tr, 0]× S1, Z = Z1 ⊃ Z2 ⊃ Z3 ⊃ . . . ⊃ Z ′.

Denote by C0 the constant in (V0). More generally, for ℓ ≥ 1 choose Cℓ

larger than Cℓ−1 and larger than all constants C(k′, ℓ′,V) in (V3) for which
2k′ + ℓ′ ≤ ℓ.

Claim. The map F given by (13) is in Wℓ,p(Zℓ+1) for every integer ℓ ≥ 1.

This implies proposition 2: Given any integer k ≥ 1, then F ∈ Wk,p(Zk+1) by
the claim. Furthermore, by inclusion Zk+1 ⊂ Z and (14)

‖u‖W1,p(Zk+1)
≤ ‖u‖W1,p(Z) ≤ µ0.
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Hence by corollary 2 for the pair Zk+2 ⊂ Zk+1 there is a constant ck+1 de-
pending on p, µ0, Zk+2, Zk+1, ‖Γ‖C2k+2 , and ‖F‖Wk,p(Zk+1) such that

‖u‖Wk+1,p(Z′) ≤ ‖u‖Wk+1,p(Zk+2)
≤ ck+1.

It remains to prove the claim. The proof is by induction.

Step ℓ = 1. We need to prove that F , ∂tF , ∂sF , and ∂t∂tF are in Lp(Z2).
The domain of all norms of Γ and its derivatives is the compact manifold M .
The domain of all other norms is the cylinder Z unless indicated differently.
By axiom (V0) with constant C0 it follows (even on the larger domain Z) that

‖F‖∞ = sup
s∈(−T,0]

‖gradV(us)‖L∞(S1) ≤ C0 (15)

and therefore ‖F‖p ≤ ‖F‖∞ (VolZ)
1/p ≤ C0T

1/p. Next we use axiom (V1)
with constant C1 ≥ C0 to obtain that

‖∂tF‖p ≤ ‖∇tgradV(u)‖p + ‖Γ (u) (∂tu, gradV(u))‖p
≤ C1

(
1 + ‖∂tu‖p

)
+ ‖Γ‖∞ ‖∂tu‖p ‖F‖∞

≤ C1(1 + µ0) + ‖Γ‖∞ µ0C0.

Here we used the assumption (14) in the last step. Now by the bootstrap
proposition 12 (i) for k = 1 and the pair Z4/3 ⊂ Z there is a constant a1
depending on p, µ0, Z4/3, Z, ‖Γ‖C4 , and the Lp(Z) norms of F and ∂tF such
that ‖∂tu‖W1,p(Z4/3) ≤ a1. Then by the Sobolev embedding W 1,p →֒ C0 with
constant c′ = c′(p, Z5/3) it follows that ∂tu is continuous on Z4/3 and

‖∂tu‖C0(Z5/3)
≤ c′ ‖∂tu‖W1,p(Z5/3)

≤ a1c
′. (16)

Again using axiom (V1) we obtain similarly that

‖∂sF‖p ≤ ‖∇sgradV(u)‖p + ‖Γ (u) (∂su, gradV(u))‖p
≤ 2C1 ‖∂su‖p + ‖Γ‖∞ ‖∂su‖p ‖F‖∞
≤ µ0 (2C1 + ‖Γ‖∞ C0) .

In order to estimate ∂t∂tF observe first that

‖∇t∂tu‖Lp(Z5/3)
≤ ‖∂t∂tu‖Lp(Z5/3)

+ ‖Γ‖∞ ‖|∂tu| · |∂tu|‖Lp(Z5/3)

≤ µ0 + ‖Γ‖∞ ‖∂tu‖C0(Z5/3)
‖∂tu‖Lp(Z5/3)

≤ µ0 + ‖Γ‖∞ a1c
′µ0.

Here the last step uses assumption (14) and the C0 estimate (16) for ∂tu which
requires shrinking of the domain. Now by axiom (V3) for k = 0 and ℓ = 2
there is a constant still denoted by C1 = C1(V) such that

|∇t∇tF | ≤ C1

(
1 + |∂tu|+ |∇t∂tu|

)
(17)
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pointwise for every (s, t). Integrate this inequality to the power p to get that

‖∇t∇tF‖Lp(Z5/3)
≤ C1

(
1 + ‖∂tu‖Lp(Z5/3)

+ ‖∇t∂tu‖Lp(Z5/3)

)

≤ C1 (1 + 2µ0 + ‖Γ‖∞ a1c
′µ0) .

By straightforward calculation we obtain

‖∂t∂tF‖Lp(Z5/3)
≤ ‖∇t∇tF‖Lp + ‖dΓ‖∞ ‖∂tu‖C0 ‖∂tu‖Lp ‖F‖C0

+ ‖Γ‖∞ ‖∂t∂tu‖Lp ‖F‖C0 + 2 ‖Γ‖∞ ‖∂tu‖C0 ‖∂tF‖Lp

+ ‖Γ‖2∞ ‖∂tu‖C0 ‖∂tu‖Lp ‖F‖C0

where all C0 and Lp norms are on the domain Z5/3. Now the right hand side
is bounded by a constant c = c(p, µ0, c

′, C1, ‖Γ‖C1) by assumption (14), the
estimates for F and its derivatives obtained earlier, and (16).

Induction step ℓ ⇒ ℓ+1. Let ℓ ≥ 1 and assume that the claim is true for ℓ.
This means that F is in Wℓ,p(Zℓ+1) and therefore αℓ := ‖F‖Wℓ,p(Zℓ+1) < ∞.
Hence by corollary 2 for the integer ℓ and the pair of sets Zℓ+1 ⊃ Zℓ+3/2 there
is a constant cℓ = cℓ(p, µ0, Tℓ+1, Tℓ+3/2, ‖Γ‖C2ℓ+2 , αℓ) such that

‖u‖Wℓ+1,p(Zℓ+3/2)
≤ cℓ, ‖u‖Cℓ(Zℓ+3/2)

≤ cℓ. (18)

The second inequality follows from the first by the Sobolev embeddingW 1,p →֒
C0 applied to each term in the Cℓ norm. Then choose cℓ larger, if necessary.
It remains to prove that the Wℓ,p(Zℓ+2) norms of ∂tF , ∂sF , and ∂t∂tF are
finite. Similarly as in step ℓ = 1 we obtain that

‖∂tF‖Wℓ,p(Zℓ+3/2)
≤ ‖∇tF‖Wℓ,p + ‖Γ (u) (∂tu, F )‖Wℓ,p

≤ C1 (‖1‖Wℓ,p + ‖∂tu‖Wℓ,p)

+ c̃ ‖Γ‖Cℓ (‖∂tu‖Wℓ,p ‖F‖∞ + ‖u‖Cℓ ‖F‖Wℓ,p)

≤ C1 (T
1/p + cℓ) + c̃ ‖Γ‖Cℓ (cℓC0 + cℓαℓ) .

Here the domain of all norms, except the one of Γ , is Zℓ+3/2. The first step
is by definition of the covariant derivative and the triangle inequality. Step
two uses axiom (V1) and lemma 1 with constant c̃. The last step uses the
estimates (15), (18), and the definition of αℓ in the induction hypothesis. Now
by the refined bootstrap proposition 12 there is a constant aℓ+1 such that

‖∂tu‖Wℓ+1,p(Zℓ+2)
≤ aℓ+1, ‖∂tu‖Cℓ(Zℓ+2)

≤ aℓ+1. (19)

Next observe that

‖∂sF‖Wℓ,p(Zℓ+2)

≤ ‖∇sF‖Wℓ,p + ‖Γ (u) (∂su, F )‖Wℓ,p

≤ 2C1 ‖∂su‖Wℓ,p + C ′ ‖Γ‖Cℓ (‖∂su‖Wℓ,p ‖F‖∞ + (‖u‖Cℓ + ‖∂tu‖Cℓ) ‖F‖Wℓ,p)

≤ 2C1cℓ + C ′ ‖Γ‖Cℓ (cℓC0 + (cℓ + aℓ+1)αℓ) .
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Here the domain of all norms, except the one of Γ , is Zℓ+2. Again the first
step is by definition of the covariant derivative and the triangle inequality. Step
two uses axiom (V1) and lemma 1 with constant C ′. The last step uses the
estimates (15), (18), (19), and the definition of αℓ in the induction hypothesis.
Similarly as in step ℓ = 1 we obtain that

‖∂t∂tF‖Wℓ,p(Zℓ+2)

≤ ‖∇t∇tF‖Wℓ,p + ‖dΓ (u) (∂tu, ∂tu, F )‖Wℓ,p

+ ‖Γ (u) (∂t∂tu, F )‖Wℓ,p + 2 ‖Γ (u) (∂tu, ∂tF )‖Wℓ,p

+ ‖Γ (u) (∂tu, Γ (u) (∂tu, F ))‖Wℓ,p

≤ C1

(
T 1/p + ‖∂tu‖Wℓ,p + ‖∂t∂tu‖Wℓ,p + ‖Γ‖Cℓ ‖∂tu‖Cℓ ‖∂tu‖Wℓ,p

)

+ ‖dΓ‖Cℓ ‖∂tu‖2Cℓ ‖F‖Wℓ,p

+ c̃ ‖Γ‖Cℓ (‖∂t∂tu‖Wℓ,p ‖F‖∞ + ‖∂tu‖Cℓ ‖F‖Wℓ,p)

+ 2 ‖Γ‖Cℓ ‖∂tu‖Cℓ ‖∂tF‖Wℓ,p + ‖Γ‖2Cℓ ‖∂tu‖2Cℓ ‖F‖Wℓ,p .

Here the domain of all norms, except the one of Γ , is Zℓ+2. In the second
step we used axiom (V2) with constant C1 to estimate the term ∇t∇tF and we
spelled out the covariant derivative arising in ∇t∂tu. Moreover, crudely pulling
out Cℓ norms worked for all terms but the third one, the one involving ∂t∂tu,
here we used lemma 1 with constant c̃ for the functions ∂t∂tu and F . Now
all terms appearing on the right hand side have been estimated earlier. This
proves the induction step and therefore the claim and proposition 2. ⊓⊔

Lemma 1 ([20, le. 2.21, le. 4.4]) Fix a constant p > 2 and a bounded open
subset Ω ⊂ R

2 with area |Ω|. Then for every integer k ≥ 1 there is a constant
c = c(k, |Ω|) such that

‖∂tu · v‖Wk,p ≤ c (‖∂tu‖Wk,p ‖v‖∞ + ‖u‖Ck ‖v‖Wk,p)

‖∂su · v‖Wk,p ≤ c ‖∂su‖Wk,p ‖v‖∞ + c (‖u‖Ck + ‖∂tu‖Ck) ‖v‖Wk,p

for all functions u, v ∈ C∞(Ω).

Proof (of theorem 10) Fix any point z ∈ Z = (a, b] × S1 and a subcylinder
Z ′ = (a′, b]×S1 that contains z and where a′ ∈ (a, b). Set µ0 = ‖u‖W1,p(Z,RN ),
then proposition 2 for the function ũ(s, t) := u(s + b, t) and the constants
T = b− a and T ′ = b− a′ implies that

u ∈
⋂

k≥0

Wk,p(Z ′,RN ) =
⋂

k≥0

W k,p(Z ′,RN ) = C∞(Z ′,RN ).

See [8, app. B.1] for the last step. Hence u is locally smooth. ⊓⊔

Proof (of theorem 2) Theorem 10. ⊓⊔
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Proof (of theorem 11) Shifting the s variable by b and setting T = b−a, if nec-
essary, we may assume without loss of generality that the maps uν are defined
on (−T, 0] and, furthermore, by composition with the isometric embedding
M →֒ R

N that they take values in R
N . All norms are taken on the domain

(−T, 0] × S1, unless indicated otherwise. To apply proposition 2 we need to
verify that the maps uν : (−T, 0]×S1 → R

N satisfy the four apriori estimates
in (14) for some constant µ0 independent of ν. To see this observe that

‖uν‖p ≤ ‖uν‖∞ Vol ((−T, 0]× S1) ≤ c1T
1/p

for some constant c1 depending only on the isometric embeddingM →֒ R
N and

the diameter of the compact manifold M . By assumption there is a constant c2
independent of ν such that ‖∂tuν‖p ≤ ‖∂tuν‖∞T 1/p ≤ c2T

1/p and ‖∂suν‖p ≤
c2. Then it follows by the heat equation (12) that

‖∇t∂tu
ν‖p ≤ ‖∂suν‖p + ‖gradV(uν)‖p ≤ c2 + C0T

1/p.

In the second step we used (V0) to estimate gradV(uν) in L∞ from above by
a constant C0 = C0(V). By definition of the covariant derivative

‖∂t∂tuν‖p ≤ ‖∇t∂tu
ν‖p + ‖Γ‖C0(M) ‖∂tuν‖∞ ‖∂tuν‖p

≤ c2 + C0T
1/p + c22T

1/p ‖Γ‖C0(M) .

Now set µ0 := c2 +C0T
1/p + c22T

1/p ‖Γ‖C0(M) + (c1 + c2)T
1/p. Then proposi-

tion 2 asserts that for every constant T ′ ∈ (0, T ) and every integer k ≥ 2 there
is a constant ck = ck(p, µ0, T, T

′,V) such that ‖uν‖Wk,p(Q,RN ) ≤ ck where

Q = [−T ′, 0]×S1. Recall that the inclusion W k,p(Q) →֒ Ck−1(Q) is compact;
see e.g. [8, B.1.11]. Hence there is a subsequence which converges on Q in the
Ck topology. We denote the limit by u ∈ Ck(Q). Since this is true for every
k ≥ 2 there is a subsequence, still denoted by uν , converging on Q to u, uni-
formly with all derivatives. Since this is true for every compact subcylinder
Q of (−T, 0] × S1, the theorem follows by choosing a diagonal subsequence
associated to an exhausting sequence by such Q’s. Because, in particular, the
convergence is in C0 and the uν take values in M , so does the limit u. By Ck

convergence with k ≥ 2 the limit u satisfies the heat equation (12). ⊓⊔

2.2 An apriori estimate

Theorem 12 Fix a perturbation V : LM → R that satisfies (V0)–(V1) and
a constant c0. Then there is a constant C = C(c0,V) such that the following
holds. Assume u : R×S1 → M is a solution of the heat equation (7) such that

sup
s∈R

SV(u(s, ·)) ≤ c0,

then ‖∂tu‖∞ ≤ C.
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Proof The idea is to first derive slicewise L2 bounds, then verify the differential
inequality in [13, lemma B.1] and apply the lemma using the slicewise bounds
on the right hand side. The slicewise bound for ∂tu follows easily from the
assumption c0 ≥ SV(us) =

1
2‖∂tus‖2L2(S1) − V(us) where us(t) := u(s, t). Let

C0 denote the constant in (V0), then this implies that

‖∂tus‖2L2(S1) ≤ 2c0 + 2V(us) ≤ 2c0 + 2C0 (20)

for every s ∈ R. Consider the pointwise differential inequality given by

(∂t∂t − ∂s) |∂tu|2 = 2 |∇t∂tu|2 + 2〈(∇t∇t −∇s)∂tu, ∂tu〉
= 2 |∇t∂tu|2 − 2〈∇tgradV(u), ∂tu〉
≥ −2C1 (1 + |∂tu|) |∂tu|
≥ −C1 − 3C1 |∂tu|2 .

To obtain the second step we replaced ∇t∂tu according to the heat equation (7)
and used that ∇t∂su = ∇s∂tu. The third step is by condition (V1) with con-
stant C1. Choose (s0, t0) ∈ R×S1 and apply [13, lemma B.1] in the case r = 1
and with w(s, t) := 1

3 + |∂tu(s0 + s, t0 + t)|2 and a = 3C1 to obtain

w(0) ≤ c1e
a

∫ 0

−1

∫ +1

−1

(
1

3
+ |∂tu(s0 + s, t0 + t)|2

)
dtds

= c1e
3C1

(
2

3
+ 2

∫ 0

−1

‖∂tus0+s‖2L2(S1) ds

)
.

Theorem 12 then follows from the slicewise estimate (20). ⊓⊔
Lemma 2 Fix a constant c0 and a perturbation V : LM → R that satis-
fies (V0) with constant C0. If u : R× S1 → M is a solution of (7), then

sup
s∈R

SV(u(s, ·)) ≤ c0 ⇒ E(u) ≤ c0 + C0

and SV(ua)− SV(ub) ≤ 2E(u) + C2
0 + 2C0 for all reals a ≤ b.

Proof The first assertion is standard. Using the energy identity (8) and the neg-
ative L2 gradient flow property of the heat equation we obtain that E[−T,T ](u) =
SV(u−T )−SV(uT ) ≤ SV(u−T )+C0 for every T > 0. The last step is by (V0).
Next by partial integration and (7) we obtain that

‖∂tua‖22 − ‖∂tub‖22 = −
∫ b

a

d

ds
〈∂tus, ∂tus〉L2(S1) ds

= 2〈∂sus,∇t∂tus〉L2

≤ ‖∂su‖22 + ‖∂su− gradV(u)‖22
≤ 3E(u) + 2C2

0 .

The last step is by the energy identity (8) and (V0). Now use that ‖∂tus‖22 =
2SV(us) + 2V(us) by definition (5) of the action. Apply (V0) again. ⊓⊔
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2.3 Gradient bounds

Linearizing the heat equation (7) at a solution u provides the linear heat
equation

Duξ := ∇sξ −∇t∇tξ −R(ξ, ∂tu)∂tu−HV(u)ξ = 0. (21)

for smooth vector fields ξ along u. Note that ξ := ∂su is a solution. The
definition of Du makes sense for arbitrary smooth maps u : R×S1 → M . The
formal adjoint operator with respect to the L2 inner product is given by

D∗
uξ = −∇sξ −∇t∇tξ −R(ξ, ∂tu)∂tu−HV(u)ξ. (22)

Theorem 13 Fix a perturbation V : LM → R that satisfies (V0)–(V2) and a
constant c0. Then there is a constant C = C(c0,V) > 0 such that the following
holds. If u : R×S1 → M is a solution of (7) that satisfies sups∈R SV(u(s, ·)) ≤
c0, then

|∂su(s, t)|2 + |∇t∂su(s, t)|2 ≤ CE[s−1,s](u)

|∇s∂su(s, t)|2 + |∇t∇t∂su(s, t)|2 ≤ CE[s−2,s](u)

for every (s, t) ∈ R× S1. Here

EI(u) =

∫

I×S1

|∂su|2

denotes the energy of the solution u over the set I × S1.

Proof By theorem 12 there is a constant C0 = C0(c0,V) such that ‖∂tu‖∞ ≤
C0. Let C = C(C0,V) be the constant of [21, thm. 3.3] with this choice of C0.
Since ξ := ∂su solves the linearized heat equation, the apriori estimate [21,
thm. 3.3] shows that

|∂su(s, t)|2 ≤ C2E[s−1,s](u) ≤ C2(c0 + c′)

for every (s, t) ∈ R × S1. Here the last step is by lemma 2 and axiom (V0)
with constant c′. Use that u solves (7) and satisfies axiom (V0) to obtain that

‖∇t∂tu‖∞ ≤ ‖∂su‖∞ + ‖gradV(u)‖∞ ≤ C
√

c0 + c′ + c′.

Now choose C0 larger than 2C
√
c0 + c′ + c′ and let C = C(C0,V) be the con-

stant of [21, thm. 3.3] with this new choice of C0. Then [21, thm. 3.3] proves
the desired estimate for |∇t∂su|. Hence ‖∇t∂su‖∞ is bounded by lemma 2.
Then ‖∇t∇t∂tu‖∞ is bounded by (7) and axiom (V1). Hence the apriori esti-
mate [21, thm. 3.4] applies with a new choice of C0 and proves the remaining
two estimates of theorem 13. ⊓⊔

Proof (of theorem 3) Theorem 12, theorem 13 and lemma 2. Only (V0)–(V1)
are used. Use (7) and (V0) to obtain the estimate for ∇t∂tu. ⊓⊔
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2.4 Exponential decay

First we prove asymptotic exponential decay for solutions u of the heat equa-
tion (7) assuming only an action bound, say a ∈ R, along u. In this case
nondegeneracy of all critical points (at least below level a) is essential.

Subsequently we deal with the case u ∈ M(x−;x+;V). Here boundedness
of the action is automatic and, in addition, existence of asymptotic boundary
conditions x± is part of the assumption on u. In this case nondegeneracy is
only required for x±.

Theorem 14 (Exponential energy decay) Fix a perturbation V : LM →
R that satisfies (V0)–(V2). Suppose SV is Morse and fix a regular value a ∈ R

of SV . Then there are constants δ0, c, ρ > 0 such that the following holds. If
u : R× S1 → M is a solution of (7) that satisfies sups∈R SV(u(s, ·)) ≤ a and

ER\[−T0,T0](u) < δ0 (23)

for some T0 > 0, then

ER\[−T,T ](u) ≤ ce−ρ(T−T0)ER\[−T0,T0](u)

for every T ≥ T0 + 1.

Lemma 3 (Critical point nearby) Fix a perturbation V : LM → R that
satisfies (V0), a regular value a ∈ R of SV , and a constant δ > 0. Then there
is a constant ε > 0 such that the following is true. Suppose γ : S1 → M is a
smooth loop such that

SV(γ) ≤ a, ‖∇t∂tγ + gradV(γ)‖∞ < ε.

Then there is a critical point x ∈ Pa(V) and a vector field ξ along x such that
γ = expx(ξ) and ‖ξ‖∞ + ‖∇tξ‖∞ + ‖∇t∇tξ‖∞ ≤ δ.

Proof First note that ‖∂tγ‖22 = 2SV(γ) + 2V(γ) ≤ 2(a + C) where C is the
constant in (V0). Now, assuming ε ≤ 1, we obtain the pointwise inequality

d

dt
|∂tγ|2 = 2〈∂tγ,∇t∂tγ + gradV(γ)〉 − 〈∂tγ, gradV(γ)〉

≤ 2 (ε+ C) |∂tγ| ≤ (1 + C)
2
+ |∂tγ|2 .

Integrate this inequality to see that |∂tγ(t1)|2−|∂tγ(t0)|2 ≤ (1 + C)
2
+‖∂tγ‖22

for t0, t1 ∈ [0, 1]. Integrating again over the interval 0 ≤ t0 ≤ 1 gives

‖∂tγ‖∞ ≤
√

(1 + C)
2
+ 2 ‖∂tγ‖22 ≤ c (24)

where c2 := (1 + C)
2
+ 4 (a+ C).

Now suppose that the assertion is wrong. Then there is a constant δ > 0
and a sequence of smooth loops γν : S1 → M satisfying

SV(γν) ≤ a, lim
ν→∞

(
‖∇t∂tγν + gradV(γν)‖∞

)
= 0,
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but not the conclusion of the lemma for the given constant δ. We know that
supν ‖∇t∂tγν‖∞ < ∞ by (V0) and supν ‖∂tγν‖∞ < ∞ by (24). Hence, by the
Arzela–Ascoli theorem, there exists a subsequence, still denoted by γν , that
converges in the C1-topology. Let x ∈ C1(S1,M) be the limit. We claim that
this subsequence actually converges in the C2-topology. In this case ∇t∂tx +
gradV(x) = 0, hence x ∈ Pa(V). But this contradicts our assumption on the
sequence γν and proves the lemma.

It remains to prove the claim. For simplicity, we assume that M is isomet-
rically embedded in Euclidean space R

N for some sufficiently large integer N .
Since supν ‖∇t∂tγν‖2 < ∞, the Banach-Alaoglu Theorem asserts existence of
a subsequence, still denoted by γν , and an element v ∈ L2 such that ∇t∂tγν
converges to v weakly in L2. Note that v is equal to the weak t-derivative
∇t∂tx of ∂tx. Now gradV(γν) converges to gradV(x) in L∞ (hence in L2) by
axiom (V0) and to −v weakly in L2. Thus v = −gradV(x) by uniqueness
of limits. Hence v ∈ C0 and therefore ∇t∂tx ∈ C0. Using our assumption
on the sequence γν it follows that ∇t∂tγν = −gradV(γν) converges in L∞ to
−gradV(x) = v = ∇t∂tx, as ν → ∞, and this proves the claim. ⊓⊔

Proof (of theorem 14) Recall that if u is a solution of the heat equation (7),
then ξ := ∂su solves the linear heat equation (21) and EI(ξ) = ‖ξ‖2L2(I×S1) for

each interval I ⊂ R. Hence it remains to check that the assumptions of [21,
thm. 3.9] and [21, rmk. 3.10] on exponential L2 decay are satisfied by our given
solution u. In particular, we need to show that us converges asymptotically in
W 2,2(S1) to nondegenerate critical points x±. Here lemma 3 enters.

Given a and V, let C = C(a,V) be the constant in theorem 13 with this
choice. Let C0 = C0(V) be the constant in axiom (V0). Then E(u) ≤ a + C0

by lemma 2, hence ‖∂su‖∞ ≤ CE(u) ≤ C(a+ C0) by theorem 13. Note that

‖ξs‖2 = ‖∂sus‖2 ≤ ‖∂sus‖∞ ≤ ‖∂su‖∞ ≤ C(a+ C0),

for all s ∈ R, and that for every x ∈ Pa(V) it follows that

c0 :=
√
2a+ 2C0 + C0 ⇒ ‖∂tx‖2 + ‖∇t∂tx‖2 ≤ c0.

These are already two of the assumptions in [21, thm. 3.9]. Let δ and ρ be
the constants in that theorem with this choice of c0(a,V). If necessary, choose
δ > 0 smaller than one quarter the minimal C0 distance κ = κ(a) of any two
elements of Pa(V). Let ε be the constant in lemma 3 associated to a and δ
and set

δ0 := min
{
ε2/4C, δ2/4C

}
.

Note that δ, ρ, ε, and δ0 depend only on a and V. Now assume (23) holds true
for some constant T0 = T0(u) > 0 with this choice of δ0. Suppose |s| ≥ T0 +1.
Then E[s−1,s](u) ≤ ER\[−T0,T0](u) < δ0 by assumption (23). Now theorem 13
(gradient bound) implies that

‖∂sus‖∞ + ‖∇t∂sus‖∞ ≤
√
CE[s−1,s](u) ≤

√
Cδ0 < min {ε, δ} . (25)
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Hence by lemma 3 for γ := us using (25) and (7) there are x± ∈ Pa(V) with

us = expx±(η±s ), ‖η±s ‖C2(S1) ≤ δ,

whenever |s| ≥ T0 + 1. Although the critical points x± apriori depend on s
they are in fact independent, because δ < κ/4 and Pa(V) is a finite set by the
Morse condition. Moreover, injectivity of the operators Ax± is equivalent to
nondegeneracy of the critical points x± which is true by the Morse condition.
Then [21, thm. 3.9 and rmk. 3.10] conclude the proof of theorem 14. ⊓⊔

To prove theorem 4 it is useful to denote expu(ξ) by E(u, ξ) and define
linear maps, for ξ ∈ TuM and i, j ∈ {1, 2}, by

Ei(u, ξ) : TuM → TexpuξM, Eij(u, ξ) : TuM × TuM → TexpuξM.

If u : R → M is a smooth curve and ξ, η are smooth vector fields along u, then
the maps Ei and Eij are characterized by the identities

d

ds
expu(ξ) = E1(u, ξ)∂su+ E2(u, ξ)∇sξ

∇s (E1(u, ξ)η) = E11(u, ξ) (η, ∂su) + E12(u, ξ) (η,∇sξ) + E1(u, ξ)∇sη

∇s (E2(u, ξ)η) = E21(u, ξ) (η, ∂su) + E22(u, ξ) (η,∇sξ) + E2(u, ξ)∇sη.

(26)

These maps satisfy the symmetry properties

E12(u, ξ) (η, η
′) = E21(u, ξ) (η

′, η) , E22(u, ξ) (η, η
′) = E22(u, ξ) (η

′, η) ,
(27)

and the identities

E11(u, 0) = E12(u, 0) = E22(u, 0) = 0, E1(u, 0) = E2(u, 0) = 1l. (28)

Proof (of theorem 4) We prove exponential decay in three steps.
I. Finite energy. If u : [0,∞) × S1 → M , then E(u) ≤ SV(u0) + C0 by

(the proof of) lemma 2 where C0 is the constant in axiom (V0).
II. Bounded action along u and existence of asymptotic limits.

Consider the backward case (B). By lemma 2 it follows that

sup
s∈(−∞,0]

SV(us) ≤ 2E(u) + C2
0 + 2C0 + SV(u0) =: c0. (29)

Now fix a regular value a ≥ c0 of SV . First we prove that ∂su(s, t) → 0
uniformly in t, as s → −∞. To see this let C > 0 be the constant in theorem 13
(gradient bounds) and let s ≥ 1, then

|∂su(s, t)| ≤ CE[s−1,s](u) = C

∫ s

s−1

‖∂suσ‖2L2(S1)dσ
s→∞−→ 0

where the last step follows by finite energy of u. Thus by the heat equation (7)
also ∇t∂tus + gradV(us) converges to zero in L∞(S1). Hence it follows from
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lemma 3 that there is a critical point x− ∈ Pa(V) and, for every sufficiently
large s, there is a smooth vector field ξs along x− such that

us = expx−(ξs), ‖ξs‖∞ + ‖∇tξs‖∞ + ‖∇t∇tξs‖∞ s→∞−→ 0.

(The set Pa(V) is finite, because SV is Morse.) This and the identities for the
maps Eij in (26) imply that

‖∂su‖∞ + ‖∂tu‖∞ + ‖∇t∂tu‖∞ < ∞. (30)

In the forward case (F) the action along u is bounded from above by c0 :=
SV(u0) due to the negative gradient flow property. The remaining part of the
proof goes through unchanged.

III. Exponential decay. Consider the forward case (F). We prove by
induction that for every k ∈ N there is a constant c′k > 0 such that

‖∂su‖Wk,2([s,∞)×S1) ≤ c′k ‖∂su‖L2([s−k,∞)×S1) (31)

for every s ≥ k. This estimate, the energy identity (8), and theorem 14 with
constants δ0, c, ρ and T0 chosen sufficiently large such that (23) holds, show
that

‖∂su‖Wk,2([s,∞)×S1) ≤ c′k

√
E[s−k,∞](u) ≤ c′k

√
cδ0e

−ρ(s−k−T0)/2

whenever s ≥ k + T0 + 1. The Sobolev embedding W k,2 →֒ Ck−2, e.g. on
the compact set [s, s + 1] × S1, concludes the proof of forward exponential
decay (F).

It remains to carry out the induction argument. It is based on the following
identity. Linearize the heat equation (7) in the s-direction to obtain that

(∇s −∇t∇t) ∂su = R(∂su, ∂tu)∂tu+HV(u)∂su. (32)

Observe that [13, le. D.2] applies by (30); formally add to u a smooth half
cylinder imposing a uniform limit as s → −∞. Fix s0 ≥ 1 and pick a smooth
nondecreasing cutoff function β : R → [0, 1] equal to zero for s ≤ s0 − 1, to
one for s ≥ s0, and whose slope is at most two. Now [13, le. D.2] for p = 2
applied to βξ shows that there is a constant c′ > 0 such that

‖∇sξ‖L2([s0,∞)×S1) + ‖∇tξ‖L2([s0,∞)×S1) + ‖∇t∇tξ‖L2([s0,∞)×S1)

≤ c′
(
‖∇sξ −∇t∇tξ‖L2([s0−1,∞)×S1) + ‖ξ‖L2([s0−1,∞)×S1)

) (33)

for every ξ ∈ C∞
0 ([0,∞)× S1, u∗TM). We used [13, le. D.4] to include ∇tξ.

We prove the induction hypothesis (31) for k = 1. Let s ≥ 1 and denote
by C1 > 0 the constant in (V1). By (33) with ξ = ∂su and (32) it follows that

‖∇s∂su‖L2([s,∞)×S1) + ‖∇t∂su‖L2([s,∞)×S1) + ‖∇t∇t∂su‖L2([s,∞)×S1)

≤ c′
(
‖(∇s −∇t∇t)∂su‖L2([s−1,∞)×S1) + ‖∂su‖L2([s−1,∞)×S1)

)

= c′
(
‖R(∂su, ∂tu)∂tu+HV(u)∂su‖L2([s−1,∞)×S1) + ‖∂su‖L2([s−1,∞)×S1)

)

≤ c′
(
‖R‖∞‖∂tu‖2∞ + 2C1 + 1

)
‖∂su‖L2([s−1,∞)×S1) .
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Observe that the induction hypothesis (31) for k = 2 follows similarly.
Assume s ≥ 2. Then by (33) with ξ = ∇s∂su and (32) it follows that

‖∇s∇s∂su‖L2([s,∞)×S1) + ‖∇t∇s∂su‖L2([s,∞)×S1) + ‖∇t∇t∇s∂su‖L2([s,∞)×S1)

≤ c′
(
‖∇s (R(∂su, ∂tu)∂tu+HV(u)∂su) + [∇s,∇t∇t]∂su‖L2([s−1,∞)×S1)

+ ‖∇s∂su‖L2([s−1,∞)×S1)

)
.

Now use s ≥ 2, the apriori estimates (30), axiom (V2), and the case k = 1
to bound the right hand side by a constant times ‖∂su‖L2([s−2,∞)×S1). Then
the L2 bound for ∇t∇t∂su obtained earlier in the case k = 1 together with the
identity ∇s∇t∂su = ∇t∇s∂su−R(∂tu, ∂su)∂su imply an L2 bound for ∇s∇t∂su.

To prove the induction hypothesis (31) for k = 3 requires the yet unkown
fact that ‖∇t∂su‖∞ < ∞. Note that our heat flow solution u admits an upper
action bound, namely SV(u(0, ·)), and this is the essential assumption of theo-
rem 12 and theorem 13. Hence corresponding versions recover (30) and prove
the desired estimate. The latter is crucial, because (33) with ξ = ∇s∇s∂su
and (32) lead to terms of the form

‖R(∇s∂su,∇t∂su)∂tu‖L2([s,∞)×S1),

whereas our induction hypothesis in the case k = 2 only provides a C0 bound
for ∂su. The remaining part of proof follows the same pattern as in the case
k = 2. Here we use axiom (V3).

Now fix an integer k ≥ 3 and assume the induction hypothesis (31) is
true for every ℓ ∈ {1, . . . , k}. In particular, we have W k,2 and Ck−2 bounds
for ∂su on the appropriate domains. Apply (33) with ξ = ∇s

k∂su and (32) to
obtain L2 bounds for ∇s

k+1∂su and ∇t∇s
k∂su. Here we use axiom (V3) and the

induction hypothesis for ℓ ∈ {1, . . . , k}. A problem of the type encountered in
the case k = 3 does not arise, since we have Ck−2 bounds for ∂su with k ≥ 3.
To obtain L2 estimates for the remaining terms of the form ∇t

j∇s
k−j∂su with

j ≥ 2 use (32) to treat any ∇t∇t for one ∇s. This reduces the order of the term,
hence the induction hypothesis can be applied. This completes the induction
step and proves (F). The backward case (B) follows similarly. ⊓⊔
Corollary 1 Fix a perturbation V : LM → R that satisfies (V0)–(V3), two
nondegenerate critical points x± ∈ P(V), and an element u ∈ M(x−, x+;V).
Then there are positive constants ρ and c0, c1, c2, . . . such that

‖∂su‖Ck(R\[−T,T ]×S1) ≤ cke
−ρT

for every T ≥ 1.

Proof (I) Since u ∈ M(x−, x+;V), its energy is finite by (8). (II) Use (29) to
see that the action is bounded along u. Existence of asymptotic limits of u
holds by definition. Now (III) in the proof of theorem 14 applies. ⊓⊔
Proof (of theorem 5) By corollary 1, the heat equation (7), and axioms (V0–
V1) the assumptions of the Fredholm theorem [21, thm. 3.13] are satisfied. ⊓⊔
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2.5 Compactness up to broken trajectories

Proposition 3 (Convergence on compact sets) Assume that the pertur-
bation V : LM → R satisfies (V0)–(V3) and SV is Morse. Fix critical points
x± ∈ P(V) and a sequence of connecting trajectories uν ∈ M(x−, x+;V). Then
there is a pair x0, x1 ∈ P(V), a connecting trajectory u ∈ M(x0, x1;V), and a
subsequence, still denoted by uν , such that the following is true.
(i) The subsequence uν converges to u, uniformly with all derivatives on every
compact subset of R× S1. (ii) For all s ∈ R and T > 0 it holds that

SV

(
u(s, ·)

)
= lim

ν→∞
SV

(
uν(s, ·)

)
, E[−T,T ](u) = lim

ν→∞
E[−T,T ](u

ν).

Proof Since the flow lines uν connect x− to x+ and the action SV decreases
along flow lines, it follows that sups∈R SV(u

ν(s, ·)) = SV(x
−) =: c0. Hence

by the apriori estimates theorem 12 and theorem 13 there is a constant C =
C(c0,V) such that |∂tuν(s, t)| ≤ C, and |∂suν(s, t)|2 ≤ C2 (SV(x

−)− SV(x
+)) ,

for every (s, t) ∈ R × S1. To obtain the second estimate we used the energy
identity (8) for connecting orbits. Now fix a constant p > 2 and pick an integer
ℓ ≥ 2. Then the assumptions of theorem 11 are satisfied for the sequence uν

restricted to the cylinder Zℓ = (−ℓ, ℓ]× S1. Hence there is a smooth solution
u : Zℓ → M of the heat equation (7) and a subsequence, still denoted by
uν , such that uν converges to u, uniformly with all derivatives on the compact
subset [−ℓ+1, ℓ]×S1 of Zℓ. Now (i) follows by choosing a diagonal subsequence
associated to the exhausting sequence Z2 ⊂ Z3 ⊂ . . . of R× S1.

To prove (ii) note that for every T > 0 we obtain that

E[−T,T ](u) = lim
ν→∞

∫

ZT

|∂suν |2 = lim
ν→∞

E[−T,T ](u
ν) ≤ SV(x

−)− SV(x
+)

where the first step uses that by (i) the sequence ∂su
ν converges to ∂su, uni-

formly on compact sets. The second step is by definition of the energy and the
last step is again by the energy identity (8). Hence the limit u : R× S1 → M
has finite energy and so by theorem 4 belongs to the moduli spaceM(x0, x1;V)
for some x0, x1 ∈ P(V). To prove convergence of the action at time s note that
V (u(s, ·)) = limν→∞ V (uν(s, ·)), because V is continuous with respect to the
C0 topology on LM by axiom (V0). Convergence of the action at time s then
follows from the fact that ∂tu

ν(s, ·) converges to ∂tu(s, ·) in L∞(S1). ⊓⊔
Lemma 4 (Compactness up to broken trajectories) Assume V : LM →
R satisfies (V0)–(V3) and SV is Morse. Fix distinct critical points x± ∈ P(V)
and a sequence uν ∈ M(x−, x+;V). Then there are a subsequence, still denoted
by uν , critical points x0,. . . ,xm with x0 = x+ and xm = x−, solutions

uk ∈ M(xk, xk−1;V), ∂suk 6≡ 0, k = 1, . . . ,m,

and sequences sνk, such that the shifted sequence uν(sνk + s, t) converges to
uk(s, t), uniformly with all derivatives on every compact subset of R × S1.
Moreover, these limit solutions satisfy

∑m
k=1 E(uk) = SV(x

−)− SV(x
+).

Proof In [13, of lemma 10.3] replace lemma 10.2 by prop. 3. ⊓⊔
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3 The implicit function theorem

Throughout this section we fix a smooth perturbation V : LM → R that
satisfies (V0)–(V3) and two nondegenerate critical points x± of SV . The idea
to prove the manifold property and the dimension formula in theorem 6 is
to construct a smooth Banach manifold which contains the moduli space
M(x−, x+;V) and then carry out the proof locally near each element of the
moduli space.

Fix a real number p > 2 and denote by

B1,p = B1,p(x−, x+) (34)

the space of continuous maps u : R×S1 → M , which satisfy the first limit con-
dition in (3), are locally of class W1,p, and satisfy the asymptotic conditions
ξ± ∈ W1,p(Z±

T ) for some sufficiently large T > 0 where Z−
T = (−∞,−T ]× S1

and Z+
T = [T,∞)× S1, u∗TM); this implies the second limit condition in (3).

Here ξ± are defined pointwise by the identity expx±(t) ξ
±(s, t) = u(s, t). The

space B1,p carries the structure of a smooth infinite dimensional Banach mani-
fold. The tangent space TuB1,p is given by the Banach space W1,p

u whose norm
is defined in (11). Around any smooth map u local coordinates are provided by
the inverse of the map ϕu

−1 : Vu → B1,p given by ξ 7→ [(s, t) 7→ expu(s,t) ξ(s, t)]

where Vu ⊂ W1,p
u is a sufficiently small neighborhood of zero. By abuse of nota-

tion we shall denote this map again by ξ 7→ expu ξ. Observe that any u ∈ B1,p

which satisfies the heat equation (7) is automatically smooth by theorem 2
and therefore lies in M(x−, x+;V).

For x ∈ M and ξ ∈ TxM denote parallel transport with respect to the
Levi-Civita connection along the geodesic τ 7→ expx(τξ) by

Φ(x, ξ) : TxM → Texpx(ξ)
M.

For u ∈ B1,p the map Fu : W1,p
u → Lp

u is defined by

Fu(ξ) := Φ(u, ξ)−1 (∂s(expu ξ)−∇t∂t(expu ξ)− gradV(expu ξ)) . (35)

It is a smooth map between Banach spaces. Hence the implicit function theo-
rem for Banach spaces applies. The differential dFu(0) : W1,p

u → Lp
u is given

by the linear operator Du; see [18, app. A.3]. The map ξ 7→ expu ξ identifies a
neigborhood V of zero in Fu

−1(0) with a neigborhood of u in M(x−, x+;V).

Proof (of theorem 6) Fix p > 2 and u ∈ M(x−, x+;V). Then by theorem 5
the operator dFu(0) = Du : W1,p

u → Lp
u is Fredholm. It is onto by assumption.

Since every surjective Fredholm operator admits a right inverse, the implicit
function theorem for Banach spaces, see e.g. [8, thm A.3.3], applies to Fu

restricted to a small neighborhood V of zero. It asserts that Fu
−1(0) ∩ V is

a smooth manifold whose tangent space at zero is given by the kernel of Du.
Since Du is onto, it follows that dimkerDu = indexDu by definition of the
Fredholm index. But indexDu = indV(x

−)− indV(x
+) by theorem 5. ⊓⊔
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Proof (of proposition 1) Set c∗ = 1
2 (SV(x

−)− SV(x
+)) and identify

M̂(x−, x+;V) ≃ M∗ := {u ∈ M(x−, x+;V) | SV(u(0, ·)) = c∗}.

Here we use that the action SV strictly decreases along nonconstant heat flow
trajectories (use the first variation formula for SV ; see e.g. [10, sec. 12]). Note
that M∗ is a manifold of dimension zero, since M(x−, x+;V) is a manifold of
dimension one by theorem 6 on which R acts freely. Now choose a sequence uν

in M∗. By lemma 4 there is a subsequence, still denoted by uν , finitely many
critical points x0 = x+, x1, . . . , xm = x−, finitely many connecting trajectories
uk ∈ M(xk, xk−1;V) and sequences sνk where k = 1, . . . ,m, such that each
shifted sequence uν(sνk+s, t) converges to uk(s, t) in C∞

loc. By the Morse–Smale
assumption theorem 6 applies to all moduli spaces and shows that

indV(xk)− indV(xk−1) = dimM(xk, xk−1;V) ≥ 1, ∀k ∈ {1, . . . ,m},

where the inequality follows from the facts that ∂suk 6≡ 0 and the heat equa-
tion (7) is s-shift invariant. Hence indV(x

−)− indV(x
+) ≥ m ≥ 1 and so m = 1

by assumption on x±. But this means that uν converges to u1 ∈ M(x−, x+;V)
in C∞

loc. In fact u1 ∈ M∗ by convergence of the action functional for fixed time
s = 0; see proposition 3 (ii). Hence M∗ is compact in the C∞

loc topology. ⊓⊔

The refined implicit function theorem

Proposition 4 (The estimate for the right inverse) Fix a perturbation
V : LM → R that satisfies (V0)–(V3) and nondegenerate critical points x± of
SV . Assume u ∈ M(x−;x+;V) and Du is onto. Then, for every p > 1, there
is a positive constant c = c(p, u) invariant under s-shifts of u such that

‖ξ∗‖W1,p
u

≤ c ‖Duξ
∗‖p (36)

for every ξ∗ ∈ im (D∗
u : W2,p

u → W1,p
u ).

The proof of proposition 4 is standard; see e.g. [4, lemma 4.5]. Details in
the parabolic case at hand are provided by [20, prop. 5.1].

Proposition 5 (Quadratic estimate) Fix a perturbation V : LM → R that
satisfies (V0)–(V1). Let ι > 0 be the injectivity radius of M and fix constants
1 < p < ∞ and c0 > 0. Then there is a constant C = C(p, c0) > 0 such that
the following is true. If u : R×S1 → M is a smooth map and ξ is a compactly
supported smooth vector field along u such that

‖∂su‖∞ + ‖∂tu‖∞ + ‖∇t∂tu‖∞ ≤ c0, ‖ξ‖∞ ≤ ι,

then

‖Fu(ξ)−Fu(0)− dFu(0)ξ‖p ≤ C ‖ξ‖∞ ‖ξ‖W1,p
u

(
1 + ‖ξ‖W1,p

u

)
.
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Proof Recall the definition (26) of the maps Ei and Eij and write

Fu(ξ)−Fu(0)− d
dτ

∣∣
τ=0

Fu(τξ) = f(ξ)− g(ξ)− h(ξ)

where

f(ξ) := Φ(u, ξ)−1∂sE(u, ξ)− ∂su− d
dτ

∣∣
τ=0

Φ(u, τξ)−1∂su− d
dτ

∣∣
τ=0

∂sE(u, τξ)

g(ξ) := Φ(u, ξ)−1∇t∂tE(u, ξ)−∇t∂tu+
(
∇2Φ|(u,0)ξ

)
∇t∂tu− d

dτ

∣∣
0
∇t∂tE(u, τξ)

h(ξ) := Φ(u, ξ)−1gradV(E(u, ξ))− gradV(u) +
(
∇2Φ|(u,0)ξ

)
gradV(u)

− d
dτ

∣∣
τ=0

gradV(E(u, τξ)).

Here we used that Φ(u, 0) = 1l. Straightforward calculation using the identi-
ties (28) shows that f(ξ) = f1(ξ)∇sξ + f2(ξ) where

f1(ξ)∇sξ =
(
Φ(u, ξ)−1E2(u, ξ)− 1l

)
∇sξ

f2(ξ)∂su =
(
Φ(u, ξ)−1E1(u, ξ)− 1l +∇2Φ(u, 0)ξ

)
∂su,

that

g = g1 ◦ ∇t∂tu+ g2 ◦ (∂tu, ∂tu) + g3 ◦ ∇t∇tξ + g4 ◦ (∂tu,∇tξ) + g5 ◦ (∇tξ,∇tξ)

where

g1(ξ) = Φ(u, ξ)−1E1(u, ξ)− 1l +∇2Φ(u, 0)ξ

g2(ξ) = Φ(u, ξ)−1E11(u, ξ)− d
dτ

∣∣
τ=0

E11(u, τξ)

g3(ξ) = Φ(u, ξ)−1E2(u, ξ)− 1l

g4(ξ) = 2Φ(u, ξ)−1E12(u, ξ)

g5(ξ) = Φ(u, ξ)−1E22(u, ξ),

and that

h(ξ) = Φ(u, ξ)−1gradV(E(u, ξ))− (1l− (∇2Φ(u, 0)ξ)) gradV(u)−HV(u)ξ.

Here HV denotes the covariant Hessian of V given by (4). It follows by in-
spection using the identities (28) that the maps f2, g1, g2, and h together with
their first derivative are zero at ξ = 0. Therefore there exists a constant c > 0
which depends continuously on |ξ| and the constant in (V1) such that

|(f2 + g1 + g2 + h)(ξ)| ≤ c |ξ|2
(
|∂su|+ |∇t∂tu|+ |∂tu|2 + 1

)

pointwise at every (s, t). Similarly, it follows that the remaining functions are
zero at ξ = 0 and therefore

|(f1 + g3 + g4 + g5)(ξ)| ≤ c |ξ|
(
|∇sξ|+ |∇t∇tξ|+ |∇tξ| |∂tu|+ |∇tξ|2

)
.

Take these pointwise estimates to the power p, integrate them over R × S1

and pull out L∞ norms of ∂su, ∂tu, and ∇t∂tu to obtain the conclusion of
proposition 5. The term |ξ| · |∇tξ|2 involving a product of first order terms is
taken care of by the product estimate [21, le. 4.1] and [21, rmk. 4.2]. Here we
use the fact that the (compact) support of ξ is contained in some set (a, b]×S1.

⊓⊔
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Proof of the refined implicit function theorem 7

Fix V and x± satisfying the assumptions of theorem 7 and assume by contra-
diction the conclusion of the theorem was not true. Denote the constant in (V0)
by C ′

0 > 1. Then there are constants p > 2 and c0 > C ′
0 and a sequence of

smooth maps uν : R× S1 → M such that uν(s, ·) converges asymptotically to
x± in W 1,2(S1) and

|∂suν(s, t)| ≤
c0

1 + s2
, ‖∂tuν‖∞ ≤ c0, ‖∇t∂tuν‖∞ ≤ c0, (37)

for all (s, t) ∈ R× S1 and

‖∂suν −∇t∂tuν − gradV(uν)‖p ≤ 1

ν
, (38)

but which does not satisfy the conclusion of theorem 7 for c = ν. This means
that for every u ∈ M(x−, x+;V) and every ξν ∈ im D∗

u ∩ Wu which satisfy
uν = expu(ξ

ν) it holds that

‖∂suν −∇t∂tuν − gradV(uν)‖p <
1

ν
‖ξν‖W . (39)

The time shift of a smooth map u : R× S1 by σ ∈ R is defined pointwise by

(u ∗ σ) (s, t) := uσ(s, t) := u(s+ σ, t).

Set a0 := 2c20 and observe that

SV(x
−) = lim

s→−∞
SV(uν(s, ·)) =

1

2
‖∂tuν(s, ·)‖22 − V(uν(s, ·)) ≤

1

2
c20 + C ′

0 ≤ a0

by asymptotic W 1,2 convergence, estimate (37), axiom (V0), and c0 > C ′
0.

Now fix a regular value c∗ of SV between SV(x
+) and SV(x

−); use that the
set Pa0(V) is finite, because SV is Morse–Smale below level a0 by assumption.
Applying time shifts, if necessary, we may assume without loss of generality
that

SV (uν(0, ·)) = c∗. (40)

Furthermore, choose c′0 := a and denote by C0 = C0(a,V) > 0 the constant in
theorem 3 (apriori estimates) with that choice. Hence

‖∂su‖∞ + ‖∂tu‖∞ + ‖∇t∂tu‖∞ ≤ C0 (41)

for all u ∈ M(x, y;V) and x, y ∈ Pa(V).
Claim. There is a subsequence, still denoted by uν , a constant C, a trajectory
u ∈ M(x−, x+;V), and a sequence of times σν such that the sequence ην
determined by the identity uν = expuσν (ην) satisfies ην ∈ im D∗

uσν ∩Wuσν and

lim
ν→∞

(
‖ην‖∞ + ‖ην‖p

)
= 0, ‖ην‖W ≤ C. (42)
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The claim leads to a contradiction as follows. Consider the time shifted tra-
jectories uσν := u ∗ σν and vector fields ην provided by the claim and note
that uσν ∈ M(x−, x+;V). Note further that the assumptions of the quadratic
estimate proposition 5 are satisfied by (41) and by choosing a further sub-
sequence, if necessary, to achieve that ‖ην‖∞ < ι. Set c′0 := C0(a,V) and let
C2 = C2(p, c

′
0) be the constant in proposition 5 with that choice. Furthermore,

since M(x−, x+;V)/R is a finite set by proposition 1 and Pa(V) is a finite set
as well, the estimate for the right inverse proposition 4 applies with constant
C1 depending only on p, a, and V. Now definition (35) of the map Fu and
parallel transport being an isometry imply the first step of the estimate

‖∂suν −∇t∂tuν − gradV(uν)‖p = ‖Fu(ην)‖p
≥ ‖Duην‖p − ‖Fu(ην)−Fu(0)− dFu(0)ην‖p

≥ ‖ην‖W
(

1

C1
− C2 ‖ην‖∞ (1 + ‖ην‖W)

)

≥ 1

2C1
‖ην‖W .

Step two uses that Fu(0) = ∂su − ∇t∂tu − gradV(u) = 0 and dFu(0) = Du.
Step three is by proposition 4 and proposition 5. By (42) the last step holds
for sufficiently large ν. For ν > 2C1 the estimate contradicts (39) and this
proves theorem 7. It remains to prove the claim and this takes four steps.

Step 1. There is a subsequence of uν , still denoted by uν , and a trajectory
u ∈ M(x−, x+;V) such that

uν = expu(ξν), lim
ν→∞

(
‖ξν‖∞ + ‖ξν‖p

)
= 0. (43)

Proof We embed the compact Riemannian manifoldM isometrically into some
Euclidean space R

N and consider uν : R× S1 → M as a map to R
N thereby

conveniently obtaining Lp and L∞ norms for uν . By translation we may assume
that M contains the origin. By compactness of M and the L∞ bounds (37) we
obtain on every compact cylindrical domain ZT := [−T, T ]×S1 the estimates

‖uν‖Lp(ZT ) ≤ (2T )
1
p diamM, ‖∂tuν‖Lp(ZT ) + ‖∇t∂tuν‖Lp(ZT ) ≤ 2c0(2T )

1
p ,

and
‖∂suν‖r ≤ 4c0 ∀r ∈ (1,∞]. (44)

The latter follows from
∫∞

−∞
(1+s2)−r ds ≤ 2+2

∫∞

1
s−2r ds = 4(2−1/r)−1 < 4

whenever r > 1. Hence the sequence uν is uniformly bounded in W1,p(ZT ).
Thus by the Arzela-Ascoli and the Banach-Alaoglu theorem a suitable subse-
quence, still denoted by uν , converges strongly in C0 and weakly in W1,p on
every compact cylindrical domain ZT to some continuous map u : R×S1 → M
which is locally of class W1,p. Hence ∂suν − ∇t∂tuν − gradV(uν) converges
weakly in Lp to ∂su − ∇t∂tu − gradV(u). On the other hand, by (38) it con-
verges to zero in Lp. By uniqueness of limits u satisfies the heat equation (7)
almost everywhere. Thus u is smooth by theorem 2.
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Fix s ∈ R and observe that by (37) there are uniform C1(S1) bounds for
the sequence ∂tuν(s, ·). Hence by Arzela-Ascoli a suitable subsequence, still
denoted by ∂tuν(s, ·), converges in C0(S1) to ∂tu(s, ·). Thus

lim
ν→∞

SV(uν(s, ·)) = SV(u(s, ·))

and therefore SV(u(0, ·)) = c∗ by (40). Recall that ∂su = ∇t∂tu + gradV(u).
When restricted to s = 0 this means that the vector field ∂su(0, ·) is equal
to the L2 gradient of SV at the loop u(0, ·). But SV(u(0, ·)) = c∗ and c∗ is a
regular value. Hence ∂su(0, ·) cannot vanish identically.

On the other hand, by (37) and axiom (V0) it follows exactly as above that

sup
ν

SV(uν(s, ·)) = sup
ν

1

2
‖∂tuν(s, ·)‖22 − V(uν) ≤ a0.

This shows that all relevant trajectories, including relevant limits over s or ν,
lie in the sublevel set La0M on which SV is Morse–Smale by assumption. In
particular, we have that sups∈R SV(u(s, ·)) ≤ a0 and therefore the energy of
u is finite by lemma 2. Hence by the exponential decay theorem 4 there are
critical points y± ∈ Pa0(V) such that u(s, ·) converges to y± in C2(S1), as s →
±∞. Moreover, the limits y− and y+ are distinct, because the action along a
nonconstant trajectory is strictly decreasing and the trajectory is nonconstant,
since ∂su is not identically zero as observed above.

More generally, a standard argument shows the following, see e.g. [13,
lemma 10.3]. There exist critical points x− = x0, x1, . . . , xℓ = x+ ∈ Pa0(V)
and trajectories uk ∈ M(xk−1, xk;V), ∂suk 6≡ 0, for k ∈ {1, . . . , ℓ}, a subse-
quence, still denoted by uν , and sequences skν ∈ R, k ∈ {1, . . . , ℓ}, such that
the shifted sequence uν(s

k
ν +s, t) converges to uk(s, t) in an appropriate topol-

ogy. The point here is that ∂su
k 6≡ 0 and therefore the Morse index strictly

decreases along the sequence x− = x0, x1, . . . , xℓ = x+. Namely, each operator
Duk is onto by Morse–Smale and Fredholm by theorem 5. Hence the Fred-
holm index is equal to the dimension of the kernel which is strictly positive,
because the kernel contains the nonzero element ∂su

k. On the other hand,
again by theorem 5, the Fredholm index is given by the difference of Morse
indices indV(x

k−1)− indV(x
k). Hence ℓ = 1, since the pair x± has Morse index

difference one. Thus u ∈ M(x−, x+;V) and this proves the first assertion of
step 1.

It remains to prove (43). The key observation is that uν(s, ·) not only
asymptotically converges in W 1,2(S1) to x±, but the rate of convergence is
independent of ν. The fundamental theorem of calculus and uniform decay (37)
show that

∣∣x+(t)− uν(s, t)
∣∣
RN =

∣∣∣∣
∫ ∞

s

∂suν(σ, t) dσ

∣∣∣∣
RN

≤
∫ ∞

s

c0
σ2

dσ =
c0
s

(45)

for all t ∈ S1, ν ∈ N, and s ≥ 1. Since the restriction of the Euclidean distance
in R

N to the compact manifold M and the Riemannian distance d in M are
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locally equivalent, estimate (45) shows the following. Consider the injectivity
radius ι > 0 of M and assume ε ∈ (0, ι/2), then

s >
6c0
ε

=⇒ d
(
uν(s, t), x

+(t)
)
<

ε

6

for all t ∈ S1 and ν ∈ N; similarly for x−. Now denote by Z+
ε := [6c0/ε,∞)×S1

the positive end of the cylinder R× S1 and by Z−
ε the negative end. Observe

that the ends uν(Z
±
ε ) are contained in the (ε/6)-neighborhood of x±(S1), for

all ν. We may assume without loss of generality that this is also true for the
ends u(Z±

ε ) of u; otherwise replace 6c0 by a larger constant. Now, since uν

converges to u uniformly on Z(ε) := [−6c0/ε, 6c0/ε]×S1, there exists ν0(ε) ∈ N

such that ‖ξν‖L∞(Z(ε)) < ε/3 for every ν ≥ ν0(ε). Hence

‖ξν‖∞ = ‖ξν‖L∞(Z−
ε ) + ‖ξν‖L∞(Z(ε)) + ‖ξν‖L∞(Z+

ε )

≤ sup
Z−

ε

(
d(uν , x

−) + d(x−, u)
)
+ ‖ξν‖L∞(Z(ε))

+ sup
Z+

ε

(
d(uν , x

+) + d(x+, u)
)

≤ ε

(46)

for every ν ≥ ν0(ε). Next pick a sequence εk → 0 and choose a sequence
νk → ∞ such that νk ≥ ν0(εk). Then, without changing notation, replace uν

by the subsequence uνk
and observe that the corresponding L∞ limit in (43)

is indeed zero. To prove that the Lp limit is zero use again the decomposition
of R× S1 into the compact part Z(ε) and the two ends Z±

ε . Observe that the
right hand side of (45) is p-integrable over the ends Z±

ε . Again the key facts
are that the values of both integrals do not depend on ν and they converge
to zero, as |s| → ∞. In the case of u use the exponential decay theorem 4
to obtain a similar asymptotic estimate in terms of an exponentially decaying
function. ⊓⊔
Step 2. Consider the constant C0 in (41) and u and the sequence ξν provided
by Step 1. Set εν := ‖ξν‖∞+‖ξν‖p. Then there is a constant σ0 > 0 and integer
ν0 ≥ 1 such that η = η(s, t;σ, ν), determined by the identity uν = expuσ (η),
satisfies ‖η‖∞ < ι/2 for all σ ∈ [−σ0, σ0] and ν ≥ ν0. Furthermore, there is a
constant c2 = c2(a0, σ0) > 0 such that

‖η‖∞ ≤ εν + C0 |σ| , ‖η‖p ≤ 2εν + c2 |σ|
and

‖∇sη‖p ≤ c2, ‖∇tη‖∞ ≤ c2, ‖∇t∇tη‖p ≤ c2

for all σ ∈ [−σ0, σ0] and ν ≥ ν0.

Proof Existence of σ0 and ν0 follows from the fact that η(ν, 0) = ξν , continuity
of time shift, and the L∞ limit in (43). Now denote by L the length functional.
Then for all σ ∈ R and γ(r) := u(s+ rσ, t) with r ∈ [0, 1] we have that

d (u(s, t), u(s+ σ, t)) ≤ L(γ) = |σ|
∫ 1

0

|∂su(s+ rσ, t)| dr ≤ |σ| ‖∂su‖∞ . (47)
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Since d (uν(s, t), u(s, t)) = |ξν(s, t)| ≤ εν , the first estimate of step 2 follows
from |η(s, t)| = d (uν(s, t), u(s+ σ, t)), the triangle inequality, and (41). To
prove the second estimate note that the triangle inequality also implies that

‖η‖pp ≤ 2p−1 ‖ξν‖pp + 2p−1

∫ ∞

−∞

∫ 1

0

d (u(s, t), u(s+ σ, t))
p
dtds.

By theorem 4 on exponential decay there are constants ρ, c3 > 2 such that for
all (s̃, t) ∈ R× S1 we have that

|∂su(s̃, t)| ≤ c3e
−ρ|s̃|, ‖∂su‖r ≤ c3 ∀r > 1. (48)

Note that the constants ρ and c3 depend only on a0, since the set Pa0(V)
is finite and there are only finitely many elements of M(x−, x+;V) which
satisfy (40). By the first inequality in (47) and the first estimate in (48) with
s̃ = s+ rσ

d (u(s, t), u(s+ σ, t)) ≤ |σ|
∫ 1

0

|∂su(s+ rσ, t)| dr ≤ |σ| c3eρσ0e−ρ|s|.

But the right hand side is Lp integrable and this concludes the proof of the
second estimate of step 2. To prove the next two estimates we differentiate the
identity expuσ η = uν with respect to s and t to obtain that

E1(u
σ, η)∂su

σ + E2(u
σ, η)∇sη = ∂suν (49)

E1(u
σ, η)∂tu

σ + E2(u
σ, η)∇tη = ∂tuν (50)

where the maps Ei are defined by (26). Since ‖∂suσ‖p ≤ c3 by (48) and
‖∂suν‖p ≤ 4c0 by (44), the Lp norm of ∇sη is uniformly bounded as well.
Similarly, since ‖∂tuσ‖∞ ≤ C0 by (41) and ‖∂tuν‖∞ ≤ c0 by (37), the L∞ norm
of ∇tη is uniformly bounded. To prove the last estimate of step 2 differentiate
(50) covariantly with respect to t and abbreviate Eij = Eij(u

σ, η) to obtain

E11(u
σ, η) (∂tu

σ, ∂tu
σ) + E12(u

σ, η) (∂tu
σ,∇tη) + E1(u

σ, η)∇t∂tu
σ

+ E21(u
σ, η) (∇tη, ∂tu

σ) + E22(u
σ, η) (∇tη,∇tη) + E2(u

σ, η)∇t∇tη

+ gradV(uν)− ∂suν

= ∇t∂tuν + gradV(uν)− ∂suν .

This identity implies a uniform Lp bound for ∇t∇tη as follows. The right hand
side is bounded in Lp by 1/ν and the last term of the left hand side by 4c0
according to (44). Since Eij(u

σ, 0) = 0 and since we have uniform L∞ bounds
for each of the two linear terms to which Eij(u

σ, η) is applied, we can estimate
the Lp norm by a constant times ‖η‖p. The only terms left are term three and
term seven of the left hand side. By the heat equation (7) their sum equals

E1(u
σ, η) ∂su

σ − E1(u
σ, η) gradV(uσ) + gradV(uν).

Since ‖∂suσ‖p ≤ c3 by (48), the Lp norm of the first term is uniformly bounded.
Consider the remaining two terms as a function f of η. Then f(0) = 0, because
E1(u

σ, 0) = 1l and η = 0 means uν = uσ. Hence ‖f‖p is uniformly bounded by
a constant times ‖η‖p. Here we used axiom (V0). This proves step 2. ⊓⊔
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Step 3. For σ ∈ [−σ0, σ0] and ν ≥ ν0 consider the function θν(σ) = −〈∂suσ, η〉
where η = η(s, t;σ, ν) is determined by the identity uν = expuσ (η), see step 2,
and 〈·, ·〉 denotes the L2(R× S1) inner product. This function satisfies

θν(σ) = 0 ⇐⇒ η ∈ imD∗
uσ .

Moreover, there exist new constants σ0 > 0 and ν0 ∈ N such that

|θν(0)| ≤ c3εν ,
d

dσ
θν(σ) ≥

µ

2
:=

SV(x
−)− SV(x

+)

2
> 0

for all σ ∈ [−σ0, σ0] and ν ≥ ν0 where c3 = c3(a0) is the constant in (48).

Proof ‘⇐’ follows by definition of the formal adjoint operator using that
∂su

σ ∈ kerDuσ . We prove ‘⇒’. The kernel of Duσ is 1-dimensional; the op-
erator is Fredholm of index one by theorem 5 and onto by the Morse–Smale
condition. The kernel is spanned by the (nonzero) element ∂su

σ. Now con-
sider D∗

uσ on the domain W2,p and apply [21, prop. 3.18] to obtain that
W1,p = kerDuσ ⊕ imD∗

uσ . The implication ’⇒’ now follows immediately by
contradiction.

By (48) and the definition of the sequence εν → 0 in step 2 it follows that

|θν(0)| = |〈∂su, ξν〉L2 | ≤ ‖∂su‖q ‖ξν‖p ≤ c3εν

where q ∈ (1, 2) is determined by 1/q + 1/p = 1. Abbreviate Ei = Ei(u
σ, η).

Then straightforward calculation using the identity (49) for ∇sη shows that

d

dσ
θν(σ) = −〈∇s∂su

σ, η〉 − 〈∂suσ,−∂su
σ + ∂su

σ − E−1
2 E1∂su

σ〉

≥ −‖∇s∂su
σ‖q ‖η‖p + ‖∂suσ‖22 − ‖∂suσ‖q ‖∂suσ‖∞ c4 ‖η‖p

= ‖∂su‖22 − ‖η‖p
(
‖∇s∂su‖q + c4 ‖∂su‖q ‖∂su‖∞

)

≥ ‖∂su‖22 − (2εν + c2|σ|)(c5 + c23c4)

for some constant c4 = c4(a0, σ0) > 0. The last step is by (48) with constant
c3. We also used that ‖∇s∂su‖q ≤ c5 for some positive constant c5 = c5(a0),
which follows from exponential decay of ∇s∂su according to theorem 4. The
energy identity (8) shows that ‖∂su‖22 = µ > 0. Now choose σ0 > 0 sufficiently
small and ν0 sufficiently large to conclude the proof of step 3. ⊓⊔

Step 4. We prove the claim.

Proof By step 3 there exists, for every sufficiently large ν, an element σν ∈
[−σ0, σ0] such that θν(σν) = 0 and |σν | ≤ εν(2c3/µ). Then ην := η(·, ·;σν , ν)
lies in the image of D∗

uσν by step 3 and

‖ην‖∞ + ‖ην‖p ≤ εν (3 + (c2 + C0)2c3/µ) , ‖ην‖W ≤ C,

by step 2. This proves (42), hence the claim, and therefore theorem 7. ⊓⊔
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4 Unique continuation

To prove unique continuation for the nonlinear heat equation (7) we slightly
extend a result of Agmon and Nirenberg [2] to the case C1 6= 0. Indeed the
heat equation (7) leads to (51) with C1 6= 0; see (56). In contrast, for the linear
heat equation (21) the original result (C1 = 0) suffices.

Theorem 15 Let H be a real Hilbert space and let A(s) : domA(s) → H
be a family of symmetric linear operators. Assume that ζ : [0, T ] → H is
continuously differentiable in the weak topology such that ζ(s) ∈ domA(s) and

‖ζ ′(s)−A(s)ζ(s)‖ ≤ c1 ‖ζ(s)‖+ C1 |〈A(s)ζ(s), ζ(s)〉|1/2 (51)

for every s ∈ [0, T ] and two constants c1, C1 ≥ 0. Here ζ ′(s) ∈ H denotes
the derivative of ζ with respect to s. Assume further that the function s 7→
〈ζ(s), A(s)ζ(s)〉 is also continuously differentiable and satisfies

d

ds
〈ζ, Aζ〉 − 2〈ζ ′, Aζ〉 ≥ −c2 ‖Aζ‖ ‖ζ‖ − c3 ‖ζ‖2 (52)

pointwise for each s ∈ [0, T ] and constants c2, c3 > 0. Then the following holds.

(1) If ζ(0) = 0 then ζ(s) = 0 for all s ∈ [0, T ].
(2) If ζ(0) 6= 0 then ζ(s) 6= 0 for all s ∈ [0, T ] and, moreover,

log ‖ζ(s)‖2 ≥ log ‖ζ(0)‖2 −
(
2
〈ζ(0), A(0)ζ(0)〉

‖ζ(0)‖2 +
b

a

)
eas − 1

a
− 2c1s

where a = 2C1
2 + c2 and b = 4c1

2 + c2
2/2 + 2c3.

Proof A beautyful exposition in the case C1 = 0 was given by Salamon in [11,
appendix E]. It generalizes easily. A key step is to prove that the function

ϕ(s) := log‖ζ(s)‖2 −
∫ s

0

2〈ζ(σ), ζ ′(σ)−A(σ)ζ(σ)〉
‖ζ(σ)‖2 dσ

satisfies the differential inequality

ϕ′′ + a |ϕ′|+ b ≥ 0 (53)

for two constants a, b > 0.
In [11] it is shown that assumption (52) implies the inequality

ϕ′′ ≥ 2 ‖η − 〈η, ξ〉ξ‖2 − 2 ‖ζ ′ −Aζ‖2

‖ζ‖2
− 2c2 ‖η‖ − 2c3

where ξ := ζ
‖ζ‖ and η := Aζ

‖ζ‖ . Now it follows by assumption (51) that

2 ‖ζ ′ −Aζ‖2

‖ζ‖2
≤ 4c1

2 + 4C1
2 |〈Aζ, ζ〉|

‖ζ‖2
= 4c1

2 + 4C1
2 |〈η, ξ〉|
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and therefore

ϕ′′ ≥ 2 ‖η − 〈η, ξ〉ξ‖2 − 4c1
2 − 4C1

2 |〈η, ξ〉| − 2c2 ‖η‖ − 2c3.

To obtain the inequality (53) it remains to prove that

2 ‖η − 〈η, ξ〉ξ‖2 − 4c1
2 − 4C1

2 |〈η, ξ〉| − 2c2 ‖η‖ − 2c3 ≥ −a |ϕ′| − b.

Since ϕ′ = 2〈ξ, η〉, this is equivalent to

c2 ‖η‖ ≤ ‖η − 〈η, ξ〉ξ‖2 + (a− 2C1
2) |〈η, ξ〉|+ (b/2− 2c1

2 − c3).

Abbreviate u := ‖η − 〈η, ξ〉ξ‖2 and v := |〈η, ξ〉|, then ‖η‖2 = u2 + v2 and the
desired inequality has the form

c2
√

u2 + v2 ≤ u2 + (a− 2C1
2)v + (b/2− 2c1

2 − c3).

Since c2
√
u2 + v2 ≤ c2u + c2v ≤ u2 + c2v + c2

2/4, this is satisfied with a =
2C1

2 + c2 and b = 4c1
2 + c2

2/2+ 2c3. This proves (53). The remaining part of
the proof of theorem 15 carries over from [11] unchanged. ⊓⊔

4.1 Linear equation

Unique continuation for the linear heat equation is used to prove transversality
of the universal section (proposition 9) and the unstable manifold theorem 18.

Proposition 6 Fix a perturbation V : LM → R that satisfies (V0)–(V2) and
two constants a < b. Assume u : [a, b] × S1 → M is a smooth map and ξ is
a vector field along u which satisfies Duξ = 0 or D∗

uξ = 0 almost everywhere;
see (21) and (22). Denote ξ(s, ·) by ξ(s). Then the following is true.

(a) If ξ(s∗) = 0 for some s∗, then ξ(s) = 0 for all s ∈ [a, b].
(b) If ξ(s∗) 6= 0 for some s∗, then ξ(s) 6= 0 for all s ∈ [a, b].

Proof We represent Du by the Atiyah-Patodi-Singer type operator DA+C =
d
ds +A(s)+C(s) defined in [21, sec. 3.4]. Here the family A(s) consists of self-
adjoint operators on the Hilbert space H := L2(S1,Rn) with dense domain W ;
see (ii) and (iv) in [21, sec. 3.4] where also the space W is defined. Recall that,
if the vector bundle u∗TM → [a, b] × S1 is trivial, then W = W 2,2(S1,Rn),
otherwise some boundary condition enters. In either case W =: domA(s) is
independent of s.

(b) Assume ξ ∈ kerDA+C satisfies ξ(s∗) 6= 0. Assume by contradiction
that ξ(s0) = 0 for some s0 ∈ [a, b]. If s0 > s∗, replace ξ(s) by ξ(s+ s∗) and set
T = b−s∗ and s1 = s0−s∗, otherwise use ξ(−s+s∗), T = −a+s∗, s1 = −s0+s∗.
Hence we may assume without loss of generality that ξ ∈ kerDA+C maps [0, T ]
to H and satisfies ξ(0) 6= 0 and ξ(s1) = 0 for some s1 ∈ (0, T ].

We verify the conditions in theorem 15. Firstly, the vector field ξ is smooth
by assumption. Secondly, the family A(s) consists of self-adjoint operators



Morse homology for the heat flow 35

by (ii) in [21, sec. 3.4]. Thirdly, the function s 7→ 〈ξ(s), A(s)ξ(s)〉 is continu-
ously differentiable. Here we use the first condition in axiom (V2), which tells
that the Hessian HV is a zeroth order operator, and the fact that by compact-
ness of the domain the vector fields ∂tu, ∂su, ∇t∂su, and ∇t∇t∂su are bounded
in L∞([0, T ]×S1) by a constant cT . Now (51) is satisfied with C1 = 0, because

‖ξ′(s)−A(s)ξ(s)‖ = ‖C(s)ξ(s)‖ ≤ c′T ‖ξ(s)‖

where the constant c′T = sup[0,T ]×S1‖C(s, t)‖L(Rn) is finite by compactness of
the domain. To verify the inequality (52) note that its left hand side is given
by 〈ξ(s), A′(s)ξ(s)〉; see [2, Rmk. in sec. 1] and [11, Rmk. F.3]. Now

〈ξ(s), A′(s)ξ(s)〉 ≥ −‖ξ(s)‖ ‖A′(s)ξ(s)‖
≥ −c′′T ‖ξ(s)‖ (‖ξ(s)‖+ ‖∂tξ(s)‖) .

where the second step is by straightforward calculation of A′(s). Replacing
‖∂tξ(s)‖ according to the elliptic estimate for A(s) yields (52).

Now the Agmon-Nirenberg theorem 15 applies. Part (2) tells that ξ(s) 6= 0
for all s ∈ [0, T ]. This contradiction proves (b) for elements in the kernel of
Du. The same argument covers the case of the operator D∗

u represented by
−D−A−C .

(a) Use a time reversing argument (see proof of the Agmon-Nirenberg The-
orem in [11]) and apply (b). Alternatively, use a line of argument analoguous
to the proof of (b) replacing in the final step part (2) of theorem 15 by part (1).

⊓⊔

4.2 Nonlinear equation

Unique continuation for the nonlinear heat equation is used to prove the un-
stable manifold theorem 18.

Theorem 16 (Unique continuation for compact cylindrical domains)
Fix two constants a < b and a perturbation V : LM → R that satisfies (V0)
and (V1). If two smooth solutions u, v : [a, b]×S1 → M of the heat equation (7)
coincide along one loop, then u = v.

Proof Abbreviate us = u(s, ·) and assume uσ = vσ : S1 → M for some
σ ∈ [a, b]. If ∂su is identically zero, then u coincides with a critical point
x ∈ P(V) and by vσ = uσ = x so does v and we are done; similarly if ∂sv = 0.
Now assume that ∂su is nonzero somewhere and so is ∂sv. Hence

δ :=
ι

2 + ‖∂su‖∞ + ‖∂sv‖∞
∈ (0, ι/2). (54)

Here ι > 0 denotes the injectivity radius of our compact Riemannian manifold.
The first step is to prove that the restrictions of u and v to [σ−δ, σ+δ]×S1

are equal. (In fact we should take the intersection with [a, b]×S1, but suppress
this throughout for simplicity of notation.) The key idea is to show that the
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difference ζ(s) of us and vs (with respect to geodesic normal coordinates based
at uσ) and a suitable operator A satisfy the requirements of theorem 15 with
constants c1, C1 > 0. Then, since ζ(σ) = 0, part (1) of the theorem shows
that ζ = 0 and therefore u = v on [σ − δ, σ + δ]× S1. Once this is proved we
successively restrict u and v to cylinders of the form [σ + (2k − 1)δ, σ + (2k +
1)δ]×S1, where k ∈ Z. The argument above shows that u = v on each of these
cylinders. Due to compactness of [a, b]×S1, firstly, the same constants c1 and
C1 can be chosen in (51) for all cylinders and, secondly, after finitely many
steps the union of these cylinders covers [a, b]× S1. This proves the theorem.

It remains to carry out first one. Consider the interval I = [σ − δ, σ + δ]
and restrict u and v to the cylinder Z = I × S1 = [σ− δ, σ+ δ]× S1. Observe
that the Riemannian distance between u(σ, t) and u(s, t) is less than ι/2 for
every (s, t) ∈ Z; similarly for v. Hence the identities

u(s, t) = expu(σ,t) ξ(s, t), v(s, t) = expu(σ,t) η(s, t),

for every (s, t) ∈ Z uniquely determine smooth families of vector fields ξ and η
along the loop uσ = vσ. In particular, the difference ζ = ξ − η is well defined.
Moreover, the domain of ξ and η is Z and they satisfy

‖ξ‖∞ <
ι

2
, ‖η‖∞ <

ι

2
, ξσ = 0 = ησ.

Now consider the Hilbert space H = L2(S1, uσ
∗TM) and the symmetric dif-

ferential operator A = ∇t∇t with domain W = W 2,2(S1, uσ
∗TM). Here ∇t

denotes the covariant derivative along the loop uσ. Hence the operator A is
independent of s and condition (52) in the Agmon-Nirenberg theorem 15 is
vacuous. If we can verify condition (51) as well, then ζ(σ) = 0 implies that
ζ(s) = 0 for every s ∈ I by theorem 15 (1). Since ζ is smooth, this means that
on Z we have ξ = η pointwise and therefore u = v. It remains to verify (51).
By (26) we get

∂su = E2(uσ, ξ)∂sξ

∇t∂tu = E11(uσ, ξ)
(
∂tuσ, ∂tuσ

)
+ 2E12(uσ, ξ)

(
∂tuσ,∇tξ

)

+ E1(uσ, ξ)∇t∂tuσ + E22(uσ, ξ)
(
∇tξ,∇tξ

)
+ E2(uσ, ξ)∇t∇tξ

(55)

pointwise for (s, t) ∈ Z and similarly for v and η. In the second identity we
used the symmetry property (27) of E12. Now consider the heat equation (7),
replace ∂su and ∇t∂tu according to (55), then solve for ∂sξ − ∇t∇tξ. Do the
same for v and η to obtain a similar expression for −∂sη +∇t∇tη. Add both
expressions to get the pointwise identity
(
∂s −∇t∇t

)(
ξ − η

)

=
(
E2(uσ, ξ)

−1E11(uσ, ξ)− E2(uσ, η)
−1E11(uσ, η)

) (
∂tuσ, ∂tuσ

)

+
(
E2(uσ, ξ)

−1E1(uσ, ξ)− E2(uσ, η)
−1E1(uσ, η)

)
∇t∂tuσ

+ 2
(
E2(uσ, ξ)

−1E21(uσ, ξ)∇tξ − E2(uσ, η)
−1E21(uσ, η)∇tη

)
∂tuσ

+ E2(uσ, ξ)
−1gradV(expuσ

ξ)− E2(uσ, η)
−1gradV(expuσ

η)

+ E2(uσ, ξ)
−1E22(uσ, ξ)

(
∇tξ,∇tξ

)
− E2(uσ, η)

−1E22(uσ, η)
(
∇tη,∇tη

)
.
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Now by compactness of the domain Z there is a constant C > 0 such that

‖∂tuσ‖L∞(S1) ≤ ‖∂tu‖L∞(Z) < C, ‖∇t∂tuσ‖L∞(S1) < C.

Moreover, since the maps Ei and Eij are uniformly continuous on the radius
ι/2 disk tangent bundle O ⊂ TM , in which ξ and η take their values, there
exists a constant c1 > 0 such that

|∂s(ξ − η)−∇t∇t(ξ − η)|
≤ (c1C

2 + c1C) |ξ − η|
+ 2C

∣∣E2(uσ, ξ)
−1E21(uσ, ξ)∇tξ − E2(uσ, η)

−1E21(uσ, η)∇tη
∣∣

+
∣∣E2(uσ, ξ)

−1gradV(expuσ
ξ)− E2(uσ, η)

−1gradV(expuσ
η)
∣∣

+
∣∣E2(uσ, ξ)

−1E22(uσ, ξ)
(
∇tξ,∇tξ

)
− E2(uσ, η)

−1E22(uσ, η)
(
∇tη,∇tη

)∣∣

pointwise for (s, t) ∈ Z. It remains to estimate the last three terms in the sum.
First we estimate term three. Use linearity and the symmetry property (27)
of E22 to obtain the first identity in the pointwise estimate

∣∣E2(uσ, ξ)
−1E22(uσ, ξ)

(
∇tξ,∇tξ

)
− E2(uσ, η)

−1E22(uσ, η)
(
∇tη,∇tη

)∣∣
=
∣∣E2(uσ, ξ)

−1E22(uσ, ξ)
(
∇tξ −∇tη,∇tξ

)

+ E2(uσ, η)
−1E22(uσ, η)

(
∇tξ −∇tη,∇tη

)

+
(
E2(uσ, ξ)

−1E22(uσ, ξ)− E2(uσ, η)
−1E22(uσ, η)

) (
∇tξ,∇tη

)∣∣
≤
∥∥E2

−1E22

∥∥
L∞(O)

(‖∇tξ‖∞ + ‖∇tη‖∞) |∇t(ξ − η)|
+ c1 ‖∇tξ‖∞ ‖∇tη‖∞ |ξ − η|

≤ µ1 |∇t(ξ − η)|+ µ2 |ξ − η|

where µ1 = 2c2
2C(1 + c2), µ2 = c1c2

2C2(1 + c2)
2, and the constant c2 > 0 is

chosen sufficiently large such that for j = 0, 1 we have

‖Ej‖L∞(O) +
∥∥E2

−1
∥∥
L∞(O)

+
∥∥E2

−1E22

∥∥
L∞(O)

+
∥∥E2

−1E21

∥∥
L∞(O)

≤ c2.

Moreover, we used that by the first identity in (26)

∇tξ = E2(uσ, ξ)
−1 (∂tu− E1(uσ, ξ)∂tuσ) .

Hence ‖∇tξ‖∞ ≤ c2C(1 + c2) and similarly for ∇tη. Next we estimate term
one. Replace ∇tξ by ∇tξ −∇tη +∇tη, then similarly as above we obtain that

2C
∣∣E2(uσ, ξ)

−1E21(uσ, ξ)∇tξ − E2(uσ, η)
−1E21(uσ, η)∇tη

∣∣
≤ 2c2C |∇t(ξ − η)|+ 2c1c2C

2(1 + c2) |ξ − η|
pointwise for (s, t) ∈ Z. Next rewrite term two setting X := η−ξ and replacing
η accordingly to obtain pointwise at (s, t) ∈ Z the identity

d
dτ

(
E2(uσ, ξ + τX)−1gradV(expuσ

ξ + τX)
)

= E2(uσ, ξ)
−1gradV(expuσ

ξ)− E2(uσ, ξ +X)−1gradV(expuσ
ξ +X)

=: f(X) = f(0) + d
dτ f(τX)



38 Joa Weber

for some τ ∈ [0, 1]. Since f(0) = 0, this implies that

|f(X)| ≤
∥∥E2

−1E22

∥∥
L∞(O)

|X| ·
∥∥E2

−1
∥∥
L∞(O)

∣∣gradV(expuσ
(ξ + τX))

∣∣

+
∥∥E2

−1
∥∥
L∞(O)

∣∣∇τgradV(expuσ
(ξ + τX))

∣∣

≤ c22C
′
0 |X|+ c22C

′
1

(
|X|+ ‖Xs‖L1(S1)

)

pointwise at (s, t) ∈ Z. Here C ′
0 and C ′

1 denote the constants in axiom (V0)
and (V1), respectively. To obtain the final step we applied the first estimate
in axiom (V1) to the curve τ 7→ expuσ

(ξs + τXs) in the loop space LM .
Putting things together we have proved that due to compactness of the

domain Z there is a positive constant µ = µ(Z, g) such that for every s ∈ I

‖ζ ′ −Aζ‖ ≤ µ (‖ζ‖+ ‖∇tζ‖) ≤ µ
(
‖ζ‖+ |〈Aζ, ζ〉|1/2

)
. (56)

Here the norms are in L2(S1, uσ
∗TM), we abbreviated ζ = ζ(s), and the

final step uses that ‖∇tζ‖2 = 〈∇tζ,∇tζ〉 = −〈Aζ, ζ〉 ≤ |〈Aζ, ζ〉|. Hence (51) is
satisfied and this concludes the proof of theorem 16. ⊓⊔

In the proof of the unstable manifold theorem 18 we use backward unique
continuation for the nonlinear heat equation.

Theorem 17 (Forward and backward unique continuation) Fix a per-
turbation V : LM → R that satisfies (V0)–(V1).

(F) Assume u and v are solutions of the heat equation (7) defined on the for-
ward halfcylinder [0,∞) × S1. If u and v agree along the loop at s = 0,
then u = v.

(B) Assume u and v are solutions of the heat equation (7) defined on the back-
ward halfcylinder (−∞, 0]× S1. Assume further that

sup
s∈(−∞,0]

SV

(
u(s, ·)

)
≤ c0, sup

s∈(−∞,0]

SV

(
v(s, ·)

)
≤ c0,

for some constant c0 > 0. Then the following is true. If u and v agree along
the loop at s = 0, then u = v.

Proof The idea is to decompose, as in the proof of theorem 16, the halfcylinder
into small cylinders of width δ and then show u = v on each piece (by the
method developed in the first step of the proof of theorem 16). The only
additional problem is noncompactness of the domain. One way to deal with
this is to choose the same width for each piece (in order to arrive at any given
time s in finitely many steps). Here we need uniform bounds for |∂su| and
|∂sv|. Once we have these we can define δ again by (54). Check the proof of
theorem 16 to see that the only further ingredients in proving u = v on each
small cylinder are uniform bounds for the first two t-derivatives of u and of v.
Hence to complete the proof it remains to show that

‖∂su‖∞ + ‖∂tu‖∞ + ‖∇t∂tu‖∞ + ‖∂sv‖∞ + ‖∂tv‖∞ + ‖∇t∂tv‖∞ ≤ C
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for some constant C > 0.
ad (F) Let C0 be the constant in axiom (V0) and observe that SV ≥ −C0.

Now by theorem 13 with constant C1 (more precisely, by checking its proof)

|∂su(s, t)|2 ≤ C1E[s−1,s](u) = C1 (SV(us−1)− SV(us)) ≤ C1 (SV(u0) + C0)

for (s, t) ∈ [1,∞) × S1. In the second and the last step we used that u is a
negative gradient flow line and the action decreases along u. Note that the
proof of theorem 13 shows that the estimate at a point depends on its past.
This is why we get the above estimate only on [1,∞) × S1. However, the
missing part [0, 1] × S1 is compact and u is smooth. Hence ‖∂su‖∞ ≤ C and
therefore

‖∇t∂tu‖∞ ≤ ‖∂su‖∞ + ‖gradV(u)‖∞ ≤ C + C0.

Here we used the heat equation (7) and axiom (V0) with constant C0. It follows
similarly by (checking the proof of) theorem 12 that |∂tu(s, t)| is uniformly
bounded on [1,∞)× S1. The corresponding estimates for v are analoguous.

ad (B) The proof of the L∞ estimates follows the same steps as in (F). We
even get all estimates right away on the whole backward halfcylinder, because
this halfcylinder contains the past of each of its points. ⊓⊔

5 Transversality

Throughout this section the action functional is a map

SV : LM → R, LM := C∞(S1,M),

defined on the free loop space of M . In section 5.1 we construct a separable
Banach space Y of abstract perturbations satisfying axioms (V0)–(V3). In
section 5.2 we fix a perturbation V such that (V0)–(V3) hold and SV is Morse.
Choosing a closed L2 neighborhood U of the critical points of the function SV

we define the subspace Y (V, U) ⊂ Y consisting of those perturbations which
are supported away from U . Then, given a regular value a of SV , we define
a separable Banach manifold Oa = Oa(V, U) of admissible perturbations. In
fact Oa is the open ball about zero in the Banach space Y (V, U) for some
sufficiently small radius ra. For any admissible perturbation v it holds that

Pa(V) = Pa(V + v)

– in particular a is also a regular value of SV+v – and the sublevel sets {SV ≤ a}
and {SV+v ≤ a} are homologically equivalent. For such a triple (V, U, a) we
prove in section 5.3 that there is a residual subset Oa

reg ⊂ Oa of regular pertur-
bations v. These, in addition, have the property that the perturbed functional
SV+v is Morse–Smale below level a. The crucial step is to prove surjectivity
of the universal section F (proposition 9). Here unique continuation for the
linear heat equation enters. A further key ingredient in the ’no return’ part
of the proof is the (negative) gradient flow property which implies that the
functional is strictly decreasing along nonconstant heat flow solutions.
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5.1 The universal Banach space of perturbations

We fix, once and for all, the following data.

a) A dense sequence
(
xi

)
i∈N

in LM = C∞(S1,M).

b) For every xi a dense sequence
(
ηij
)
j∈N

in C∞(S1, x∗
i TM).

c) A smooth cutoff function ρ : R → [0, 1] such that ρ = 1 on [−1, 1] and
ρ = 0 outside [−4, 4] and such that ‖ρ′‖∞ < 1. Then set ρ1/k(r) = ρ(rk2)
for k ∈ N; see figure 1.

Moreover, recall that ι > 0 denotes the injectivity radius of the closed Rie-
mannian manifold M . Fix a smooth cutoff function β such that β = 1 on
[−(ι/2)2, (ι/2)2] and β = 1 outside [−ι2, ι2]; see figure 2.

(1/k)2

r = ‖·‖22

ρ1/k(r) = ρ(rk2)

1

0

(2/k)2

Fig. 1 The cutoff function ρ1/k

(ι/2)2

r = |·|2

β

1

0

ι2

Fig. 2 The cutoff function β

Now for any choice of i, j, k ∈ N there is a smooth function on the loop
space given by

Vℓ(x) = Vijk(x) = ρ1/k

(
‖x− xi‖2L2

)∫ 1

0

V ij(t, x(t)) dt, (57)

where V ij is the smooth function on S1 ×M defined by

V ij(t, q) :=

{
β
(
|ξiq(t)|2

) 〈
ξiq(t), η

ij(t)
〉

, |ξiq(t)| < ι,

0 , else.

Here the vector ξiq(t) is determined by the identity q = expxi(t) ξ
i
q(t) when-

ever the Riemannian distance between q and xi(t) is less than ι. To simplify
notation we fixed a bijection ℓ : N3 → N0. Note that the support of Vijk is
contained in the L2 ball of radius 2/k about xi. Each function Vℓ : LM → R is
uniformly continuous with respect to the C0 topology and satisfies (V0)–(V3).
This follows by compactness of M , smoothness of V ij , and by the identity

〈gradV(u), ∂su〉L2 =
d

ds
V(u)

= 2ρ′
(
‖u− x0‖22

)(∫ 1

0

Vt(u(s, t)) dt

)
〈u− x0, ∂su〉L2

+ ρ
(
‖u− x0‖22

)
〈∇V (u), ∂su〉L2

which determines gradV. Here R → LM : s 7→ u(s, ·) is any smooth map.
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Given Vℓ, we fix a constant C0
ℓ ≥ 1 which is greater than its constant

of uniform continuity and for which (V0) holds true. Then we fix a constant
C1

ℓ ≥ C0
ℓ for which both estimates in (V1) hold true and a constant C2

ℓ ≥ C1
ℓ

to cover the three estimates of (V2). Furthermore, for every integer i ≥ 3, we
choose a constant Ci

ℓ ≥ Ci−1
ℓ that covers all estimates in (V3) with k′ + ℓ′ = i

(here k′ and ℓ′ denote the integers k and ℓ that appear in (V3)). To summarize,
for each integer ℓ ≥ 0 we have fixed a sequence of constants

1 ≤ C0
ℓ ≤ C1

ℓ ≤ ... ≤ Cℓ
ℓ ≤ ... ∀ℓ ∈ N0. (58)

The universal space of perturbations is the normed linear space

Y =

{
vλ :=

∞∑

ℓ=0

λℓVℓ

∣∣∣ λ = (λℓ) ⊂ R and ‖vλ‖ :=
∞∑

ℓ=0

|λℓ|Cℓ
ℓ < ∞

}
. (59)

Proposition 7 The universal space Y of perturbations is a separable Banach
space and every vλ ∈ Y satisfies the axioms (V0)–(V3).

Proof The map vλ 7→ (λℓC
ℓ
ℓ )ℓ∈N0

provides an isomorphism from Y to the
separable Banach space ℓ1 of absolutely summable real sequences. This proves
that Y is a separable Banach space. That every element vλ =

∑
λℓVℓ of

Y satisfies (V0)–(V3) follows readily from the corresponding property of the
generators Vℓ. To explain the idea we give the proof of the second estimate
in (V2), namely

|∇t∇sgradvλ(u)| ≤
∞∑

ℓ=0

|λℓ| · |∇t∇sgradVℓ(u)|

≤
(
|λ0|C2

0 + |λ1|C2
1 +

∞∑

ℓ=2

|λℓ|C2
ℓ

)
f(u)

≤
(
|λ0|C2

0 + |λ1|C2
1 + ‖vλ‖

)
f(u)

for every smooth map R → LM : s 7→ u(s, ·) and every (s, t) ∈ R × S1. We
abbreviated f(u) = (|∇t∂su| + (1 + |∂tu|)(|∂su| + ‖∂su‖L1)). Step two uses
the second estimate in (V2) for each Vℓ with constant C2

ℓ . Step three follows
from Ck

ℓ ≤ Cℓ
ℓ whenever ℓ ≥ k, see (58). The remaining estimates in (V0)–

(V3) follow by the same argument. Continuity of vλ with respect to the C0

topology follows similarly using uniform continuity of the functions Vℓ. ⊓⊔

5.2 Admissible perturbations

Throughout we fix a perturbation V that satisfies (V0)–(V3) and such that
SV : LM → R is Morse. Denote the critical values ci of SV by

c0 < c1 < c2 < . . . < ck < a < ck+1 < . . . .
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Note that there is no accumulation point, because SV admits only finitely
many critical points on each sublevel set. Fix a regular value a > c0 (otherwise
{SV ≤ a} = ∅ and we are done) and let ck be the largest critical value smaller
than a. If there are critical values larger than a let ck+1 be the smallest such,
otherwise set ck+1 at the same distance above a as ck sits below a, that is
ck+1 := a + (a − ck). The idea to prove the transversality theorem 8 is to
perturb SV outside some L2 neigborhood U of its critical points in such a
way that no new critical points arise on the sublevel set {SV < ck+1}. To
achieve this we fix for every critical point x a closed L2 neighborhood Ux such
that Ux ∩ Uy = ∅ whenever x 6= y. This is possible, because on any sublevel
set there are only finitely many critical points (SV is Morse and satisfies the
Palais-Smale condition; see e.g. [19, app. A]). Set

U = U(V) :=
⋃

x∈P(V)

Ux (60)

and consider the Banach space of perturbations Y given by (59). We are in-
terested in the subset of those perturbations supported away from U , namely

Y (V, U) :=

{
vλ =

∞∑

ℓ=0

λℓVℓ ∈ Y
∣∣∣ suppVℓ ∩ U 6= ∅ ⇒ λℓ = 0

}
.

Lemma 5 Y (V, U) is a closed subspace of the separable Banach space Y .

Proof Pick α, β ∈ R and vλ, vµ ∈ Y (V, U). By definition of Y (V, U) the fol-
lowing is true for every ℓ ∈ N0. If suppVℓ ∩ U 6= ∅, then λℓ = 0 and µℓ = 0.
Hence αλℓ + βµℓ = 0 and therefore αvλ + βvµ ∈ Y (V, U). To see that the
subspace Y (V, U) is closed let viλ =

∑
λi
ℓVℓ be a sequence in Y (V, U) which

converges to some element vλ =
∑

λℓVℓ of Y . This means that λi
ℓ → λℓ, as

i → ∞, for each ℓ. Assume suppVℓ ∩ U 6= ∅. It follows that λi
ℓ = 0, because

viλ ∈ Y (V, U), and this is true for all i. Hence the limit λℓ is zero and therefore
vλ ∈ Y (V, U). ⊓⊔

For ck < a < ck+1 as above set

δa = δa(V) := 1

2
min{a− ck, ck+1 − a} > 0, a± := a± δa. (61)

Hence the distance between any two of ck < a− < a < a+ < ck+1 is at least
δa.

Lemma 6 Fix a perturbation V satisfying (V0)–(V3). Assume SV is Morse.
Define U by (60), fix a regular value a of SV , and consider the reals ck, ck+1,
a±, δ

a defined above. If vλ ∈ Y (V, U) and ‖vλ‖ < δa, then there are inclusions

{SV ≤ ck} ⊂ {SV+vλ
≤ a−} ⊂ {SV ≤ a} ⊂ {SV+vλ

≤ a+} ⊂ {SV < ck+1}
{SV ≤ a−} ⊂ {SV+vλ

≤ a} ⊂ {SV ≤ a+} .
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Proof Fix vλ ∈ Y (V, U) with ‖vλ‖ < δa. Observe that for each γ ∈ LM

|vλ(γ)| ≤
∞∑

ℓ=0

|λℓVℓ(γ)| ≤
∞∑

ℓ=0

|λℓ|C0
ℓ ≤

∞∑

ℓ=0

|λℓ|Cℓ
ℓ = ‖vλ‖ < δa.

Here we used axiom (V0) with constant C0
ℓ for Vℓ, the fact that C0

ℓ ≤ Cℓ
ℓ

by (58), and definition (59) of the norm on Y . Observe further that SV+vλ
=

SV − vλ. The proofs of the asserted inclusions all follow the same pattern. We
only provide details for the last two inclusions in the first line of the assertion of
the lemma. Assume SV(γ) ≤ a, then SV+vλ

(γ) = SV(γ)−vλ(γ) < a+ δa = a+
where the last step is by definition of a+. Now assume SV+vλ

(γ) ≤ a+, then
SV(γ) ≤ a+ + vλ(γ) < a+ 2δa ≤ ck+1 again by definition of a+. The last step
is by definition of δa. ⊓⊔

Consider the positive constants given by

κa = κa(V, U) := inf
γ∈{SV<ck+1}\U

‖gradSV(γ)‖2 > 0

and

ra = ra(V, U) :=
1

2
min{δa, κa} > 0. (62)

To prove the strict inequality κa > 0 assume by contradiction that κa =
0. Then by Palais-Smale there exists a sequence (γk) ⊂ {SV < ck+1} \ U
converging in the W 1,2 topology to a critical point x. It follows that x ∈
U , because U contains all critical points. Since W 1,2 convergence implies L2

convergence and U is a L2 neighborhood of the critical points, we arrive at a
contradiction to γk /∈ U whenever k ∈ N.

Proposition 8 Fix a perturbation V satisfying (V0–V3). Assume SV is Morse
and a is a regular value. If vλ ∈ Y (V, U) and ‖vλ‖ ≤ ra, then

Pa(V) = Pa(V + vλ), H∗ ({SV ≤ a}) ∼= H∗ ({SV+vλ
≤ a}) .

Proof Fix vλ ∈ Y (V, U) with ‖vλ‖ ≤ 1
2 min{δa, κa}. Define a+ by (61).

I) We prove that Pa+(V) = Pa+(V+vλ) which immediately implies the first
assertion of the proposition. On U both functionals SV and SV+vλ

coincide,
because SV+vλ

= SV − vλ and vλ is not supported on U . Now SV does not
admit any critical point on {SV+vλ

< ck+1} \ U by definition of U . Assume
the same holds true for SV+vλ

. Then, since {SV+vλ
≤ a+} ⊂ {SV < ck+1} by

lemma 6, it follows that all critical point of SV+vλ
below level a+ are contained

in U . But there it coincides with SV . Hence Pa+(V + vλ) = Pa+(V).
It remains to prove the assumption. Suppose by contradiction that there

is a critical point x of SV+vλ
on {SV+vλ

< ck+1} \ U . Hence

0 = gradSV+vλ
(x) = gradSV(x)− grad vλ(x)
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and therefore ‖grad vλ(x)‖2 = ‖gradSV(x)‖2 ≥ κa by definition of κa. On the
other hand, since vλ is of the form

∑
λℓVℓ it follows that

‖grad vλ(x)‖2 ≤
∞∑

ℓ=0

|λℓ| · ‖gradVℓ(x)‖∞ ≤
∞∑

ℓ=0

|λℓ|C0
ℓ ≤ ‖vλ‖ ≤ 1

2
κa.

Here we used axiom (V0) with constant C0
ℓ for Vℓ, and the fact that C0

ℓ ≤ Cℓ
ℓ

by (58). The last two steps are by definition (59) of the norm on Y and the
assumption on ‖vλ‖.

II) We prove that H∗ ({SV+vλ
≤ a}) ∼= H∗ ({SV ≤ a}). By step I) all el-

ements of the intervall [a−, a+] are regular values of SV+vλ
. Hence classical

Morse theory for the negative W 1,2 gradient flow on the loop space shows that

H∗ ({SV+vλ
≤ a−}) ∼= H∗ ({SV+vλ

≤ a+}) .

On the other hand, using the inclusions provided by lemma 6 this isomorphism
factors through the inclusion induced homomorphisms

H∗ ({SV+vλ
≤ a−}) → H∗ ({SV ≤ a}) → H∗ ({SV+vλ

≤ a+}) .

Therefore the first homomorphism is injective and the second one surjective.
Since a lies in the interval of regular values of SV+vλ

, the first one leads to an
injective homomorphism H∗ ({SV+vλ

≤ a}) → H∗ ({SV ≤ a}). By construction
the intervall [a−, a+] consists of regular values of SV . Hence the same argument
using again lemma 6 to obtain the inclusion induced homomorphisms

H∗ ({SV ≤ a−}) → H∗ ({SV+vλ
≤ a}) → H∗ ({SV ≤ a+})

provides a surjection H∗ ({SV+vλ
≤ a}) → H∗ ({SV ≤ a}). ⊓⊔

By definition the set of admissible perturbations is given by the open
ball Oa in the Banach space Y (V, U) of radius ra defined by (62), namely

Oa = Oa(V, U) := {vλ ∈ Y (V, U) : ‖vλ‖ ≤ ra} . (63)

Since Y (V, U) is a separable Banach space by lemma 5, the closed subset Oa

inherits the structure of a complete metric space. Proposition 8 then concludes
the proof of the first part of theorem 8. Namely, if vλ ∈ Oa, then SV and
SV+vλ

have homologically equivalent sublevel sets with respect to a and the
same critical points when restricted to these sublevel sets.

Remark 4 If a < b are regular values of SV and v ∈ Ob satisfies ‖v‖ ≤ δa/2,
then v ∈ Oa. To see this note that κb ≤ κa and therefore ‖v‖ ≤ rb ≤ κb/2 ≤
κa/2. Hence ‖v‖ ≤ 1

2 min{δa, κa} = ra.

Remark 5 Since we chose to cut off our abstract perturbations in section 1.1
with respect to the L2 norm, we cannot naturally control the support of v ∈ Oa

in terms of sublevel sets of SV . This would be possible if we cut off using
the W 1,2 norm, because the action functional SV is continuous in the W 1,2

topology.
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5.3 Surjectivity

Proof (of theorem 8) Assume that the perturbation V satisfies (V0)–(V3) and
the function SV : LM → R is Morse. Consider the neighborhood U of the
critical points of SV defined by (60) and fix a regular value a of SV . For
Oa = Oa(V, U) defined by (63) the first assertion of theorem 8 is true by
proposition 8. To prove the second one fix in addition a constant p > 2 and two
critical points x, y ∈ Pa(V). We denote by B1,p

x,y the smooth Banach manifold
of cylinders between x and y defined by (34) in section 3. This manifold is
separable and admits a countable atlas. Now consider the smooth Banach
space bundle

Ep → B1,p
x,y ×Oa

whose fibre over (u, vλ) are the Lp vector fields along u. The formula

F(u, vλ) = ∂su−∇t∂tu− grad
(
V + vλ

)
(u) (64)

defines a smooth section of this bundle. Note that F(u, vλ) = 0 is equivalent
to u ∈ M(x, y;V + vλ). The zero set

Z = Z(x, y;V, U, a) = F−1(0)

is called the universal moduli space. It does not depend on p > 2, since all
solutions of the heat equation (7) are smooth by theorem 2. The key fact is
that the space of perturbations Oa is rich enough such that zero is a regular
value of F . By definition the latter means that either there is no zero of F
at all or dF(u, vλ) is onto and ker dF(u, vλ) admits a topological complement
whenever F(u, vλ) = 0. In the first case we set Oa

reg(x, y) := Oa.
The second case decomposes into two classes. First we need to sharpen our

notation. By Du,V we denote the operator previously denoted by Du. In this
notation the linearization of F at the zero (u, vλ) is given by

dF(u, vλ) (ξ, V̂) = dFvλ
(u) ξ + dFu(vλ) V̂ = Du,V+vλ

ξ − gradV̂(u) (65)

where Fvλ
(u) := F(u, vλ) =: Fu(vλ) and

Dξ := Du,V+vλ
ξ := ∇sξ −∇t∇tξ −R(ξ, ∂tu)∂tu−HV+vλ

(u)ξ. (66)

I. Automatic transversality of constant trajectories. The first class consists
of pairs (u, vλ) where vλ ∈ Oa and u is a constant heat flow trajectory.
The latter means that u is of the form ux := x(= y). Now for these pairs
transversality holds automatically, since SV is Morse. To see this observe first
that the constant trajectory ux solves the heat equation (7) for V and likewise
for V+vλ, since vλ ∈ Oa is supported away from x. Hence (ux, vλ) is a zero of F
to start with. Similarly it follows that dF(ux, vλ) = Dux,V . But Dux,V acts on
each time slice by the covariant Hessian Ax given by (9). Since Ax is injective
by the Morse assumption on SV , it follows that Dux,V is injective. Now the
cokernel of Dux,V is equal to the kernel of the formal adjoint operator D∗

ux,V
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by [21, prop. 3.15] and [21, prop. 3.18]. But D∗
ux,V

= Dux,V by self-adjointness
of Ax. Hence Dux,V is surjective and we set Oa

reg(x, x) := Oa.
II. The second class consists of zeroes (u, vλ) of (64) with ∂su 6= 0. Note

that SV+vλ
is Morse below level a by proposition 8 and since vλ is supported

away from x and y. Surjectivity of dF(u, vλ) is covered by proposition 9 below.
Existence of a topological complement follows, see e.g. [19, prop. 3.3], using
surjectivity, boundedness (69), and the fact that Du,V+vλ

: W1,p
u → Lp

u is Fred-
holm by theorem 5. Hence zero is a regular value of F . By the implicit function
theorem Z is a smooth Banach manifold; see e.g. [8, theorem A.3.3]. Now by
Thom-Smale transversality theory the projection onto the second factor

π : Z → Oa, (u, vλ) 7→ vλ,

is a smooth Fredholm map whose index at (u, vλ) is given by the Fredholm
index of Du,V+vλ

; see e.g. [8, lemma A.3.6]. This index is equal to the difference
of the Morse indices of x and y by theorem 5. Since Z is separable and admits a
countable atlas, we can apply the Sard-Smale theorem [16] to countably many
coordinate representatives of π. It follows that the set of regular values of π is
residual in Oa. Denote this set by Oa

reg(x, y) and observe that

Oa
reg(x, y) = {vλ ∈ Oa | Du onto ∀u ∈ M(x, y;V + vλ)}

again by standard transversality theory; see e.g. [19, prop. 3.4].
We define the set of regular perturbations by

Oa
reg = Oa

reg(V) :=
⋂

x,y∈Pa(V)

Oa
reg(x, y). (67)

It is a residual subset of Oa, since it consists of a finite intersection of residual
subsets. This proves theorem 8 up to proposition 9. ⊓⊔

Proposition 9 (Surjectivity) Fix a perturbation V that satisfies (V0)–(V3)
and assume SV is Morse. Fix a regular value a, critical points x, y ∈ Pa(V),
and a constant p > 2. Define U by (60) and the section F by (64). Then

dF(u, vλ) : W1,p
u × Y (V, U) → Lp

u

is onto at every zero (u, vλ) ∈ B1,p
x,y ×Oa(V, U) of F .

Proof Fix (u, vλ) ∈ F−1(0) such that ∂su does not identically vanish (the case
∂su = 0 is treated in I. above). Now SV+vλ

decreases strictly along u, thus

ck ≥ SV(x) = SV+vλ
(x) > SV+vλ

(us) > SV+vλ
(y) = SV(y) (68)

where the two identities exploit that vλ is not supported near x and y. Hence
x 6= y. Define 1 < q < 2 by 1/p + 1/q = 1. Recall that u ∈ M(x, y;V + vλ)
and SV+vλ

is Morse below level a by proposition 8 and the fact that vλ is
not supported near critical points. Hence Du,V+vλ

is Fredholm by theorem 5.
Recall from (65) the linearization of F at (u, vλ). Note that the second operator

Y (V, U) → Lp
u : V̂ 7→ −gradV̂(u) (69)
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is bounded. To see this observe that, since the support of V̂ is disjoint to the
neighborhood U of x and y, there is a constant T = T (u) > 0 such that
gradV̂(us) = 0 whenever |s| > T . Now V̂ is of the form

∑∞
ℓ=0 µℓVℓ. Hence

∥∥gradV̂(u)
∥∥
Lp(R×S1)

=

(∫ T

−T

∥∥∥gradV̂(us)
∥∥∥
p

p
ds

)1/p

≤ (2T )
1/p

∞∑

ℓ=0

|µℓ| · ‖gradVℓ(us)‖∞

≤ (2T )
1/p

∞∑

ℓ=0

|µℓ|C0
ℓ

≤ (2T )
1/p ∥∥V̂

∥∥

where for each Vℓ we used the last condition in (V0) with constant C0
ℓ ≤ Cℓ

ℓ .
The last step uses the definition (59) of the norm in Y .

Now the range of dF(u, vλ) is closed by a standard result; see e.g. [19,
proposition 3.3]. Hence it suffices to prove that it is dense. But density of the
range is equivalent to triviality of its annihilator. By definition this means
that, given η ∈ Lq

u and setting D := Du,V+vλ
to simplify notation, then

〈η,Dξ〉 = 0, ∀ξ ∈ W1,p
u , (70)

and

〈η, gradV̂(u)〉 = 0, ∀V̂ ∈ Y (V, U), (71)

imply that η = 0.

Assume by contradiction that η ∈ Lq
u satisfies (70) and η 6= 0. In five

steps we derive a contradiction to (71). Steps 1–3 are preparatory, in step 4 we
construct a model perturbation Vε violating (71) and in step 5 we approximate
Vε by the fundamental perturbations Vijk of the form (57). To start with
observe that η is smooth by (70) and the regularity theorem [21, thm. 3.1].
Furthermore, integrating (70) by parts whenever ξ ∈ C∞

0 (R×S1, u∗TM) shows
that D∗η = 0 pointwise, where the operator D∗ arises by replacing ∇s by −∇s

in (66). Throughout we use the notation ηs(t) = η(s, t). Hence ηs is a smooth
vector field along the loop us.

Step 1. (Unique continuation) ηs 6= 0 and ∂sus 6= 0 for every s ∈ R.

Because η is smooth, nonzero, and D∗η = 0, proposition 6 on unique continu-
ation shows that ηs 6= 0 for every s ∈ R. Next observe that ∂su is smooth and
0 = d

dsFvλ
(u) = D∂su. Since u connects different critical points, the derivative

∂su cannot vanish identically on R× S1. Apply proposition 6 to ξ(s) := ∂sus.

Step 2. (Slicewise Orthogonal) 〈ηs, ∂sus〉 = 0 for every s ∈ R.
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Throughout step 2 we denote the L2(S1) inner product by 〈·, ·〉. Observe that

d

ds
〈ηs, ∂sus〉 = 〈∇sηs, ∂sus〉+ 〈ηs,∇s∂sus〉

= 〈−∇t∇tηs −R(ηs, ∂tus)∂tus −HV+vλ
(us)ηs, ∂sus〉

+ 〈ηs,∇t∇t∂sus −R(∂sus, ∂tus)∂tus −HV+vλ
(us)∂sus〉

= 0

by straightforward calculation. In the second equality we replaced ∇sηs ac-
cording to the identity D∗η = 0 and ∇s∂sus according to D∂su = 0; see (66).
The last step is by integration by parts, symmetry of the Hessian H, and the
first Bianchi identity for the curvature operator R. Thus 〈ηs, ∂sus〉 is constant
in s. Now this constant, say c, must be zero, because

∫ ∞

−∞

c ds =

∫ ∞

−∞

〈ηs, ∂sus〉 ds = 〈η, ∂su〉

and the right hand side is finite, since η ∈ Lq
u and ∂su ∈ Lp

u with 1
p + 1

q = 1.
This proves step 2.

Note that ηs and ∂sus are linearly independent for every s ∈ R as a conse-
quence of step 1 and step 2.

Step 3. (No Return) Assume the loop us0 is different from the asymptotic
limits x and y. Assume δ > 0. Then there exists ε > 0 such that for every
s ∈ R

‖us − us0‖2 < 3ε =⇒ s ∈ (s0 − δ, s0 + δ).

In words, once s leaves a given δ-interval about s0 the loops us cannot return
to some L2 ε-neighborhood of us0 .

Key ingredients in the proof are smoothness of u, existence of asymptotic lim-
its, and the gradient flow property. Recall the footnote in remark 2 concerning
the difference of loops us − us0 . Now assume by contradiction that there is
a sequence of positive reals εi → 0 and a sequence of reals si which satisfy
‖usi − us0‖2 < 3εi and si /∈ (s0 − δ, s0 + δ). In particular, this shows that

usi
L2

−→ us0 as i → ∞. (72)

Assume first that the sequence si is unbounded. Hence there is a subse-
quence, still denoted by si, which converges to +∞ or −∞. In either case
usi converges to one of the critical points x or y and the convergence is in
C2(S1) by theorem 4. Hence (72) implies that us0 ∈ {x, y} contradicting our
assumption.

If the sequence si is bounded, there is a subsequence, still denoted by si,
which converges to some element s1 /∈ (s0 − δ, s0 + δ). On the other hand, the
sequence usi converges to us1 in C0(S1) by smoothness of u. Thus us1 = us0 .
But the action strictly decreases along nonconstant negative gradient flow
lines. Therefore s1 = s0 and this contradiction concludes the proof of step 3.



Morse homology for the heat flow 49

Step 4. There is a time s0 ∈ R such that us0 lies outside U . Moreover, there
is a constant ε > 0 and a smooth function V0 : LM → R supported in the L2

ball of radius 2ε about us0 such that

V0(us0) = 0, dV0(us0)ηs0 = ‖ηs0‖22 , 〈gradV0(u), η〉 6= 0

where the inner product is in L2(R× S1).

The first assertion follows from x 6= y and the fact that the closed sets Uz,
where z ∈ P(V), are pairwise disjoint. Clearly the graph t 7→ (t, us0(t)) of
the loop us0 is embedded in S1 × M . We define a smooth function V on
S1 ×M supported near this graph as follows. Denote by ι > 0 the injectivity
radius of the closed Riemannian manifold M . Pick a smooth cutoff function
β : R → [0, 1] such that β = 1 on [−(ι/2)2, (ι/2)2] and β = 0 outside [−ι2, ι2];
see figure 2. Then define

Vt(q) := V (t, q) :=

{
β
(
|ξq(t)|2

) 〈
ξq(t), ηs0(t)

〉
, |ξq(t)| < ι,

0 , else,
(73)

where the vector ξq(t) is determined by the identity q = expu(s0,t) ξq(t) when-
ever the Riemannian distance d between q and us0(t) is less than ι. Note that
the function V vanishes on the graph of the loop us0 .

Use that all maps involved are smooth to choose a constant δ > 0 suffi-
ciently small such that for every s ∈ (s0 − δ, s0 + δ) the following is true

i) dC0(us, us0) = ‖ξs‖∞ < ι/2 where the vector field ξs along the loop us0 is
uniquely determined by the pointwise identity us = expus0

ξs,

ii) 〈E2(us0 , ξs)
−1ηs, ηs0〉 ≥ 1

2µ0 where µ0 := ‖ηs0‖22 > 0,

iii) 1
2µ1 ≤ ‖us−us0‖2

|s−s0|
≤ 3

2µ1 where µ1 := ‖∂sus0‖2 > 0.

Recall the definition (26) of E2 and the identities (28). For s ∈ (s0− δ, s0+ δ),
we obtain that

dVt(us) ηs =
d
dr

∣∣
r=0

Vt(expus
rηs)

= 2β′(|ξs|2) 〈ξs, E2(us0 , ξs)
−1ηs〉 · 〈ξs, ηs0〉

+ β(|ξs|2) 〈E2(us0 , ξs)
−1ηs, ηs0〉

= 〈E2(us0 , ξs)
−1ηs, ηs0〉

(74)

pointwise for every t ∈ S1. The final step uses i) and the definition of β. Note
that dVt(us0) ηs0 = |ηs0 |2 pointwise.

Integrating V along a loop defines a smooth function on the loop space
which vanishes on us0 . To cut this function off with respect to the L2 distance
fix a smooth cutoff function ρ : R → [0, 1] such that ρ = 1 on [−1, 1], ρ = 0
outside [−4, 4], and ‖ρ′‖∞ < 1. Then, for the constant δ fixed above, choose
ε > 0 according to step 3 (No Return) and set ρε(r) = ρ(r/ε2); see figure 1 for
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ε = 1
k . Note that ‖ρ′ε‖∞ < ε−2. Observe that we can choose ε > 0 smaller and

the assertion of step 3 remains true. Now define a smooth function on LM by

V0(x) := ρε

(
‖x− us0‖22

)∫ 1

0

V (t, x(t)) dt

where V is given by (73). The function V0 vanishes on the loop us0 and satisfies

dV0(us) ηs =
d
dr

∣∣
r=0

V0(expus
rηs)

= 2ρ′ε
(
‖us − us0‖22

)
〈us − us0 , ηs〉

∫ 1

0

Vt(us(t)) dt

+ ρε
(
‖us − us0‖22

) ∫ 1

0

dVt(us(t)) ηs(t) dt.

Hence dV0(us0)ηs0 = ‖ηs0‖22 and this proves another assertion of step 4.

To prove the final assertion of step 4 observe that s /∈ (s0−δ, s0+δ) implies
‖us − us0‖2 ≥ 3ε by step 3, hence us /∈ suppV0. It follows that

〈gradV0(u), η〉 =
∫ s0+δ

s0−δ

dV0(us)ηs ds

=

∫ s0+δ

s0−δ

2ρ′ε
(
‖us − us0‖22

)
〈us − us0 , ηs〉〈ξs, ηs0〉 ds

+

∫ s0+δ

s0−δ

ρε
(
‖us − us0‖22

)
〈E2(us0 , ξs)

−1ηs, ηs0〉 ds.

(75)

We shall estimate the two terms in the sum separately. Let s2 > s0 be such
that ‖us2 − us0‖2 = ε and ‖us − us0‖2 < ε whenever s ∈ (s0, s2). This means
that s2 is the forward exit time of us with respect to the L2 ball of radius ε
about us0 . Let s1 < s0 be the corresponding backward exit time; see figure 3.
Use ii) and ρε ≥ 0 to obtain that

∫ s0+δ

s0−δ

ρε
(
‖us − us0‖22

)
〈E2(us0 , ξs)

−1ηs, ηs0〉 ds

≥
∫ s2

s1

1 · µ0

2
ds =

µ0

2
(s2 − s0 + s0 − s1)

≥ µ0

3µ1
(‖us2 − us0‖2 + ‖us0 − us1‖2) =

2µ0

3µ1
ε.

Here the second inequality uses iii). To estimate the other term in (75) let σ1

be the time of first entry into the L2 ball of radius 2ε starting from s0− δ and
let σ2 be the corresponding time when time runs backwards and we start from
s0 + δ; see figure 3. Then it follows that
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uσ2

us0−δ

us0+δ

us0

B2ǫ(us0 )

us2

Bǫ(us0 )
uσ1

us1

Fig. 3 Exit times s1, s2 and entry times σ1, σ2

∫ s0+δ

s0−δ

2ρ′ε
(
‖us − us0‖22

)
〈us − us0 , ηs〉〈ξs, ηs0〉 ds

≥ −2

∫ σ2

σ1

‖ρ′ε‖∞ |〈us − us0 , ηs〉| · |〈ξs, ηs0〉| ds

≥ −2c1c2ε
−2

∫ σ2

σ1

(s− s0)
4 ds

= −2c1c2
5ε2

(σ2 − s0 + s0 − σ1)
5 ≥ −2c1c28

5

5µ5
1

ε3.

It remains to explain the second and the final inequality. In the final one we
use that by iii) there is the estimate σ2 − s0 ≤ 2‖uσ2

− us0‖2/µ1 = 4ε/µ1 and
similarly for s0−σ1. The second inequality is based on the geometric fact that
∂su and η are slicewise orthogonal by step 2. Namely, let f(s) = 〈us −us0 , ηs〉
and h(s) = 〈ξs, ηs0〉, then f(s0) = h(s0) = 0 and

f ′(s) = 〈∂sus, ηs〉+ 〈us − us0 ,∇sηs〉 = 〈us − us0 ,∇sηs〉
h′(s) = 〈E2(us0 , ξs)

−1∂sus, ηs0〉.

Hence f ′(s0) = h′(s0) = 0 and so there exist constants c1 = c1(f) > 0 and c2 =
c2(h) > 0 depending continuously on δ such that for every s ∈ (s0 − δ, s0 + δ)

|f(s)| ≤ c1(s− s0)
2, |h(s)| ≤ c2(s− s0)

2.

This proves the second inequality. Now choose ε > 0 sufficiently small such
that ε2 < µ0µ

4
1/c1c2. This implies that 〈gradV0(u), η〉 > 0 and proves step 4.

Now recall that us0 /∈ U . Choose ε > 0 again smaller such that the L2 ball
of radius 3ε about us0 is disjoint from the L2 closed set U , that 3ε is smaller
than the injectivity radius ι of M , and that ε = 1/k for some integer k.

Step 5. Given k = 1/ε as in the paragraph above, there exist integers i, j > 0
such that the function V̂ := Vijk given by (57) lies in Y (V, U) and satisfies

〈gradVijk(u), η〉 > 0.

This contradicts (71) and thereby proves proposition 9.
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Consider the loop us0 where s0 is the time in step 4. In section 5.1 we fixed
a dense sequence xi in C∞(S1,M) and for each i a dense sequence ηij in
C∞(S1, x∗

i TM). Choose a subsequence, still denoted by xi, such that

xi → us0 , as i → ∞.

Now we may assume without loss of generality that every xi lies in Bε(us0) the
L2 ball of radius ε about us0 . Hence B2ε(xi) ⊂ B3ε(us0). Let ξis0 be defined
by the identity us0 = expxi

ξis0 pointwise for every t ∈ S1. Choose a diagonal
subsequence, denoted for simplicity by ηii, such that

Φxi
(ξis0)η

ii → ηs0 , as i → ∞.

Here Φx(ξ) is parallel transport from x to expx ξ along τ 7→ expx τξ pointwise
for every t ∈ S1. Let (Viik)i∈N be the corresponding sequence of functions
where each Viik is given by (57). Now observe that

suppViik ⊂ B2/k(xi) = B2ε(xi) ⊂ B3ε(us0).

But B3ε(us0) ∩ U = ∅ by the choice of ε in the paragraph prior to step 4 and
so Viik ∈ Y (V, U). Next recall that the constant δ > 0 has been chosen in
the proof of step 4 in order to exclude any return of the trajectory s 7→ us to
the ball B3ε(us0) once s has left the interval (s0 − δ, s0 + δ). Since suppViik ⊂
B3ε(us0), this shows that Viik(us) = 0 whenever s /∈ (s0 − δ, s0 + δ). Hence

〈gradViik(u), η〉 =
∫ s0+δ

s0−δ

2ρ′1/k
(
‖us − xi‖22

)
〈us − xi, ηs〉〈ξis, ηii〉 ds

+

∫ s0+δ

s0−δ

ρ1/k
(
‖us − xi‖22

)
〈E2(xi, ξ

i
s)

−1ηs, η
ii〉 ds

where ξis is determined by us = expxi
ξis. Now the right hand side converges

for i → ∞ to the right hand side of (75), which equals 〈gradV0(u), η〉 > 0.
This proves step 5 and proposition 9. ⊓⊔

6 Heat flow homology

In section 6.1 we define the unstable manifold of a critical point x of the action
functional SV : LM → R as the set of endpoints at time zero of all backward
halfcylinders solving the heat equation (7) and emanating from x at −∞. The
main result is theorem 18 saying that if x is nondegenerate, then this is a
submanifold of the loop space and its dimension is the Morse index of x.

In section 6.2 we put together everything to construct the Morse complex
for the negative L2 gradient of the action functional on the loop space LM .
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6.1 The unstable manifold theorem

Fix a perturbation V : LM → R that satisfies (V0)–(V3) and consider the
backward halfcylinder Z− = (−∞, 0] × S1. Given a critical point x of the
action functional SV the moduli space

M−(x;V) (76)

is, by definition, the set of all solutions u− : Z− → M of the heat equation (7)
which satisfy the asymptotic limit condition (3), as s → −∞. Note that the
moduli space is not empty; it contains the stationary solution u−

x (s, ·) = x.
The unstable manifold of x is defined by

Wu(x;V) = {u−(0, ·) | u− ∈ M−(x;V)}.

Theorem 18 Fix a perturbation V : LM → R that satisfies (V0)–(V3). If x
is a nondegenerate critical point of the action functional SV , then the unstable
manifold Wu(x;V) is a smooth contractible embedded submanifold of the loop
space and its dimension is equal to the Morse index of x.

The first step in the proof of theorem 18 is to show that the moduli space
M−(x;V) is a smooth manifold of the desired dimension whenever x is nonde-
generate (proposition 10). A crucial ingredient is proposition 11 on surjectivity
of the operator Du− : W1,p → Lp whenever u− ∈ M−(x;V) and p ≥ 2. Here
the operator Du− is given by (21) and arises by linearizing the heat equation at
the backward trajectory u−. A further key result to prove theorem 18 is unique
continuation for the linear and the nonlinear heat equation, proposition 6 and
theorem 17. Namely, unique continuation implies that the evaluation map

ev0 : M−(x;V) → LM, u− 7→ u−(0, ·)

is an injective immersion, hence an embedding by the gradient flow property.

Proposition 10 (Moduli space) Fix a perturbation V : LM → R that
satisfies (V0)–(V3) and assume x is a nondegenerate critical point of SV . Then
the moduli space M−(x;V) is a smooth contractible manifold of dimension
indV(x). Its tangent space at u− is equal to the vector space X− given by (77).

Proposition 11 (Surjectivity) Fix a perturbation V : LM → R that satis-
fies (V0)–(V3) and a nondegenerate critical point x of SV . Assume p > 2 and
u− ∈ M−(x;V). Then the following is true. The operator Du− : W1,p → Lp

is Fredholm, onto, and its kernel is given by

X− :=
{
ξ ∈ C∞(Z−, u−∗

TM) | Du−ξ = 0, ∃c, δ > 0 ∀s ≤ 0 :

‖ξs‖∞ + ‖∇tξs‖∞ + ‖∇t∇tξs‖∞ + ‖∇sξs‖∞ ≤ ceδs
}
.

(77)

Moreover, the dimension of X− is equal to the Morse index of x.
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Proposition 11 is in fact a corollary of theorem 19 below which asserts
surjectivity in the special case of a stationary solution u−(s, t) = x(t), where
x is a nondegenerate critical point of SV . The idea is that if a solution u− is
nearby the stationary solution x in the W1,p topology, then the corresponding
linearizations Du− and Dx are close in the operator norm topology. But sur-
jectivity is an open condition with respect to the norm topology. The case of
a general solution reduces to the nearby case by shifting the s-variable.

Remark 6 Abbreviate H = L2(S1,Rn) and W = W 2,2(S1,Rn) and consider
the operator

AS = − d2

dt2
− S : H → H

with dense domain W . Here we assume that S : W → H is a symmetric and
compact linear operator. Under these assumptions it is well known (see (ii)
in [21, sec. 3.4]) that AS is self-adjoint and that its Morse index ind(AS) is
finite.

Theorem 19 Let S and AS be as in remark 6. Fix p ≥ 2 and assume that
the linear operator S : W 1,p(S1,Rn) → Lp(S1,Rn) is bounded with bound cS.
Then the following is true. If AS is injective, then the operator

D = ∂s − ∂t∂t − S : W1,p(Z−,Rn) → Lp(Z−,Rn)

is onto. In the case p = 2 the map E− → kerD, v 7→ e−sASv is an isomorpism.

For the details of the proof of theorem 19 we refer to [20, thm. 8.5]. The
proof is rather lengthy, but follows closely the proof of the corresponding result
in Floer theory, namely [12, lemma 2.4]. The proof takes four steps. Step 1 is to
prove the theorem for p = 2. The proof of [12, lemma 2.4 step 1] carries over
with minor but important modifications. These are related to the fact that
our domain Z− does have a boundary. Moreover, the proof uses the theory of
semigroups. Step 4 is to generalize surjectivity from p = 2 to p > 2. This uses
an argument due to Donaldson [3]. Here the estimates provided by step 2 and
step 3 enter. Here we follow again the presentation in [12, lemma 2.4 steps 2–4]
up to minor but subtle modifications. One subtlety is related to the parabolic
estimate of step 2 which, in contrast to the elliptic case, requires the domain
to be increased only towards the past.

Proof (of proposition 11) The arguments in the proof of [21, prop. 3.15] show
that the kernel of Du− : W1,p → Lp is equal to X−. But X− does not depend
on p. On the other hand, for p = 2 the dimension of the kernel is equal to the
Morse index of x by theorem 19. Surjectivity of Du− follows in three stages.

The stationary case. Consider the stationary solution (s, t) 7→ x(t). Then
Dx is onto by theorem 19. To see this represent Dx with respect to an or-
thonormal frame along x; see [21, sec. 3.4].

The nearby case. Surjectivity is preserved under small perturbations with
respect to the operator norm. Moreover, the operator family Du− depends
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continuously on u− with respect to the W1,p topology (here we use p > 2).
Hence, if u− ∈ M−(x;V) satisfies u− = expx(η) and ‖η‖W1,p is sufficiently
small, it follows that Du− is onto.

The general case. Given u ∈ M−(x;V) and σ < 0, consider the shifted
solution uσ(s, t) := u(s + σ, t). Then (Duξ)

σ
= Duσξσ by shift invariance of

the linear heat equation. This means that surjectivity of Du is equivalent to
surjectivity of Duσ . But the latter is true by the nearby case above, because
uσ converges to x in the W1,p topology, as σ → −∞. To see this apply theo-
rem 14 (B) on exponential decay to u and note that uσ(0, t) = u(σ, t). ⊓⊔

Proof (of proposition 10) The proof follows the same (standard) pattern as
the proof of theorem 6; see also the introduction to section 3. The first step
is the definition of a Banach manifold B = B1,p

x of backward halfcylinders
emanating from x such that B contains the moduli space M−(x;V) whenever
p > 2. The second step is to define a smooth map Fu− between Banach spaces
as in (35). Its significance lies in the fact that its zeroes correspond precisely
to the elements of the moduli space near u− and that dFu−(0) = Du− . By
proposition 11 this operator is Fredholm, surjective, and the dimension of its
kernel is equal to the Morse index of x. Hence M−(x;V) is locally near u−

modeled on kerDu− by the implicit function theorem for Banach spaces. To
see that the moduli space is a contractible manifold observe that backward
time shift provides a contraction

h : M−(x;V)× [0, 1] → M−(x;V)
(u, r) 7→ u(· −

√
r/(1− r), ·)

onto the stationary solution x, that is h is continuous and satisfies h(u, 0) = u
and h(u, 1) = x for every u ∈ M−(x;V). ⊓⊔

Proof (of theorem 18) We abbreviate M− = M−(x;V) and Wu = Wu(x;V).
Recall that the moduli space M− is a smooth manifold of dimension equal
to indV(x) by proposition 10 and, furthermore, by definition the unstable
manifold Wu is equal to the image of the evaluation map ev0 : M− → LM
given by u 7→ u(0, ·) =: u0(·). It remains to prove that ev0 and its linearization
are injective and that ev0 is a homeomorphism onto Wu.

To prove that ev0 is injective let u, v ∈ M− and assume that ev0(u) =
ev0(v), that is u0 = v0. Hence u = v by theorem 17 on backward unique
continuation.

We prove that the linearization d(ev0)u of ev0 at u ∈ M− is injective.
Pick ξ, η ∈ TuM−, then Duξ = 0 = Duη by proposition 10. Now assume
that d(ev0)uξ = d(ev0)uη, that is ξ0 = η0. Therefore ξ = η by application of
proposition 6 (a) on linear unique continuation to the vector field ξ − η.

To prove that ev0 : M− → LM is a homeomorphism onto its image fix
u ∈ M−. Since every immersion is locally an embedding, there is an open
disk D in M− containing u such that ev0|D : D → LM is an embedding. It
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remains to prove that there is an open neighborhood U of u0 = ev0(u) in LM
such that

U ∩Wu = U ∩ ev0(D). (78)

There are two cases. In case one u is constant in s, that is u ≡ x. In this case
we exploit the fact that the restricted function SV |Wu takes on its maximum
precisely at the critical point x by the (negative) gradient flow property. Case
two is the complementary case in which u depends on s. To deal with this case
we use a convergence argument based on the compactness theorem 11.

Case 1. (u ≡ x) Set c = SV(x), then a set U having the desired property (78) is
given by U := {c−ε < SV < c+ε}, where 2ε := minu∈clD\D (SV(x)− SV(u0)).
Here the compact set clD \D is the topological boundary of the open disc D.
Note that the elements of Wu \ ev0(D) have action at most c− 2ε.

Case 2. (u 6≡ x) Assume by contradiction that there is no U which satis-
fies (78). Then there is a sequence γν ∈ Wu \ ev0(D) that converges to u0 in
LM , as ν → ∞. Note that γν = ev0(u

ν) where uν ∈ M− \D. In particular,
each trajectory uν converges in backward time asymptotically to x. Thus

sup
s∈(−∞,0]

SV(u
ν
s ) ≤ SV(x) =: c

for every ν. Together with the energy identity this implies that

E(uν) = SV(x)− SV(u
ν
0) = c− 1

2 ‖∂tuν
0‖2L2(S1) + V(uν

0) ≤ c+ C0

where C0 > 1 is the constant in axiom (V0). Adapting the proofs of the apriori
theorem 12 and the gradient bound theorem 13 to cover the case of backward
half cylinders it follows that there is a constant C = C(c,V) > 0 such that

‖∂tuν‖∞ ≤ C, ‖∂suν‖∞ ≤ C
√

E(uν) ≤ C(c+ C0),

for every ν. Here the norms are taken on the domain (−∞, 0]× S1. Adapting
also the proof of the compactness theorem 11 we obtain – in view of the
uniform apriori L∞ bounds for ∂tu

ν and ∂su
ν just derived – the existence of

a smooth heat flow solution v : (−∞, 0] × S1 → M and a subsequence, still
denoted by uν , such that uν converges to v in C∞

loc. In particular, this implies
that u0 = v0 and that ∂tu

ν
s converges to ∂tvs, as ν → ∞, uniformly with all

derivatives on S1 and for each s. This and our earlier uniform action bound
for uν

s show that

SV(vs) = lim
ν→∞

SV(u
ν
s ) ≤ c

for every s. To summarize, we have two backward flow lines u and v defined
on (−∞, 0]×S1 along which the action is bounded from above by c and which
coincide along the loop u0 = v0. Hence theorem 17 (B) on backward unique
continuation asserts that u = v. Because uν converges to v = u in C∞

loc, it
follows that uν lies in the open disk D containing u, whenever ν is sufficiently
large. For such ν we arrive at the contradiction γν = ev0(u

ν) ∈ ev0(D). ⊓⊔
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6.2 The Morse complex

Assume that the action SV is a Morse function on the loop space. This is
true for a generic potential V ∈ C∞(S1 ×M) by [19]. For each critical point
x ∈ P(V ) fix an orientation 〈x〉 of the tangent space at x to the (finite dimen-
sional) unstable manifold Wu(x;V ). We denote this choice of orientations
by 〈P〉. Fix a regular value a of SV . Then the Morse chain groups are the
Z-modules

CMa
k = CMa

k(V ) :=
⊕

x∈Pa(V )
indV (x)=k

Zx, k ∈ Z.

These modules are finitely generated and graded by the Morse index. We set
Ca

k = {0} whenever the direct sum is taken over the empty set. We define

CMa
∗ :=

N⊕

k=0

CMa
k

where N is the largest Morse index of an element of the finite set Pa(V ).

Set VV (x) =
∫ 1

0
Vt(x(t)) dt and note that VV satisfies (V0)–(V3). Now

consider the associated set Oa(V ) of admissible perturbations of VV defined
by (63). Furthermore, consider its dense subset Oa

reg
(V ) of regular pertur-

bations provided by theorem 8; see (67) for the definition. Now for any v ∈
Oa

reg(V ) we have the following key facts. The functionals SV and SV+v co-
incide near their critical points and have the same sublevel set with respect
to a. Moreover, the perturbed functional SV+v is Morse–Smale below level a.
(Occasionally we denote V+v in abuse of notation by V +v to emphasize that
we are actually perturbing a geometric potential.)

To define the Morse boundary operator ∂ on CMa
∗ it suffices to define it on

the set of generators Pa(V ) and then extend linearly. Fix a regular perturba-
tion v ∈ Oa

reg(V ). Note that each chosen orientation 〈x〉 not only orients the
unstable manifold Wu(x;V ), but also the perturbed one Wu(x;V + v). This
is because the tangent spaces at x to Wu(x;V ) and Wu(x;V + v) coincide
(v is not supported near x) and unstable manifolds are finite dimensional and
contractible (theorem 18), hence orientable. Now given two critical points x±

of action less than a, consider the heat moduli space M(x−, x+;V + v) of so-
lutions u of the heat equation (7) with V replaced by V + v and subject to the
boundary condition (3). Recall from [13, ch. 11] that a choice of orientations
for all unstable manifolds determines a system of coherent orientations in
the sense of Floer–Hofer [7] on the heat moduli spaces.

From now on we assume that x± are of Morse index difference one. In
this case M(x−, x+;V + v) is a smooth 1-dimensional manifold by theorem 6
and its quotient M(x−, x+;V + v)/R by the (free) time shift action con-
sists of finitely many points by proposition 1. For [u] ∈ M(x−, x+;V + v)/R
time shift naturally induces an orientation of the corresponding component of
M(x−, x+;V + v); compare [13] and note that ∂su is a nonzero element of
the one-dimensional vector space kerDu = det(Du). The characteristic sign
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nu of the heat trajectory u is defined to be +1, if the time shift orientation
coincides with the coherent orientation, and nu := −1 otherwise. The charac-
teristic sign depends on the chosen orientations 〈x−〉 and 〈x+〉. Consider the
(finite) sum of characteristic signs corresponding to all heat trajectories from
x− to x+, namely

n〈x−〉,〈x+〉 :=
∑

[u]∈M(x−,x+;V+v)/R

nu.

If the sum runs over the empty set, we set n = 0. For x ∈ Pa(V ) define the
Morse boundary operator ∂ = ∂(V, v, 〈P〉) by the (finite) sum

∂x :=
∑

y∈P(V )
indV (x)−indV (y)=1

n〈x〉,〈y〉 y

and set ∂x = 0 whenever the sum runs over the empty set.

Proof (of theorem 1.) As mentioned above the heat moduli spaces are oriented
coherently. This means that these orientations are compatible with glueing,
which implies that ∂ ◦ ∂ = 0; see [7, §5].

The fact that heat flow homology is independent of the choice of regular
perturbation v ∈ Oa

reg(V ) and orientations 〈P〉 of the unstable manifolds
follows from the continuation argument which is standard in Floer theory; see
again e.g. [5,12]. Here it is crucial to observe that our admissible perturbations
v ∈ Oa are supported away from the level set {SV = a} on which the L2

gradient of SV (hence of SV+v) is nonvanishing and inward pointing with
respect to LaM . Alternatively, independence will follow from theorem 9. ⊓⊔

A Parabolic regularity

By H
− we denote the closed lower half plane, that is, the set of pairs of reals (s, t) with

s ≤ 0. For now all maps are real-valued and the domains of the various Banach spaces which
appear are understood to be open subsets Ω of R2 or H−. To deal with the heat equation it is

useful to consider the anisotropic Sobolev spaces W k,2k
p . We call them parabolic Sobolev

spaces and denote them by Wk,p. For constants p ≥ 1 and integers k ≥ 0 these spaces are
defined as follows. Set W0,p = Lp and denote by W1,p the set of all u ∈ Lp which admit
weak derivatives ∂su, ∂tu, and ∂t∂tu in Lp. For k ≥ 2 define

Wk,p := {u ∈ W1,p | ∂su, ∂tu, ∂t∂tu ∈ Wk−1,p}

where the derivatives are again meant in the weak sense. The norm

‖u‖Wk,p :=





∫ ∫

∑

2ν+µ≤2k

∣

∣∂ν
s ∂

µ
t u(s, t)

∣

∣

p
dtds





1/p

(79)

gives Wk,p the structure of a Banach space. Here ν and µ are nonnegative integers. For
k = 1 we obtain that

‖u‖p
W1,p = ‖u‖pp + ‖∂su‖

p
p + ‖∂tu‖

p
p + ‖∂t∂tu‖

p
p
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and occasionally we abbreviate W = W1,p. Note the difference to (standard) Sobolev space
W k,p where the norm is given by ‖u‖pk,p :=

∑

ν+µ≤k‖∂
ν
s ∂

µ
t u‖

p
p. A rectangular domain is

a set of the form I×J where I and J are bounded intervals. For rectangular (more generally,
Lipschitz) domains Ω the parabolic Sobolev spaces Wk,p can be identified with the closure
of C∞(Ω) with respect to the Wk,p norm; see e.g. [8, app. B.1]. Similarly, define the Ck

norm by

‖u‖Ck :=
∑

2ν+µ≤2k

∥

∥∂ν
s ∂

µ
t u

∥

∥

∞
. (80)

Assume N →֒ R
N is a closed smooth submanifold and Γ : M → R

N×N×N is a smooth
family of vector-valued symmetric bilinear forms. Set Wk,p(Z) = Wk,p(Z,RN ) and for
T > T ′ > 0 set Z = ZT = (−T, 0]× S1 and Z′ = ZT ′ .

Proposition 12 (Parabolic regularity) Fix constants p > 2, µ0 > 1, and T > 0. Fix a

map F : Z → R
N such that F and ∂tF are of class Lp. Assume that u : Z → R

N is a W1,p

map taking values in N with ‖u‖W1,p ≤ µ0 and such that the perturbed heat equation

∂su− ∂t∂tu = Γ (u) (∂tu, ∂tu) + F (81)

is satisfied almost everywhere. Then the following is true for every integer k ≥ 1 such that

F, ∂tF ∈ Wk−1,p(Z) and every T ′ ∈ (0, T ).

(i) There is a constant ak depending on p, µ0, T , T ′, ‖Γ‖C2k+2 , and the Wk−1,p(Z) norms

of F and ∂tF such that

‖∂tu‖Wk,p(Z′) ≤ ak.

(ii) If ∂sF ∈ Wk−1,p(Z) then there is a constant bk depending on p, µ0, T , T ′, ‖Γ‖C2k+2 ,

and the Wk−1,p(Z) norms of F , ∂tF , and ∂sF such that

‖∂su‖Wk,p(Z′) ≤ bk.

(iii) If ∂t∂tF ∈ Wk−1,p(Z) then there is a constant ck depending on p, µ0, T , T ′, ‖Γ‖C2k+2 ,

and the Wk−1,p(Z) norms of F , ∂tF , and ∂t∂tF such that

‖∂t∂tu‖Wk,p(Z′) ≤ ck.

Since p > 2, the Sobolev embedding theorem guarantees that every W1,p map u is
continuous. Hence it makes sense to say that u takes values in N .

Corollary 2 Under the assumptions of proposition 12 the following is true. Assume k ≥ 1
and F ∈ Wk,p(ZT ). Then for every T ′ ∈ (0, T ) there is a constant ck = ck(k, p, µ0, T −
T ′, ‖Γ‖C2k+2(N), ‖F‖Wk,p(ZT )) such that

‖u‖Wk+1,p(ZT ′ )
≤ ck.

Proof The Wk+1,p norm of u is equivalent to the sum of the Wk,p norms of u, ∂tu, ∂su,
and ∂t∂tu. Apply proposition 12 (i–iii). ⊓⊔
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