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Preface

The present text originates from lecture notes written during the
graduate course “MM613 Métodos Topológicos da Mecânica Hamil-
toniana” held from august to november 2016 at UNICAMP. The
manuscript has then been extended in order to serve as accompanying
text for an advanced mini-course during the 31st Colóquio Brasileiro
de Matemática, IMPA, Rio de Janeiro, in august 2017.

Scope

We aim to present some steps in the history of the problem of de-
tecting closed orbits in Hamiltonian dynamics. This not only relates
to symplectic geometry, but also to an odd cousin, called contact
geometry and leading to Reeb dynamics. Ultimately we’d like to in-
troduce the reader to Rabinowitz-Floer homology, an active area of
contemporary research.

When we started to write these lecture notes we aimed in the
introduction “The following text is meant to provide an introductory
overview, throwing in some details occasionally, preferably such which
are usually omitted.” Obviously we failed: In the end our text con-
tains quite a lot of details and, as it turned out, basically all of them
can be found somewhere in the literature..

Content

There are two parts, Hamiltonian dynamics and Reeb dynamics, each
one coming with, maybe largely motivated by, a famous conjecture:

iii
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The Arnol′d conjecture on existence of 1-periodic Hamiltonian trajec-
tories and the Weinstein conjecture concerning closed characteristics,
that is images of periodic Reeb trajectories of whatever period but
on the same energy level.

Part one recalls basics of symplectic geometry, in particular, we re-
view the Conley-Zehnder index from various angles. Then we present
the construction of Floer homology, rather detailed, as analogous
steps are used in the construction of Rabinowitz-Floer homology.
Floer homology was deviced to prove the Arnol′d conjecture. Part
two recalls basics of contact geometry and reviews the construction of
Rabinowitz-Floer homology. The Weinstein conjecture is reconfirmed
for certain classes of hypersurfaces in exact symplectic manifolds.

It goes without saying that the references simply reflect the knowl-
edge, not to say ignorance, of the author. They are not meant to be
exhaustive. Certainly many more people contributed to the many
research fields, and all their facetes, touched upon in these notes.

Audience

The intended audience are graduate students. Recommendable back-
ground includes manifolds and basics of differential geometry and
functional analysis.
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Chapter 1

Introduction

The quest for closed orbits of dynamical systems - for instance
periodic geodesics or periodic trajectories of particles in a mag-
netic field - dates back to the foundational work by Hamil-
ton [Ham35] and Jacobi [Jac09] around 1840 and by Poincaré [Poi95]
around 1900, followed by work, among many others, by Lusternik-
Schnirelmann [LS30] in the 1920s, Kolmogorov-Arnol′d-Moser
[Kol54, Arn63, Mos62] around the 1960s, and Rabinowitz [Rab79,
Rab86] and Conley-Zehnder [CZ83] around the early 1980s. Floer’s
approach [Flo89] to infinite dimensional Morse theory in the sec-
ond half of the 1980s, combining the Conley-Zehnder approach with
Gromov’s J-holomorphic curves introduced in his 1985 landmark
paper [Gro85], marked a breakthrough in the efforts to prove the
Arnol ′d conjecture: The number of 1-periodic trajectories of a Hamil-
tonian vector field on a closed symplectic manifold M is bounded
below by the Lusternik-Schnirelmann category of M or, in the non-
degenerate case, by the sum of the Betti numbers of M . At about
the same time Hofer entered the stage and together with Wysocki,
Zehnder, Eliashberg, among others, contactized the symplectic world,
eventually leading to the (occasionally so-called) theory of every-
thing [EGH00]: Symplectic Field Theory – SFT.

1
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2 [CAP. 1: INTRODUCTION

Departing from Poincaré’s last geometric theorem

We briefly sketch how Poincaré’s last geometric theorem inspired the
Arnol′d conjecture. For many more facets and further related re-
sults along these developments see the excellent presentations [HZ11,
Ch. 6] and [Arn78, App. 9]. The following result was announced
by Poincaré [Poi12] shortly before his death in 1912 and proved by
Birkhoff [Bir13] shortly thereafter.

Theorem 1.0.1 (Poincaré-Birkhoff). Every area and orientation
preserving homeomorphism h of an annulus A := S1 × [a, b] rotat-
ing the two boundaries in opposite directions1 possesses at least 2
fixed points in the interior.

Exercise 1.0.2. Show that h in the Poincaré-Birkhoff Theorem 1.0.1
is homotopic to the identity. [Hint: Identify each of the two boundary
components of the annulus A to a point to obtain a space homeomor-
phic to S2 equipped with an induced homeomorphism h̃. Apply the
Hopf degree theorem.2]

Lefschetz fixed point theory, introduced in 1926 [Lef26], cf. [Hir76,
Ch.5 §2 Excs.] or [GP74, Ch.3 §4], guarantees existence of a fixed
point for a continuous map h : X → X on a compact topological
space X whenever a certain integer Lh, called the Lefschetz number,
is non-zero. Key properties concerning applications are, firstly, that
Lh is a homotopy invariant and, secondly, if X is a closed manifold
then Lid is the Euler characteristic χ(X).

For the Poincaré-Birkhoff Theorem 1.0.1 Lefschetz theory fails, as
χ(A) = 0. A direct proof of the existence of one fixed point of h is
given in the beautyful presentation [MS98, §8.2] where, furthermore,
existence of infinitely many periodic points3 of h is proved whenever
the boundary twist is ’sufficiently strong’.

1 This twist condition excludes rotations (they have no fixed points in gen-
eral).

2 Hopf degree theorem: Two maps of a closed connected oriented n-
dimensional manifold Q into Sn are homotopic if and only if they have the same
degree. See e.g. [GP74, Ch.3 §6] or [Hir76, Ch.5 Thm. 1.10].

3 A periodic point x of h is a fixed point of one of the iterates of h, that is
hk(x) := (h ◦ . . . h)(x) = x for some k ∈ Z.
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Exercise 1.0.3. Show that any continuous map f : S2 → S2 ho-
motopic to the identity, in symbols f ∼ id, has at least one fixed
point. This result is sharp even for homeomorphisms: Find a homeo-
morphism of S2 with exactly one fixed point. [Hint: Consider the
Riemann sphere R2 ∪ {∞} and translations on R2.]

Remark 1.0.4. By [Nik74, Sim74] one gets back to at least two
guaranteed fixed points, if one requires a homeomorphism f ∼ id on
S2 to preserve, in addition, a regular measure. So any diffeomorphism
f of S2 leaving an area form ω invariant, that is f∗ω = ω, admits at
least two4 fixed points; cf. Section 5.4.3.

In dimension two, but not in higher dimension, the diffeomor-
phisms of a surface that preserve an area form are the symplecto-
morphisms of the form.

Arriving at the Arnol′d conjecture

In [Arn78, App. 9] Arnol′d suggested to glue together two copies
of the annulus in the Poincaré-Birkhoff Theorem 1.0.1 along their
boundaries each of which equipped with the same area and orien-
tation preserving map h which, in addition, is now assumed to be
a diffeomorphism and not too far C1-away from the identity. This
results in the 2-torus T2 equipped with an area and orientation pre-
serving diffeomorphism, say h̃, which is C1-close to id and by the
twist condition satisfies a condition illustratively called “preservation
of center of mass”. Note that Lefschetz theory does not predict any
fixed point for h̃ since χ(T2) = 0. However, due to the additional
C1-close-to-id condition, the fixed points of h̃ correspond precisely to
the critical points of a function F on T2 called the generating func-
tion of h̃. The number of critical points of F is bounded below by
the Lusternik-Schnirelmann category

|CritF | ≥ cat(T2) = 3 > cupR(T2) = 2,

more modestly, by the cuplength plus one, or via Morse theory by
the sum of the Betti numbers SB(T2) = 4 in the non-degenerate
case, that is in case all fixed points of h, equivalently all critical points

4 Note that deg f = 1 = deg id and apply the Hopf degree theorem.
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4 [CAP. 1: INTRODUCTION

of F , are non-degenerate. See e.g. [Web] for basics on Lusternik-
Schnirelmann and Morse theory. So the number of fixed points of
h̃ is at least three. But this number is even by symmetry of the
construction (the fixed points come in pairs). Consequently h̃ has at
least four fixed points. Hence h has at least two and this reconfirms
the Poincaré-Birkhoff Theorem 1.0.1 for diffeomorphisms and under
the additional assumption of h being C1-close to id.
Hence one might conjecture, as Arnol′d did in [Arn76], that the torus
result should be true as well without the C1-close-to-id condition
and, furthermore, not only for “doublings” h̃ of h. It is important
to observe that h ∼ id leads to the fact that h̃ is a Hamiltonian
diffeomorphism5 for the area form, that is it is the time-1-map of the
flow generated by the Hamiltonian vector field XH for some function
H : S1 × T2 → T2. Fixed points of h̃ are then in bijection with
1-periodic orbits of XH .

Arnol′d conjecture. Suppose (M,ω) is a closed symplectic man-
ifold and H : R × M → R is a smooth time-1 periodic function
Ht(x) := H(t, x) = Ht+1(x), denoted H : S1×M → R. Consider the
time-dependent Hamiltonian equation

ż = XHt(z), z : R→M,

and the set P0(H) = P0(H;M,ω) of all contractible6 1-periodic7

solutions. The Arnol′d conjecture states that the number |P0(H)|
of contractible 1-periodic solutions is bounded below by the least
number of critical points that a function on M must have, that is by
the infimum Crit(M) over all functions f : M → R of the number
Critf of critical points. The commonly addressed weaker forms of
the Arnol′d conjecture are suggested by Lusternik-Schnirelmann and
Morse theory, respectively. They state that

|P0(H)| ≥ cupR(M) + 1 (1.0.1)

5 Some authors use the terminology h̃ is homologous to the identity.
6 Multiplying XH by a small constant implies that all 1-periodic solutions are

very short, hence contractible; see Proposition 2.3.16. Firstly, this inspires the
conjecture that it is the contractible solutions which are related to the topology
of M . Secondly, this has the consequence that any Floer complex on a component
of the free loop space that consists of non-contractible loops is chain homotopy
equivalent to the trivial (no generators) complex.

7 Concerning period one see Remark 2.3.14.
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in general and that
|P0(H)| ≥ SB(M) (1.0.2)

in case all contractible 1-periodic solutions are non-degenerate.

As we tried to stress, the Arnol′d conjecture for T2 is the differentiable
generalization of the Poincaré-Birkhoff Theorem 1.0.1. Are there
topological generalizations, i.e. topological analogues of the Arnol′d
conjecture, as well? There are – in dimension two – and these are
extremely far reaching indeed; see discussion towards the end of §6.1
in [HZ11]. For instance, they led to the affirmative solution [Fra92,
Ban93] of the longstanding open question if all Riemannian 2-spheres
carry infinitely many geometrically distinct periodic geodesics.

Floer homology – period one

Cornerstones in the confirmation of the Arnol′d conjecture were the
solution by Conley and Zehnder [CZ83] for Hamiltonians Ht on the
standard torus (Tn, ω0) and the solution by Floer [Flo88, Flo89] for
ω-aspherical (and other) closed symplectic manifolds (M,ω); see
e.g. [Sal99a] or [HZ11] for detailed accounts of further contributions.
Floer’s seminal contribution was to develop a meaningful Morse (ho-
mology) theory for the symplectic action functional

AH : L0M → R, z 7→
∫
D
z̄∗ω −

∫ 1

0

Ht(z(t)) dt, (1.0.3)

on the component L0M of the free loop space LM = C∞(S1,M)
that consists of contractible smooth 1-periodic loops z : S1 = ∂D →
M , where z̄ : D→M is any smooth extension of z. Floer mastered

• infinite Morse index of the critical points z ∈ CritAH = P0(H)
(which by definition are the generators of the Floer chain
groups), cf. Ex. 3.2.15;

• the fact that the formal downward L2-gradient equation

gradAH(z) = −Jt(z)
(
ż −XHt(z)

)
does not generate a flow on loop space, not even a semi-flow;
see Remark 3.2.8. Here Jt is a family of ω-compatible almost
complex structures.
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By definition and for genericH the Floer chain group CF∗(M,ω,H) is
the free abelian group generated by P0(H) and graded by the canon-
ical Conley-Zehnder index assuming that the first Chern class c1(M)
vanishes. Roughly speaking, the Floer boundary operator counts
downward flow lines and the Floer isomorphism

HFn−`(M,ω;H,J) ∼= H`(M)

to singular homology of M proves the Arnol′d conjecture (1.0.2)
for closed symplectic manifolds that are ω-aspherical; see Defini-
tion 3.0.9. Floer homology of the closed manifold M of dimension 2n
is restricted to degrees in [−n, n].

Floer homology of cotangent bundles. Floer homology of non-
compact symplectic manifolds can be highly different if it can be
defined. For instance, consider a cotangent bundle T ∗Q over a closed
orientable manifold Q equipped with the canonical symplectic struc-
ture ωcan = dλcan = ”dp ∧ dq ” on T ∗Q. Pick a Riemannian metric g
on Q; it is convenient to identify T ∗Q ∼= TQ via g. Now consider a
mechanical Hamiltonian

HV (q, v) =
1

2
|v|2 + Vt(q), q ∈ Q, v ∈ TqQ, (1.0.4)

of the form kinetic plus potential energy where the potential
V (t, q) =: Vt(q) is a smooth function on S1 × Q and |v|2 abbrevi-
ates gq(v, v) =: 〈·, ·〉; see Section 2.4.1. For these data the action
functional (1.0.3) takes on the form

AV : LTQ→ R, z = (q, v) 7→
∫ 1

0

〈v(t), q̇(t)〉 −HVt(q(t), v(t)) dt,

(1.0.5)
which makes sense on arbitrary loops, not just contractible ones. Its
critical points are of the form zx = (x, ẋ) where x is a perturbed
1-periodic geodesic, that is an element of the set

P(V ) := {x ∈ LQ | −∇tẋ−∇Vt(x) = 0}. (1.0.6)

By the Morse index theorem the Morse index of a periodic geodesic is
finite; still true after perturbation by a zero order term. In [Web02]
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it is shown that for generic V the canonical Conley-Zehnder index is
well defined and equal to

µCZ(zx) = indSV (x) ∈ N0 (1.0.7)

the Morse index; cf. (1.0.15): The number of negative eigenvalues,
counted with multiplicities, of the Hessian at a critical point x of the

classical action functional given by SV (γ) =
∫ 1

0
1
2 |γ̇|

2 − Vt(γ) dt for
γ ∈ LQ. The upshot is that the Floer homology of the cotangent
bundle, graded by µCZ, is naturally isomorphic to singular integral
homology of the free loop space: That is

HF∗(AV ) := HF∗(T
∗Q,ωcan;HV , Jg) ∼= H∗(LQ),

at least if the orientable manifold Q carries a spin structure or, equiv-
alently, if the first and second Stiefel-Whitney classes of Q are both
trivial; cf. Section 3.5. If Q is not simply connected, there is a sepa-
rate isomorphism for each component LαQ of the free loop space. If
Q is not orientable, choose Z2 coefficients.

Weinstein conjecture

Given a symplectic manifold (M,ω), consider an autonomous Hamil-
tonian F : M → R, also called an energy function. In this case the
Hamiltonian flow φF generated by the Hamiltonian vector field XF is
energy preserving: Energy level sets F−1(c) are invariant under φF .
It is a natural question if there exists a Hamiltonian flow trajectory
that closes up in finite time T on a given, say closed, regular level set
Σ := F−1(c). Observe that by regularity there are no zeroes of XF

or, equivalently, no constant flow trajectories. Restricting the non-
degenerate 2-form ω to the odd-dimensional submanifold Σ yields the
so-called characteristic line bundle

LΣ := kerω|Σ → Σ

which even comes with a non-vanishing section, namely XF . There-
fore flow lines of XF are integral curves of the distribution LΣ and
those that close up are called the closed characteristics P of the
energy surface, in symbols TP = LΣ|P .
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On R2n equipped with the canonical symplectic form ωcan =
”dp ∧ dq ” existence of a closed characteristic was confirmed on con-
vex and star-shaped Σ by, respectively, Weinstein [Wei78] and Ra-
binowitz [Rab78]. Weinstein then isolated key geometric features of
these hypersurfaces, and of the slightly more general class treated
by Rabinowitz in [Rab79], thereby coining the notion of contact type
hypersurfaces in [Wei79] and formulating the famous8

Weinstein conjecture. A closed hypersurface of contact type with
trivial first real cohomology carries a closed characteristic.

Rabinowitz-Floer homology – free period fixed energy

For about three decades the potential of the variational setup used
by Rabinowitz in his breakthrough result [Rab78], cf. [Rab79],
went widely unnoticed. Given an autonomous Hamiltonian system
(V, ω, F : M → R), his idea was to incorporate a Lagrange multiplier
τ into the standard action functional (1.0.3) whose presence causes
that the critical points are periodic Hamiltonian trajectories of what-
ever period and constrained to a fixed energy level surface, namely
Σ := F−1(0). Only around 2007 the Rabinowitz action functional

AF : LV × R, (z, τ) 7→
∫
S1
z∗λ− τ

∫ 1

0

F (z(t)) dt,

on certain exact symplectic manifolds (V, ω = dλ), namely convex
ones, was brought to new, if not spectacular, honours by Cieliebak
and Frauenfelder in their landmark construction [CF09] of a Floer
type homology theory: Rabinowitz-Floer homology RFH(Σ, V ) :=
HF(AF ) associated certain closed hypersurfaces Σ = F−1(0),
for instance such of restricted contact type that bound a closed
submanifold-with-boundary M ⊂ V , by picking any regular F .

The power of their theory is shown by the fact that Rabinowitz-
Floer homology of the archetype example of the unit bundle Σ = S∗Q
in the cotangent bundle (V, λ) = (T ∗Q,λcan) over a closed Rieman-
nian manifold Q, not only represents the homology of the loop space
of Q, but simultaneously its cohomology.

8 For more background and context see the fine recent survey in [Hut10].
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Symplectic and contact topology

For an overview of the development of symplectic and contact topol-
ogy, starting with Lagrange’s 1808 formulation of classical mechanics
and culminating in the moduli space techniques initiated by Gro-
mov [Gro85] and Floer [Flo86,Flo89] in the mid 1980’s we recommend
the article [Nel16]. The article also explains the origin of the adjec-
tive symplectic as the greek version of the originally advocated latin
adjective complex. The latter was abandoned as it was already used
in the prominent notion of complex number; see also the wiktionary
entry ’symplectic’.

https://en.wiktionary.org/wiki/symplectic
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10 [CAP. 1: INTRODUCTION

Notation and conventions

Symbol Terminology Remark

R∗, Z∗ non-zero reals, integers R \ {0}, Z \ {0}

N manifold (mf) modelled on Rk
N manifold-with-boundary ” on Rk−1 × {xk ≥ 0}
Q closed manifold compact, no boundary
(M,ω) symplectic mf/mf-w-bdy dimM = 2n
(W,α) contact mf/mf-w-bdy dimW = 2n− 1

F , φF autonomous Ham., flow φ̇t = XF ◦ φt, φ0 = id
generates 1-param. group: φt+s = φs ◦ φs

Ht, ψ
H non-auton. Hamiltonian, flow ψ̇t = XHt ◦ ψt, ψ0 = id

is not a 1-param. group: ψt = ψt,0; see (2.3.19)
Hamiltonian path/loop Remark 2.3.13

P(H) 1-periodic trajectories of XH P(H)∗ nonconst. ones

c flow line, integral curve, orbit emb. submf c ↪→ N
of vector field X s.t. X is tangent to c

closed orbit orbit ∼= S1 or = {pt}
c, P closed characteristic of X integ. curve diff. S1

u trajectory (parametr. orbit) u : R→ mf, u′ = . . .
z periodic trajectory z : R

τZ →M , ż = X(z)
(parametrized closed orbit)

γ, z loop (periodic path) γ : R
τZ →M , (2.3.12)

Notation 1.0.5. Unless mentioned otherwise, the following conven-
tions apply throughout. All quantities, including homotopies and
paths, are supposed to be C∞ smooth. By a manifold we mean
a differentiable manifold9 N modeled locally on open subsets of
Rn. For manifold-with-boundary N replace Rn by its closed up-
per half space. The boundary ∂N might be empty though. A closed

9 The topological Hausdorff space N comes with countably many (second ax-
iom of countability) homeomorphisms ϕi : N ⊃ Ui → Rn, called local coordinate
charts, such that all transition maps ϕj ◦ ϕi−1 : Rn → Rn are diffeomorphisms.
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manifold, usually denoted by Q = Qn, is a compact manifold (hence
no boundary). The empty set ∅ generates the trivial group {0}. It is
often convenient to set inf ∅ :=∞. Vector spaces are real. Neighbor-
hoods are open. Given a map γ : R → N , a path, denote time shift
and uniform speed change by

γ(T ) := γ(T + ·), γµ := γ(µ·),

whereas subindex γτ : [0, τ ]→ N , τ ∈ Per(γ) \ {0}, denotes a divisor
part, see (2.3.11), and simultaneously the induced loop γτ : R/τZ→
N , but subindex us(·) := u(s, ·) also denotes freezing a variable.

Linear space. On R2n there are two natural structures, the euclidean
metric 〈v, w〉0 :=

∑2n
j=1 vjwj and the standard almost complex

structure

J0 :=

(
0 −1l
1l 0

)
; J0 := −J0 =

(
0 1l
−1l 0

)
.

The matrizes ±J0 represent multiplication by ±i under the natural
isomorphism

R2n '−→ Cn, z = (x, y) = (x1, . . . , xn, y1, . . . , yn) 7→ x+ iy.

We shall use this isomorphism freely whenever convenient, even writ-
ing R2n = Cn as real vector spaces and J0 = i. Given the coordinates
z = (x, y) ∈ R2n, it is natural to combine them in the form

ω0 :=
∑
j

dxj ∧ dyj

called the standard symplectic form. While the 2-form ω0 is exact
for several choices of primitives,10 such as for instance

∑
j xjdyj ,

the natural radial vector field Y0(z) = z =
∑
j

(
xj∂xj + yj∂yj

)
is

compatible with the ω0-primitive

λ0 :=
1

2

n∑
j=1

(xjdyj − yjdxj) , dλ0 = ω0 =: dx ∧ dy, (1.0.8)

10 A differential form λ is a primitive of ω iff its exterior derivative dλ is ω.
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12 [CAP. 1: INTRODUCTION

in the sense that iY0ω0 := ω0(Y0, ·) = λ0.11 Hence LY0ω0 = diY0ω0 =
ω0. These identities play a crucial role in the history of the Weinstein
Conjecture 4.1.9 and the development of the notion of contact type
hypersurfaces.

On the other hand, on cotangent bundles, say T ∗Q 3 (q, p),
there is a canonical globally defined 1-form, the Liouville form
λcan, see (2.4.27), the canonical symplectic form ωcan := dλcan,
and the canonical fiberwise radial vector field Yrad, see (4.5.14).
In natural cotangent bundle coordinates (q1, . . . , qn, p

1, . . . , pn) these
structures are of the form Yrad =

∑
j p

j∂pj and

λcan :=

n∑
j=1

pj dqj =: p dq, ωcan := +dλcan =

n∑
j=1

dpj∧dqj =: dp∧dq.

Note that ωcan(Ycan, ·) = λcan where Ycan := 2Yrad is the canoni-
cal Liouville vector field. Of course, these definitions make sense
on R2n ' T ∗Rn. For better readability we often use the notation
(q1, . . . , qn, p1, . . . , pn).

The two natural symplectic structures ω0 and ωcan on R2n are
compatible with J0 = i and J0 = −i, respectively, in the sense that
the two compositions

ω0(·, J0·) = 〈·, ·〉0, ωcan(·, J0·) = 〈·, ·〉0, (1.0.9)

both reproduce the euclidean metric.

Remark 1.0.6 (Canonical normalization of Conley-Zehnder index).
In Hamiltonian dynamics of classical physical Hamiltonians on cotan-
gent bundles, e.g. on R2n ' T ∗Rn, the second choice in (1.0.9)
is natural since the dynamics is governed by Hamilton’s equa-
tions [Ham35, Eq. (A.)] given by(

q̇
ṗ

)
=

(
∂pH
−∂qH

)
= J0∇H (1.0.10)

and exhibiting most prominently J0. For the most basic physical sys-
tem, the harmonic oscillator on R2, which is also most basic mathe-
matically in the sense that in place of ∇H one has the identity 1l, the

11 We define the wedge product by dxj ∧ dyj := 1
2

(dxj ⊗ dyj − dyj ⊗ dxj)
as in [GP74].
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system is linear and given by

ζ̇ = J0ζ, ζ(t) = eJ0t = e−it, t ∈ [0, 1].

Hence it is natural to favorize J0 and the finite path t 7→ eJ0t concern-
ing sign conventions and normalize the index function by associating
the value 1 to the distinct symplectic path e−it in Sp(2), as we do
in (1.0.11).12 However, probably since eit is also rather distinct in
the sense that it represents the mathematically positive sense of rota-
tion (counter-clockwise), just like i = J0, basically all of the original
papers on the Conley-Zehnder index use the normalization

µCZ({eit}t∈[0,1]) = 1.

This is the standard normalization or the counter-clockwise
normalization and µCZ the (standard) Conley-Zehnder index. For
compatibility with the literature our review in Section 2.1 of the
various variants of Maslov-type indices and the various constructions
of each of them uses the standard normalization.

A simple method to deal with the need, when dealing with ωcan,
for a Conley-Zehnder index normalized clockwise is to introduce a
new name and notation. We call the Conley-Zehnder index based on
the canonical normalization

µCZ({e−it}t∈[0,1]) = 1. (1.0.11)

the canonical Conley-Zehnder index, denoted by µCZ for dis-
tinction. It is just the negative µCZ = −µCZ of the standard Conley-
Zehnder index.

Let R2n × R2n be the vector space R2n × R2n equipped with the
almost complex structure −J0⊕J0 and the symplectic form −ω0⊕ω0.

Manifolds. Suppose M is a manifold. Let S1 ⊂ C ∼= R2 be the
unit circle. We slightly abuse notation to express periodicity in time
t ∈ R/Z. We usually denote by

H : S1 ×M → R or H : R/Z×M → R
12 As rotation e−it is negatively oriented (counter-clockwise is positive).
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14 [CAP. 1: INTRODUCTION

a function H : R ×M → R with Ht+1 = Ht ∀t where Ht := H(t, ·).
Given a symplectic form ω on M , the identities of 1-forms

dHt(·) = −ω(XHt , ·) , Xt := XHt = Xω
Ht , (1.0.12)

one for each t ∈ S1, determines the family of Hamiltonian vector
fields Xt.

13 The set P0(H) of contractible 1-periodic Hamiltonian
trajectories is precisely the set of critical points of the perturbed
symplectic action functional

AH = AωH : C∞contr(S1,M)→ R, z 7→ +

∫
D
z̄∗ω −

∫ 1

0

Ht(z(t)) dt.

Here z̄ : D → M denotes an extension14 of the contractible loop
z : S1 →M and the two signs arise as follows. The sign ” + ” is due
to the requirement that on cotangent bundles (convention ωcan :=
+ dλcan = dp ∧ dq) the first integral should reduce to

∫
S1 λcan. Since

the critical points of AH should be orbits of XH , as opposed to −XH ,
the sign choice ”− ” in (1.0.12) dictates the second sign ”− ” in AH .

Suppose Jt is a family of almost complex structures on
TM , that is each Jt is a section of the endomorphism bundle
End(TM) → M with Jt

2 = −1l. Assume, in addition, that each
Jt is ω-compatible 15 in the sense that

gJt := 〈·, ·〉t := ω(·, Jt·)

defines a Riemannian metric on M , one for each t. Such a triple
(ω, Jt, gJt) is called compatible and for such there is the identity

Xω
Ht = + Jt ◦ ∇gJtHt, (1.0.13)

one for each t ∈ S1. For two compatible triples in R2n see (1.0.9).

13 In [Web02,SW06] we used twice opposite signs, firstly for ωcan and secondly
in (1.0.9). Hence the Hamiltonian vector field there and here is the same.

14 To avoid that AH(z) depends on the extension z̄, suppose that ω vanishes
over π2(M).

15 In the euclidean case the convention gJ0 := ω0(·, J0·) leads to the euclidean
metric, so the opposite convention g′J0 := ω0(J0·, ·) is negative definite and there-
fore not an inner product.
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Exercise 1.0.7. Let J be an ω-compatible almost complex structure.
Show that both, the associated Riemannian metric gJ and ω itself,
are J-invariant, that is gJ(J ·, J ·) = gJ(·, ·) and ω(J ·, J ·) = ω(·, ·).

Cotangent bundles. Consider a cotangent bundle (T ∗Q,ωcan :=
+ dλcan) over a closed Riemannian manifold (Q, g) of dimension n.
Use g to identify T ∗Q with TQ via the inverse of the isomorphism
v 7→ g(v, ·), again denoted by g. By exactness of ωcan there is no need
to restrict to contractible loops. Just define16

Aλcan

H : LTQ→ R, z = (q, v) 7→ +

∫ 1

0

g (v(t), q̇(t))−Ht(q(t), v(t)) dt.

For Hamiltonians HV of the form kinetic plus potential energy for
some potential Vt+1 = Vt : Q → R, see (1.0.4), the critical points of
AV := Aλcan

HV
are precisely of the form zx := (x, ẋ) with x ∈ P(V ) =

{−∇tẋ −∇V (x) = 0}. Hence x is a (perturbed) 1-periodic geodesic
in the Riemannian manifold (Q, g) and as such admits a Morse index
indSV (x) ∈ N0 and a nullity nullSV (x) ∈ N0.

Suppose the nullity of x ∈ P(V ) is zero and the vector bun-
dle x∗TQ → S1 is trivial; pick an orthonormal trivialization. Then
the linearized Hamiltonian flow along x provides a finite path Ψx :
[0, 1] → Sp(2n) of symplectic matrices that starts at 1l2n and whose
endpoint does not admit 1 in its spectrum (by the nullity assump-
tion). Thus Ψx has a well defined canonical Conley-Zehnder index
µCZ(Ψx). Recall from (1.0.11) that µCZ is based on the canonical
J0 (clockwise) normalization and equal to −µCZ. In other words,
compared to our previous papers [Web02,SW06] we use the opposite
(signature) axiom:

(signature)can If S = ST ∈ R2n×2n is a symmetric matrix of norm
‖S‖ < 2π, then

µCZ
(
{[0, 1] 3 t 7→ etJ0S

)
=

1

2
sign (S) :=

n+(S)− n−(S)

2
.

(1.0.14)

16 Here all signs are dictated: By physics (integrand should be p dq − H dt)
as well as by mathematics (the cousin SV of A, given by (3.5.55), is bounded
below which suggests that the downward gradient flow encodes homology and
the upward flow cohomology).
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16 [CAP. 1: INTRODUCTION

Since µCZ(Ψx) does not depend on the choice of trivialization, one
defines µCZ(zx) := µCZ(Ψx). The relation to the Morse index is

µCZ(zx) = + indSV (x), (1.0.15)

as shown in [Web02].17 If x∗TM → S1 is not orientable, then a
correction term enters.

Remark 1.0.8 (Homology or cohomology?). As the energy func-
tional SV : LQ → R given by (3.5.55) is bounded below, the down-
ward gradient direction is the right choice to construct Morse ho-
mology, whereas counting upwards naturally suits cohomology. The
functional is Morse for generic V and the critical points are given
by CritSV = P(V ). For each of them there is a finite Morse index
indSV (x) and the index function indSV decreases along connecting
downward gradient flow lines under the Morse-Smale condition. Thus
indSV is a natural grading of Morse homology HM∗(LQ,SV ).

Because the critical points of SV coincide with those of AV under
the correspondence x 7→ zx = (x, ẋ) and there is the identity (1.0.15)
of indices and the identity SV (x) = AV (zx) of functionals, it is natu-
ral to use the canonical Conley-Zehnder index µCZ and the downward
gradient of AV to construct Floer homology of cotangent bundles.

17 The identity µCZ = −indSV in [Web02] is based on the anti-clockwise nor-
malization of µCZ.
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Hamiltonian dynamics
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Chapter 2

Symplectic geometry

Consider a manifold M of finite dimension. A Riemannian metric
g on M is a family gx of symmetric non-degenerate bilinear forms
on TxM that varies smoothly in x. To define a symplectic form
ω on M replace symmetric by skew-symmetric1 – consequently the
dimension is necessarily even, say 2n – and impose, in addition,
the global condition that the non-degenerate differential 2-form ω
is closed (dω = 0). Symplectic manifolds are orientable since the 2n-
form ω∧n nowhere vanishes by non-degeneracy of ω, in other words
ω∧n is a volume form. Thus, if the manifold M is closed, then the dif-
ferential form ω cannot be exact by Stoke’s theorem. Together with
the global condition dω = 0 one gets that [ω] 6= 0 in cohomology.
Hence the second real cohomology of a closed symplectic manifold
is necessarily non-trivial. For existence of symplectic structures see
e.g. [Gom01,Sal13].

In contrast to Riemannian geometry there are no local invariants
in symplectic geometry: By Darboux’s Theorem a symplectic mani-
fold looks locally like the prototype symplectic vector space (R2n, ω0).
In contrast to Riemannian geometry2 the global theory is rich, al-
ready for the space Sp(2n) of linear symplectic transformations of
(R2n, ω0). In Chapter 2 we follow mainly [MS98].

1 A non-degenerate skew-symmetric bilinear form ωx on TxM is called a sym-
plectic bilinear form.

2 The space of Riemannian metrics is convex, hence contractible.

23
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24 [CAP. 2: SYMPLECTIC GEOMETRY

Exercise 2.0.9. Show that only one of the unit spheres Sk ⊂ Rk+1,
k ∈ N, carries a symplectic form. Which of the tori Tk := (S1)×k

carry a symplectic form? How about the real projective plane RP2?
And, in contrast, the CPk’s?

Exercise 2.0.10 (The unit 2-sphere S2 ⊂ R3). Show that

ωp(x, y) := 〈p, x× y〉, p ∈ S2, x, y ∈ (Rp)⊥,

is a symplectic form on S2 and that the unit tangent bundle T 1S2

is diffeomorphic to SO(3). [Hint: The three columns of any matrix
a ∈ SO(3) are of the form p, v, p× v where p ⊥ v are unit vectors.]

Exercise 2.0.11. The ω in the former exercise is in cylindrical coor-
dinates given by ωcyl = dθ∧dz, for (θ, z) ∈ [0, 2π)× (−1, 1), in spher-
ical coordinates by ωsph = (sinϕ) dθ∧dϕ, for (θ, ϕ) ∈ [0, 2π)× (0, π).

2.1 Linear theory

The symplectic linear group Sp(2n) consists of all real 2n × 2n
matrices Ψ that preserve the standard symplectic structure

ω0 = Ψ∗ω0 := ω0(Ψ·,Ψ·). (2.1.1)

Observe that this identity implies that det Ψ = 1.

Exercise 2.1.1. Show that (2.1.1) is equivalent to

ΨTJ0Ψ = J0

where ΨT is the transposed matrix. [Hint: Compatibility with eu-
clidean metric.]

Consider the group GL(2n,R) of invertible real 2n× 2n matrices.
The orthogonal group O(2n) ⊂ GL(2n) is the subgroup of those
matrices that preserve the euclidean metric. The linear map R2n →
Cn, z = (x, y) 7→ x + iy, is an isomorphism of vector spaces that
identifies J0 and the imaginary unit i. Under this identification X +
iY ∈ GL(n,C) corresponds to(

X −Y
Y X

)
∈ GL(2n,R).

The unitary group U(n) is a subgroup of GL(2n,R), in fact of Sp(2n).
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Exercise 2.1.2. Show that the identities of real n× n matrices

XTY = Y TX, XTX + Y TY = 1l,

are precisely the condition that X + iY ∈ U(n).

Exercise 2.1.3. Prove that the intersection of any two of O(2n),
Sp(2n), and GL(n,C) is precisely U(n) as indicated by Figure 2.1.

Figure 2.1: Relation among four classical matrix Lie groups

The eigenvalues of a symplectic matrix occur either as pairs
λ, λ−1 ∈ R \ {0} or λ, λ̄ ∈ S1 or as complex quadruples

λ, λ−1, λ̄, λ̄
−1
.

In particular, both 1 and −1 occur with even multiplicity.

2.1.1 Topology of Sp(2)

Major topological properties of Sp(2n), such as the fundamental
group being Z or the existence of certain cycles, can nicely be vi-
sualized using the Gel′fand-Lidskĭı [GL58] homeomorphism between
Sp(2) and the open solid 2-torus in R3. It is a diffeomorphism away
from the center circle U(1); see also [Web99, App. D]. Consider the
sets C± of all symplectic matrices which have ±1 in their spectrum.

The set C := C+ is called the Maslov cycle of Sp(2n).

It consists of disjoint subsets which are submanifolds, called strata.
For n = 1 there are only two strata one of which contains only one
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Figure 2.2: Subsets C−, C+ ⊂ Sp(2) ' S1 × intD. Notation E = 1l

element, namely the identity matrix E = 1l; see Figure 2.2 which
shows C± in the Gel′fand-Lidskĭı parametrization of Sp(2), namely,
as the open solid 2-torus in R3.

For the spectrum of the elements Ψ of Sp(2) there are three pos-
sibilities:

(pos. hyp.) real positive pairs λ, λ−1 > 0; those Ψ with λ = 1 are C+;

(neg. hyp.) real negative pairs λ, λ−1 < 0; those Ψ with λ = −1 are C−;

(elliptic) complex pairs λ, λ̄ ∈ S1 \ {−1,+1}; those enclosed by C− ∪ C+.

Exercise 2.1.4 (Eigenvalues of first and second kind). Note that
the set enclosed by C− ∪ C+ has two connected components. What
distinguishes them?3 Suppose λ, λ̄ ∈ S1 \ {−1,+1} are eigenvalues of
Ψ ∈ Sp(2n). Thus λ 6= λ̄ and the eigenvectors ξλ, ξλ̄ = ξλ ∈ Cn \ Rn
are linearly independent. Show that ω0

(
ξλ, ξλ

)
∈ iR \ {0}. If the

imaginary part of this quantity is positive, then λ is called of the
first kind, otherwise of the second kind. Show that one of λ, λ̄ is
of the first kind and the other one of the second kind.

For Sp(2n), 2n ≥ 4, where the eigenvalues can be quadruples the
notion of eigenvalues of the first and second kind becomes important

3 Those Ψ whose eigenvalue of the first kind lies in the upper half plane, e.g.
J0, lie in the same component, those where this location is the lower half plane
lie in the other component.
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concerning stability properties of Hamiltonian trajectories: Two pairs
of eigenvalues on S1 can meet and leave S1, if and only if, eigenvalues
of different kind meet.

2.1.2 Maslov index µ

The map

h : [0, 1]× Sp(2n)→ Sp(2n), (t,Ψ) 7→ (ΨΨT )−t/2Ψ, (2.1.2)

is a strong deformation retraction of Sp(2n) onto Sp(2n)∩GL(n,C) '
U(n); cf. Figure 2.1. So the quotient space Sp(2n)/U(n) is con-
tractible. It is well known that the determinant map det : U(n)→ S1

induces an isomorphism of fundamental groups. Consequently the
fundamental group of Sp(2n) is given by the integers. Define a map
ρ : Sp(2n)→ Sp(2n) ∩GL(n,C)→ S1 by

ρ : Ψ 7→ h(Ψ, 1) =

(
X −Y
Y X

)
7→ det

(
X + iY︸ ︷︷ ︸
∈U(n)

)
. (2.1.3)

Maslov index – degree

An explicit isomorphism [µ] : π1(Sp(2n)) → Z is realized by the
Maslov index µ which assigns to every loop Φ : S1 → Sp(2n) of
symplectic matrices the integer

µ(Φ) := deg
(
S1 Φ−→ Sp(2n)

ρ−→ S1
)
.

Exercise 2.1.5. Show that the Maslov index satisfies these axioms:

(homotopy) Two loops in Sp(2n) are homotopic iff they have the
same Maslov index.

(product) For any two loops Φ1,Φ2 : S1 → Sp(2n) we have

µ(Φ1Φ2) = µ(Φ1) + µ(Φ2).

Thus µ(1l) = 0 and µ(Φ−1) = −µ(Φ) where Φ−1(t) := Φ(t)−1.

(direct sum) If n = n′ + n′′, then µ(Φ′ ⊕ Φ′′) = µ(Φ′) + µ(Φ′′).
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(normalization) Φ : R/Z→ U(1), t 7→ ei2πt is of Maslov index 1.

Show that these axioms determine µ uniquely. [Hints: The problem
reduces to loops in U(n) by (2.1.2). On diagonal matrizes and prod-
ucts of matrizes det behaves nicely. A complex matrix Φ(t) ∈ U(n)
is triangularizable via conjugation by a unitary matrix, continuously
in t. Diagonal elements are loops S1 → U(1).]

Maslov index – intersection number with Maslov cycle

Looking at the Maslov cycle C in Figure 2.3, alternatively at the
Robbin-Salamon cycle Sp1,4 suggests that the Maslov index µ(Φ)
should be half the intersection number with either cycle of generic,
that is transverse, loops Φ : S1 → Sp(2n).5

2.1.3 Conley-Zehnder index of symplectic path

Consider the map

Sp(2n)→ R, Ψ 7→ det (Ψ− 1l) (2.1.4)

and note that the pre-image of 0 is precisely the Maslov cycle C.
Let Sp∗, Sp∗+, and Sp∗− be the subsets of Sp(2n) on which this map
is, respectively, different from zero, positive, and negative. Thus we
obtain the partitions

Sp(2n) = Sp∗+ ∪̇ C ∪̇ Sp∗−, , Sp∗ = Sp∗+ ∪̇ Sp∗−.

4 Write Ψ ∈ Sp(2n) in the form of a block matrix Ψ =

(
A B
C D

)
with four n×n

matrices and consider the function χ : Sp(2n) → R, Ψ 7→ detB. By definition
the Robbin-Salamon cycle Sp1 is the pre-image χ−1(0), i.e. Sp1 consists of
all Ψ with detB=0. Actually Sp(2n) is partitioned by the submanifolds Spk(2n)
of codimension k(k+ 1)/2 which consist of those Ψ with rankB = n− k and Sp1
is the complement of the codimension zero stratum Sp0(2n).

5 This is indeed the case: The Robbin-Salamon index µRS of a generic
loop is the intersection number with Sp1(2n); see definition in [RS93, §4]. The
equality µ = 1

2
µRS follows either by the formula in [RS93, Rmk. 5.3] or by the

fact that 1
2
µRS satisfies, by [RS93, Thm. 4.1], the first three axioms for µ in

Exercise 2.1.5. To confirm (normalization) calculate µRS(t 7→ ei2πt) = 2. Hint:
B(t) = − sin(2πt), intersection form above [RS93, Thm. 4.1].]
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Geometrically the Conley-Zehnder index of admissible paths

µCZ : SP∗(2n) := {Ψ : [0, 1]
C0

→ Sp(2n) | Ψ(0) = 1l, Ψ(1) ∈ Sp∗} → Z

can be defined as intersection number with the Maslov cycle C of
generic paths in Sp(2n) starting at the identity and ending away
from the Maslov cycle. Here generic not only means transverse to the
codimension one stratum, but also in the sense that the paths depart
from 1l immediately into Sp∗−. The need for the latter condition can
be read off from Figure 2.4 easily.

Figure 2.3: Cycles C, Sp1(2) Figure 2.4: CZ-index 1 of path Ψ = γ

Exercise 2.1.6. Following the original definition by Conley and
Zehnder [CZ84, §1], pick a path Ψ ∈ SP∗(2n). Then its endpoint
lies in one of the two connected open sets Sp∗+ or Sp∗−. Show that
these sets contain, respectively, the matrices

W+ := −1l, W− := diag
(
2,−1, . . . ,−1, 1

2 ,−1, . . . ,−1
)
.

Extend Ψ from its endpoint to the corresponding matrix inside the
component Sp∗± of the endpoint. Consider the extended path Ψ̃ :
[0, 2]→ Sp(2n). Define

µCZ(Ψ) := deg
(
ρ2 ◦ Ψ̃

)
and show that ρ ◦Ψ(0) = 1 ∈ S1 and that

ρ(W+) = det(−1l) = (−1)n, ρ(W−) = det (1,−1, . . . ,−1) = (−1)n−1.
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Clearly taking the square of ρ yields +1 in either case. Hence the
path ρ2 ◦ Ψ̃ : [0, 2]→ S1 closes up at time 1 and therefore taking the
degree makes sense.

The Conley-Zehnder index µCZ : SP∗(2n) → Z satisfies certain
axioms, similar to those of the Maslov index µ in Exercise 2.1.5.

Theorem 2.1.7 (Conley-Zehnder index). For Ψ ∈ SP∗(2n) the fol-
lowing holds.

(homotopy*) The Conley-Zehnder index is constant on the compo-
nents of SP∗(2n).

(loop*) µCZ(ΦΨ) = 2µ(Φ) + µCZ(Ψ) for any loop Φ : S1 → Sp(2n).

(signature*) For symmetric S = ST ∈ R2n×2n of norm ‖S‖ < 2π

µCZ

(
t 7→ etJ0S

)
=

1

2
sign (S) :=

n+(S)− n−(S)

2
.

Here sign (S) is the signature of S and n±(S) is the number
of positive/negative eigenvalues of S.

(direct sum) If n = n′ + n′′, then µ(Ψ′ ⊕Ψ′′) = µ(Ψ′) + µ(Ψ′′).

(naturality) µCZ(ΘΨΘ−1) = µCZ(Ψ) for any Θ : [0, 1]→ Sp(2n).

(determinant) (−1)n−µCZ(Ψ) = sign det (1l−Ψ(1)).

(inverse) µCZ(Ψ−1) = µCZ(ΨT ) = −µCZ(Ψ).

The (signature) axiom normalizes µCZ. The ∗-axioms deter-
mine µCZ uniquely; see e.g. [Sal99a, §2.4].

Remark 2.1.8 (Canonical Maslov and Conley-Zehnder indices).
Clockwise rotation appears naturally in Hamiltonian dynamics,
cf. (1.0.10), since J0 := −J0 is compatible with ωcan = dp ∧ dq,
not J0. Thus it is natural and convenient to introduce versions of
the Maslov and Conley-Zehnder indices normalized clockwise and
denoted by µcan and µCZ, respectively, namely
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(normalization)can

µcan({e−i2πt}t∈[0,1]) := 1, µCZ({e−it}t∈[0,1]) := 1. (2.1.5)

These indices are just the negatives of the standard anti-clockwise
normalized indices, that is µcan = −µ and µCZ = −µCZ. They
satisfy corresponding versions of the previously stated axioms, e.g.
(loop) becomes (loop)can µCZ(ΦΨ) = 2µcan(Φ) + µCZ(Ψ) and
(signature)can is displayed in (1.0.14).

In this text we use for Floer, and also Rabinowitz-Floer, homology
the canonical (clockwise) version µCZ of the Conley-Zehnder index,
because on cotangent bundles (see Section 3.5) these theories relate
canonically to the classical action functional SV which requires no
choices at all to establish Morse homology; see Remark 1.0.8.

The reason why we introduced here in great detail the standard
(counter-clockwise) version µCZ is better comparability with the lit-
erature. It spares the reader continuously translating between the
normalizations. So while we explain µCZ, the reader can conveniently
consult the literature for details of proofs, and once everything is es-
tablished for µCZ we simply note that µCZ(Ψ) = −µCZ(Ψ).

Symmetric matrizes are intimately tied to symplectic geometry:

Exercise 2.1.9. Show that for symmetric S = ST ∈ R2n×2n the

matrizes etJ0S and etJ0S are elements of Sp(2n) whenever t ∈ R.

Exercise 2.1.10 (Symmetric matrizes). More generally, given a
smooth path [0, 1] 3 t 7→ S(t) = S(t)T ∈ R2n×2n of symmetric ma-
trizes, show that the path of matrizes Ψ : [0, 1]→ R2n×2n determined
by the initial value problem

d

dt
Ψ(t) = J0S(t)Ψ(t), Ψ(0) = 1l, (2.1.6)

takes values in Sp(2n). Note that Ψ ∈ SP∗(2n) iff det (1l−Ψ(1)) 6=
0. Vice versa, given a symplectic path Ψ, show that the family of
matrizes defined by

S(t) := −J0Ψ̇(t)Ψ(t)−1 (2.1.7)

is symmetric.
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Exercise 2.1.11. a) The map (2.1.4) provides a natural co-
orientation6 of the Maslov cycle C. Does this co-orientation serve
to define the Maslov index µ as intersection number with C? (For
simplicity suppose n = 1.) [Hint: Given this co-orientation, calculate
µ for any generic loop winding around ‘the hole’ once.]
b) Is the situation better for the Robbin-Salamon cycle Sp1? Sup-
pose n = 1 and co-orient Sp1 = Sp1 by the increasing direction of the
function χ in an earlier footnote. Show that the intersection number
with Sp1 of the loop R/Z 3 t 7→ ei2πt ∈ U(1) ⊂ Sp(2) is −1 at t = 0
and +1 at t = 1/2.
c) For n = 1 consider the parity ν(B,D) of Ψ ∈ Sp1 defined in [RS93,
Rmk. 4.5]. Check: 1) For t 7→ ei2πt the parity is −1 at t = 0 and +1
at t = 1/2. 2) The intersection number of loops with Sp1 co-oriented
by χ-co-orientation times parity recovers the Maslov index µ.

By now several alternative descriptions of the Conley-Zehnder in-
dex have been found, for instance, the interpretation as intersection
number with the Maslov cycle of a symplectic path, even with ar-
bitrary endpoints, has been defined by Robbin and Salamon [RS93];
see Section 2.1.5. In case n = 1 there is a description of µCZ in terms
of winding numbers which we discuss right below.

For further details concerning Maslov, Conley-Zehnder, and other
indices see e.g. [Arn67,CZ84,RS93,Gut14] and [Sal99a].

Winding number descriptions of µCZ in the case n = 1

For the following geometric and analytic construction we recommend
the presentations in [HWZ03, §8] and [HMSa15, §2]. It is convenient
to naturally identify R2 with C and J0 with i.

Geometric description (winding intervals [HK99, §3]). A path Ψ :
[0, 1]→ Sp(2) with Ψ(0) = 1l uniquely determines via the identity

Ψ(t)zs = r(t, s)eiθ(t,s), zs := ei2πs ∈ S1,

two continuous functions r and θ. Note that r > 0 and θ(0, s) =
2πs. Define the winding number of the point zs := ei2πs ∈ S1 under

6 A co-orientation is an orientation of the normal bundle (to the top-diml.
stratum).
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Figure 2.5: Winding number ∆(s) of zs = ei2πs under path Ψ

the symplectic path Ψ, i.e. the change in argument of [0, 1] 3 t 7→
Ψ(t)zs ∈ C \ {0}, see Figure 2.5, by

∆(s) :=
θ(1, s)− 2πs

2π
∈ R.

The winding interval of the symplectic path Ψ is the union

I(Ψ) := {∆(s) | s ∈ [0, 1]}

of the winding numbers under Ψ of the elements of S1. The interval
I(Ψ) is compact, its boundary is disjoint from the integers iff Ψ(1) /∈
C, that is iff Ψ ∈ SP∗(2), and most importantly its length |I(Ψ)| <
1/2 is less then 1/2. Thus, for Ψ ∈ SP∗(2), the winding interval
either lies between two consecutive integers or contains precisely one
of them in its interior. Thus one can define

µ′(Ψ) :=

{
2k , if k ∈ I(Ψ),

2k + 1 , if I(Ψ) ⊂ (k, k + 1),

for some integer k ∈ Z. One verifies the ∗-axioms in Theorem 2.1.7
to get that µ′ = µCZ is the Conley-Zehnder index itself.

Observe that the winding number ∆(s) is an integer k iff Ψ(1)zs =
λzs is a positive multiple of zs. But the latter means that λ is a pos-
itive eigenvalue of Ψ(1). Thus k ∈ I(Ψ) which shows that positive
hyperbolic paths are of even Conley-Zehnder index. Similar consid-
erations show that negative hyperbolic and elliptic paths both have
odd Conley-Zehnder indices.
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Analytic description (eigenvalue winding numbers, [HWZ95, §3]).
The integer µ′(Ψ) can be characterized in terms of the spectral prop-
erties of the unbounded self-adjoint differential operator on L2 with
dense domain W 1,2, namely

LS := −J0
d

dt
− S(t) : L2(S1,R2) ⊃W 1,2 → L2

where the family S of symmetric matrices corresponds to Ψ
via (2.1.7). Here we assume that the symplectic path Ψ is defined on
R and satisfies Ψ(t+1) = Ψ(t)Ψ(1). This extra condition corresponds
to periodicity S(t+ 1) = S(t).

The spectrum σ(LS) of the operator LS consists, by compactness
of the resolvent, of countably many isolated real eigenvalues of finite
multiplicity accumulating precisely at ±∞. Suppose that v : S1 → R2

is eigenfunction associated to an eigenvalue λ. Note that v : S1 →
R2 cannot have any zero. Thus we can write v(t) = ρ(t)eiϑ(t) and

define its winding number by wind(v) := ϑ(1)−ϑ(0)
2π . This integer only

depends on the eigenvalue λ, but not on the choice of eigenvector.
So it is denoted by wind(λ) and called the winding number of the
eigenvalue λ. For each integer k there are precisely two eigenvalues
(counted with mulitplicities) whose winding number is k. If there is
only one such eigenvalue, its multiplicity is 2. Moreover, if λ1 ≤ λ2,
then wind(λ1) ≤ wind(λ2).
Let λ−(S) < 0 be the largest negative eigenvalue and λ+(S) ∈ N0

the next larger one. Define the maximal winding number among the
negative eigenvalues of the operator LS and its parity by

α(S) := wind(λ−) ∈ Z, p(S) :=

{
0 , if wind(λ−) = wind(λ+),

1 , if wind(λ−) < wind(λ+).

Theorem 2.1.12. If Ψ ∈ SP∗(2), then 2α(S) + p(S) = µ′(Ψ).

2.1.4 Lagrangian subspaces

A symplectic vector space (V, ω) is a real vector space with a non-
degenerate skew-symmetric bilinear form. So dimV = 2n is even.
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Exercise 2.1.13. Show, firstly, each symplectic vector space admits
a symplectic basis, that is vectors u1, . . . , un, v1 . . . , vn such that

ω(uj , uk) = ω(vj , vk) = 0, ω(uj , vk) = δjk,

and, secondly, there is a linear symplectomorphism – a vector
space isomorphism preserving the symplectic forms – to (R2n, ω0).

The symplectic complement of a vector subspace W ⊂ V is
defined by

Wω := ker ω := {v ∈ V | ω(v, w) = 0 ∀w ∈W}.

In contrast to the orthogonal complement, the symplectic comple-
ment is not necessarily disjoint to V , but V and V ω are still of
complementary dimension (as non-degeneracy is imposed in both
worlds) and (Wω)ω = W . Thus the maximal dimension of W ∩Wω

is n = 1
2 dimV . Such W , that is those with W = Wω, are called La-

grangian subspaces. Equivalently these are characterized as the n
dimensional subspaces restricted to which ω vanishes identically.

A subspace W ⊂ V is called isotropic if W ⊂ Wω, in other
words, if ω vanishes on W , and coisotropic if Wω ⊂W .

Exercise 2.1.14 (Graphs of symmetric matrizes are Lagrangian).
Show that a matrix S = ST ∈ Rn×n is symmetric iff its graph

ΓS := {(x, Sx) | x ∈ Rn}

is a Lagrangian subspace of (R2n, ω0).

Exercise 2.1.15 (Natural structures on W ⊕W ∗). Let W be a real
vector space and W ∗ its dual space. Show that on W ⊕W ∗ a sym-
plectic form Ω0 is naturally given by ((v, η), (ṽ, η̃)) 7→ η̃(v) = η(ṽ).
Show that both summands of W ⊕W ∗ are Lagrangian. Now pick,
in addition, an inner product on W , that is a non-degenerate sym-
metric bilinear form g on W . This provides a natural isomorphism
W → W ∗, v 7→ g(v, ·), again denoted by g, which naturally leads to
the inner product g∗ = g(g−1·, g−1·) on W ∗. Moreover, on W ⊕W ∗
one obtains an inner product Gg = g ⊕ g∗ and an almost complex
structure Jg; cf. (2.4.28). Show compatibility Ω0(·, Jg·) = Gg.
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Exercise 2.1.16. Show that the graph ΓΨ of a linear symplecto-
morphism Ψ : V → V is a Lagrangian subspace of the cartesian
product V × V equipped with the symplectic form (−ω) ⊕ ω that
sends ((v, w), (v′, w′)) to −ω(v, v′) + ω(w,w′). Note that the diago-
nal subspace ∆ := {(v, v) | v ∈ V } is Lagrangian.

2.1.5 Robbin-Salamon index – degenerate end-
points

A symplectic path Ψ : [0, 1] → Sp(2n) gives rise to the family of
symmetric matrizes S(t) given by (2.1.7) for which, in turn, it is a
solution to the ODE (2.1.6). A number t ∈ [0, 1] is called a crossing if
det (1l−Ψ(t)) = 0 or, equivalently, if 1 is eigenvalue of Ψ(t). In other
words, if Ψ(t) hits the Maslov cycle C: The eigenspace Eig1Ψ(t) =
ker (1l−Ψ(t)) 6= 0 must be non-trivial.

At a crossing t the quadradic form given by

Γ(Ψ, t) : Eig1Ψ(t)→ R, ξ0 7→ ω0(ξ0, Ψ̇(t)ξ0) = 〈ξ0, S(t)ξ0〉,

is called the crossing form. A crossing is called regular if the
crossing form is non-degenerate. Regular crossings are isolated. If
all crossings are regular the Robbin-Salamon index µRS(Ψ) was
introduced in [RS93], although here we repeat the presentation given
in [Sal99a, § 2.4], as the sum over all crossings t of the signatures of
the crossing forms where crossings at the boundary points t = 0, 1 are
counted with the factor 1

2 only. For the particular paths Ψ ∈ SP∗(2n)
the Robbin-Salamon index

µRS(Ψ) :=
1

2
signS(0) +

∑
t

sign Γ(Ψ, t) = µCZ(Ψ)

reproduces the Conley-Zehnder index.

Exercise 2.1.17. a) Check the identity in the definition of Γ. b) The
factor 1

2 at the endpoints is introduced in order to make µRS(Ψ) in-
variant under homotopies with fixed endpoints. To see what happens
homotop the path γ in Figure 2.4 to Ψ(t) = eiπt and calculate the
crossing forms at t = 0 in both cases.
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In [RS93] an index for a rather more general class of paths is con-
structed: A relative index µRS(Λ,Λ′) for pairs of paths of Lagrangian
subspaces of a symplectic vector space (V, ω); cf. Exercise 2.1.14.
Here crossings are non-trivial intersections Λ(t) ∩ Λ′(t) 6= {0}. The
Conley-Zehnder index on SP∗(2n) is recovered by choosing the sym-
plectic vector space (R2n ×R2n,−ω0 ⊕ ω0) and the Lagrangian path
given by the graphs ΓΨ(t) of Ψ relative to the constant path given by
the diagonal ∆. Indeed µCZ(Ψ) = µRS(ΓΨ,∆) by [RS93, Rmk. 5.4].
Note that ΓΨ(t) ∩∆ ' Eig1 Ψ(t).

2.2 Symplectic vector bundles

Suppose E → N is a vector bundle of real rank 2n over a manifold-
with-boundary of dimension k; where ∂N = ∅ is not excluded. A
symplectic vector bundle is a pair (E,ω) where ω is a family of
symplectic bilinear forms ωx, one on each fiber Ex. Similarly a com-
plex vector bundle is a pair (E, J) where J is a family of complex
structures Jx on the fibers Ex, that is J2

x = −IdEx . Existence of a
deformation retraction, such as h in (2.1.2), of Sp(2n) onto U(n) has
the consequence that any symplectic vector bundle (E,ω) is fiber-
wise homotopic, thus isomorphic as a vector bundle,7 to a complex
vector bundle (E, Jω) called the underlying complex vector bun-
dle.8 A Hermitian vector bundle (E,ω, J, gJ) is a symplectic and
complex vector bundle (E,ω, J) such that J is ω-compatible, that is
gJ := ω(·, J ·) is a Riemannian bundle metric on E.

Proposition 2.2.1. Two symplectic vector bundles (E1, ω1) and
(E2, ω2) are isomorphic if and only if their underlying complex bun-
dles are isomorphic.

Two proofs are given in [MS98, §2.6], one based on the deforma-
tion retraction (2.1.2), the other on constructing a homotopy equiva-
lence between J (V, ω), the space of ω-compatible complex structures
on a symplectic vector space, and the convex, thus contractible, non-
empty space of all inner products on V .

7 A vector bundle isomorphism is a diffeomorphism between the total
spaces whose fiber restrictions are vector space isomorphisms.

8 The complex structure Jω , but not its isomorphism class, depends on h.
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A trivialization of a bundle E is an isomorphism to the trivial
bundle which preserves the structure under consideration. A unitary
trivialization of a Hermitian vector bundle E is a smooth map

Φ : N × R2n → E, (x, ξ) 7→ Φ(x, ξ) =: Φ(x)ξ, (2.2.8)

which maps fibers linearly isomorphic to fibers, that is Φ−1 is a vector
bundle isomorphism to the trivial bundle, and simultaneously identi-
fies the compatible triple ω, J, gJ on E with the standard compatible
triple ω0, J0, 〈·, ·〉0 on R2n.

Proposition 2.2.2. A Hermitian vector bundle E → Σ over a com-
pact Riemann surface Σ with non-empty boundary ∂Σ admits a uni-
tary trivialization.

The idea is to prove in a first step that for any path γ : [0, 1] →
Σ the pull-back bundle γ∗TΣ → [0, 1] can be unitarily trivialized
even if one fixes in advance unitary isomorphisms Φ0 : R2n → Eγ(0)

and Φ1 : R2n → Eγ(1) over the two endpoints of γ. To see this
construct unitary frames over small subintervalls of [0, 1] starting
with a unitary basis of Eγ(t) at some t, extend to a small intervall via
parallel transport, say with respect to some Riemannian connection
on E, and then exposed to the Gram-Schmidt process over C. The
coupling of the resulting unitary trivializations over the subintervals
is based on the fact that the Lie group U(n) is connected. In the
second step one uses a parametrized version of step one to deal with
the case that Σ is diffeomorphic to the unit disk D ⊂ R2. 9 Step
three is to prove the general case by an induction that starts at step
two and whose induction step is again by a parametrized version of
step one, this time for the disk with two open disks removed from its
interior (called a pair of pants).

2.2.1 Compatible almost complex structures

Given a symplectic manifold (M,ω), consider an endomorphism J of
TM with J2 = −1l. Such J is called an almost complex structure

9 Trivialize along rays starting at the origin: Extend a chosen frame sitting
at the origin simultaneously along all rays, say by parallel transport, along an
interval [0, ε]. Now apply Gram-Schmidt to the family of frames and repeat the
process on [ε/2, 3ε/2], and so on.
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on M .10 If, in addition, the expression

gJ(·, ·) := ω(·, J ·)

defines a Riemannian metric onM , then J is called an ω-compatible
almost complex structure on M . The space J (M,ω) of all such
J is non-empty and contractible by [MS98, Prop. 2.63].

Exercise 2.2.3. Pick J ∈ J (M,ω) and let ∇ be the Levi-Civita
connection associated to gJ . Suppose ξ is a smooth vector field on
M , show (i) and (ii):11

(i) J preserves gJ and (∇ξJ)J + J(∇ξJ) = 0;

(ii) J and (∇ξJ) are anti-symmetric with respect to gJ ;

(iii) J(∇JξJ) = ∇ξJ .

2.2.2 First Chern class

Up to isomorphism, symplectic12 vector bundles E over manifolds
N are classified by a family ck(E) ∈ H2k(N) of integral cohomology
classes of N called Chern classes. If N = Σ is a closed orientable
Riemannian surface, the first Chern class is uniquely determined by
the first Chern number which is the integer obtained by evaluating
the first Chern class on the fundamental cycle Σ. Thus, slightly
abusing notation, in case E → Σ we shall denote the first Chern
number by c1(E) ∈ Z. We cite again from [MS98].

Theorem 2.2.4. There exists a unique functor c1, called the first
Chern number, which assigns an integer c1(E) ∈ Z to every sym-
plectic vector bundle E over a closed oriented Riemann surface Σ and
satisfies the following axioms.

(naturality) Two symplectic vector bundles over Σ are isomorphic
iff they have the same rank and the same Chern number.

10 Such J is called a complex structure or an integrable complex struc-
ture on M , if it arises from an atlas of M consisting of complex differentiable
coordinate charts to (Cn, i).

11Part (iii) is less trivial; see [Sal99b, Le. 3.18].
12 equivalently, complex vector bundles, by Proposition 2.2.1
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(functoriality) For any smooth map ϕ : Σ′ → Σ of oriented
Riemann surfaces and any symplectic vector bundle E it holds
c1(ϕ∗E) = deg(ϕ) · c1(E).

(additivity) For any two symplectic vector bundles E1, E2 → Σ

c1(E1 ⊕ E2) = c1(E1 ⊗ E2) = c1(E1) + c1(E2).

(normalization) The Chern number of Σ is c1(Σ) := c1(TΣ) =
2− 2g where g is the genus.

The proof is constructive, based on the Maslov index µ for sym-
plectic loops: Pick a splitting Σ = Σ1 ∪C Σ2 such that ∂Σ1 = C =
−∂Σ2 as oriented manifolds. So the union C = S1 ∪̇ . . . ∪̇S1 of, say
`, embedded 1-spheres is oriented as the boundary of Σ1, say by the
outward-normal-first convention. Given a symplectic vector bundle
E over Σ, pick unitary13 trivializations

Σi × R2n → Ei, (x, ξ) 7→ Φi(x)ξ, i = 1, 2 (2.2.9)

and define the overlap map Ψ : C → Sp(2n) by x 7→ Φ1(x)−1Φ2(x).

Exercise 2.2.5 (First Chern number). Prove uniqueness in Theo-
rem 2.2.4. Show that the first Chern number of E → Σ is the degree
of the composition

c1(E) = deg
(
C

Ψ−→ Sp(2n)
ρ−−−−→

(2.1.3)
S1
)

=
∑̀
j=1

µ(γj)

by verifying for deg(ρ◦Ψ) the four axioms for the first Chern number.
(The second identity for the Maslov index µ is obvious: Just pick
an orientation preserving parametrization γj : S1 → S1 for each
connected component of C.)
[Hint: Show, or even just assume, first that deg(ρ◦Ψ) is independent
of the choice of, firstly, trivialization and, secondly, splitting. Use
these two facts, whose proofs rely heavily on Lemma 2.2.6 below, to
verify the four axioms.]

13 a symplectic trivialization (just required to identify ω0 with ω) is fine



i
i

“CBM31-ENG˙weber” — 2017/6/15 — 2:12 — page 41 — #49 i
i

i
i

i
i

[SEC. 2.2: SYMPLECTIC VECTOR BUNDLES 41

Lemma 2.2.6. Let Σ be a compact oriented Riemann surface with
non-empty boundary. A smooth map Ψ : ∂Σ→ Sp(2n) extends to Σ
iff deg (ρ ◦Ψ) = 0.

Exercise 2.2.7 (Obstruction to triviality). Use the axioms to show
that the first Chern number c1(E) vanishes iff the symplectic vector
bundle is trivial, that is isomorphic to the trivial Hermitian bundle
Σ× (R2n, ω0, J0, 〈·, ·〉0).

Exercise 2.2.8 (First Chern class). Suppose E is a symplectic vector
bundle over any manifold N . Observe that the first Chern number
assigns an integer c1(f∗E) to every smooth map f : Σ → N defined
on a given closed oriented Riemannian surface. Use the axioms to
show that this integer depends only on the homology class of f and
so the first Chern number generalizes to an integral cohomology class
c1(E) ∈ H2(N) called the first Chern class of E.

The first Chern class of a symplectic manifold, denoted by
c1(M,ω) or just by c1(M), is the first Chern class of the tangent
bundle E = TM .

Exercise 2.2.9 (Splitting Lemma14). Every symplectic vector bun-
dle E over a closed oriented Riemannian surface Σ decomposes as a
direct sum of rank-2 symplectic vector bundles.
[Hint: View E as C-vector bundle, C-dual E∗, so c1(E) = −c1(E∗) =
−c1(ΛnE∗) = c1((ΛnE∗)∗); cf. [GH78, p.414]. (naturality).]

Exercise 2.2.10 (Lagrangian subbundle). Suppose E → Σ is a sym-
plectic vector bundle over a closed oriented Riemannian surface. If
E admits a Lagrangian subbundle L, then the first Chern number
c1(E) = 0 vanishes. (Consequently the vector bundle E is unitarily
trivial by Exercise 2.2.7.)
[Hint: The unitary trivializations (2.2.9) identify Lagrangian sub-
spaces. Modify them so that each Lagrangian in L gets identified
with the horizontal Lagrangian Rn× 0. Then the overlap map Ψ will
be of the form (2.1.3) with Y = 0, so the determinant is real and the
degree therefore zero.]

14 There is a general theory behind, the splitting principle; cf. [BT82, §21].
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2.3 Hamiltonian trajectories

2.3.1 Loops – continuous, immersed, simple

Suppose N is a manifold.

Paths, periods, loops – continuous case

Definition 2.3.1 (Paths and curves, closed, simple, constant). A
path is a continuous map of the form γ : R → N and its image
c ⊂ N is called a curve in N . A finite path is a continuous map α :
[a, b] → N defined on a compact interval. Its image c is a compact
curve. Note: A finite path is not a path.

A finite path α : [a, b] → N is called closed if α(a) = α(b) and
its image is called a closed curve. A path β, finite or not, is called
a simple if it does not admit self-intersections β(t) = β(s) at times
t 6= s in the interior of the domain. The image of a simple path is
called a simple curve. A constant path is a path whose image is
a point, its image is a constant curve. The image of a point path
α : [a, a]→ N is called a point curve.

Of course, a constant path is not simple – unless it is a point path,
of course..

Definition 2.3.2 (Paths, periodic and non-periodic). Consider a
path γ : R → N . If there is a real τ 6= 0 such that γ(τ + ·) = γ(·),
then γ is called a periodic path and τ a period of γ. One also
says that the path γ is τ -periodic. If there is no such τ 6= 0, then
γ is called non-periodic. By definition τ = 0 is considered a period
of any path, called the trivial period. Let Per(γ) be the set of all
periods of γ, including the trivial period 0.

Observe that Per(γ) = {0} iff γ is a non-periodic path and
Per(γ) = R iff γ is a constant path. Do not confuse closed finite path
with periodic path – the domains [a, b] and R are different. However, a
closed finite path α : [0, b]→ N naturally comes with an associated
b-periodic path

α# : R→ N, t 7→ α(t mod b), t mod 0 := 0.
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Vice versa, a non-constant τ -periodic loop γ : R → N is the infinite
concatenation of the closed finite paths αk = γ| : [kτ, (k+ 1)τ ]→ N ,
k ∈ Z.

Exercise 2.3.3. Given a path γ : R → N , show that Per(γ) is a
closed subgroup of (R,+). Under the convention inf ∅ = ∞ define
the minimal period

τγ := inf{τ ∈ Per(γ) | τ > 0} ∈ [0,∞].

Show that the period group Per(γ) of a path comes in three flavors,
namely

Per(γ) =


{0} , non-periodic path (τγ =∞),

R , constant path (τγ = 0),

τγZ , periodic path of prime period τγ > 0.

(2.3.10)
[Hint: Consult [PP09, Prop. 1.3.1] if you get stuck.] If the period
groups of two paths are equal, will the paths in general become equal
after suitable time shift?

Definition 2.3.4 (Divisor parts and corresponding loops). A divi-
sor part of a periodic path γ : R→ N is a closed finite path

γτ : [0, |τ |]→ N, t 7→


γ(t) , τ > 0,

γ(0) , τ = 0,

γ̂(t) := γ(−t) , τ < 0,

(2.3.11)

one such path for each period τ ∈ Per(γ). The corresponding map
on the quotient15

γτ : R/τZ→ N, [t] 7→


γ(t) , τ > 0,

γ(0) , τ = 0,

γ̂(t) = γ(−t) , τ < 0,

(2.3.12)

is called the loop associated to the period τ ∈ Per(γ) = τγZ of
the path γ. A loop is a map of the form (2.3.12). (We often simply

15 By uτ we also denote “freezing the variable τ”, but in different context.
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write γ.) For a non-constant periodic path divisor part and loop
associated to τγ are denoted by

γprime : [0, τγ ]→ N, γprime : R/τγZ→ N, t 7→ γ(t), (2.3.13)

and called the prime part and the prime loop of the path γ : R→
N , respectively. It is also useful to call the loop γprime the prime
loop of any loop γτ with τ ∈ Per(γ). Observe that γkτγ : R/kτγZ→
N is a k-fold cover of γprime. A simple loop is an injective prime
loop γprime, equivalently, the finite path γprime : [0, τγ ]→ N is simple.

Exercise 2.3.5. Find a path whose prime part is not simple. Show
that a simple loop is a homeomorphism from a circle to its image.

Do not confuse prime period of a path with the time of first re-
turn, namely γ(T ) = γ(0) but γ(t) 6= γ(0) at earlier times t ∈ (0, T );
just think about a figure eight with γ(0) being the crossing point.
For trajectories of smooth autonomous vector fields both notions co-
incide, prime parts are automatically simple, and prime loops are
circle embeddings; cf. Exercise 2.3.19! For a periodic immersion
γ : R → N , thus non-constant, an associated loop is simple iff it is
an embedding.

Remark 2.3.6 (Negative periods). Consider a path γ : R → N .
Note that for negative periods τ divisor parts (2.3.11) and associated
loops (2.3.12) run backwards, more precisely they follow the time
reversed path

γ̂(t) := γ(−t), t ∈ R, τ̂ := −τ.

Certainly γ is τ -periodic iff γ̂ is τ̂ -periodic and Per(γ̂) = Per(γ).

Definition 2.3.7 (Concatenation of finite paths and loops). (i) Con-
sider two consecutive finite paths, that is α : [a, b] → N and
β : [b, c] → N such that α ends at the point at which β begins.16

The concatenation of two consecutive finite paths is defined by fol-
lowing first α and then β, notation

β#α : [a, c]→ N.

16 If the domains are [a, b] and [c, d] replace β by β̃ : [b, b+d−c] 3 t 7→ β(t−b+c).
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In particular, closed finite paths can be self-concatenated. Suppose
α : [0, b] with b > 0 is a closed finite path and k ∈ Z is an inte-
ger. Consider the closed finite path given by the k-fold concatena-
tion α# . . .#α : [0, |k|b] → N , traversed backwards in case k < 0;
cf. (2.3.11). Denote by

α#k : R/kbZ→ N (2.3.14)

the associated kb-periodic loop; mind convention (2.3.12) if k ≤ 0.
To k = 0 associate the point path [0, 0]→ α(0) and the constant loop
α#0 ≡ α(0).

(ii) In case γτ is a loop with period τ 6= 0, use in (2.3.14) the closed
finite path α given by the divisor part γτ : [0, |τ |] → N , cf. (2.3.11),
to get the loop

γ#k
τ : R/kτZ→ N

of period kτ . It is a k-fold cover of the τ -periodic loop γτ . In
particular γ#k

τγ = γ#k
prime : R/kτγZ→ N is a k-fold cover of the prime

loop of the loop γτ .

Definition 2.3.8 (Time shift and uniform change of speed). If a
path γ : R→ N is τ -periodic, then so is any time shifted path

γ(T ) := γ(T + ·), T ∈ R, Per(γ(T )) = Per(γ) = τγZ.

The uniform change of speed operation on a loop γ, namely

γµ := γ(µ·), µ ∈ R, where γ0 ≡ γ(0), (2.3.15)

changes the prime period by τγµ = 1
µ · τγ for µ ∈ R\{0} and τγ0 = 0.

Remark 2.3.9 (In/compatibilities). The operation of k-fold self-
concatenation γ#k

τ of a τ -periodic loop γτ is compatible with ODEs
and also preserves periods in the sense that τ is still a period after
the operation. Period preservation also holds true for uniform integer
speed changes γk, but these do in general not map ODE solutions to
solutions for k 6= 1.

Remark 2.3.10 (Loops and periods – immersed case). An immer-
sion is a smooth map whose differential is injective at every point.
Starting from Definition 2.3.1 redo all definitions and constructions
replacing continuous path by immersed path and investigate if and
how things change.
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Remark 2.3.11 (Loops and periods – embedded case). Given only
immersed paths γ : R → N , a loop is an embedding iff it is simple,
in which case it is prime (but prime is not sufficient). Investigate if
and how the previous constructions change on the space of embedded
loops. A crucial observation is that, given a non-constant periodic
trajectory of an autonomous smooth vector field on N , an associated
loop is embedded iff it is prime, as there are no self-intersections.

2.3.2 Hamiltonian flows

Throughout let (M,ω) be a symplectic manifold.

Autonomous Hamiltonians F

Given a function F : M → R, by non-degeneracy of ω the identity of
1-forms

dF = −iXFω := −ω(XF , ·) (2.3.16)

determines a vector field XF = Xω
F on M , called the Hamiltonian

vector field associated to H or the symplectic gradient of H.
The function F is called the Hamiltonian of the dynamical system
(M,XF ), it is also called autonomous since it does not depend on
time. For ω-compatible almost complex structures J the Hamiltonian
vector field is given by

XF = J∇F (2.3.17)

where the gradient ∇F is taken with respect to the induced Rie-
mannian metric, that is ∇F is determined by dF = gJ(∇F, ·). We
denote the flow generated by the Hamiltonian vector field of an au-
tonomous Hamiltonian by φ = {φt}, alternatively by φF = {φFt }, as
opposed to the greek letter ψ = {ψt} used in case of non-autonomous
Hamiltonians which are usually denoted by H = Ht.

An energy level is a pre-image F−1(c) ⊂ M of an autonomous
Hamiltonian. It is called an energy surface if c is a regular value
of F , notation S = F−1(c). In particular, energy surfaces S con-
tain no singularities, that is zeroes, of XF and by the regular value
theorem they are smooth codimension one submanifolds of M . Most
importantly, the Hamiltonian flow preserves its energy levels:

d

dt
F (φFt p) = 0, F : M → R, (2.3.18)
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for every initial condition p ∈M .

Exercise 2.3.12. Show (2.3.16) determines XF uniquely. Prove XF

is tangent to energy surfaces. More generally, show (2.3.18).

Remark 2.3.13 (Closed orbit vs. image of closed finite trajectory).

a) Suppose the flow of XF is complete, that is φ = {φt}t∈R. The
solution path z(t) := φtz0, t ∈ R, of ż = XF (z) with z(0) = z0 is
called a Hamiltonian path or a flow trajectory. It is either an
immersed line z : R # M (embedded: z(R) ∼= R, or self-tangent:
z(R) ∼= S1, but not self-transverse) or it is constant: z(R) = {pt}.
The image c of a flow trajectory z : R→M is called a flow line or an
orbit in M . In case the solution path forms a loop z : R/τZ→M we
call it a Hamiltonian loop and its image c = z(R) a closed orbit.
Thus a closed orbit is either an embedded circle or a point, in fact,
with respect to any autonomous vector field X,

b) For a non-constant trajectory z of XF the prime period τz as
a loop is the time of first return z(T ) = z(0) and z(t) 6= z(0) at all
earlier times t ∈ (0, T ). Thus the loop prime period τz is also called
the trajectory prime period.

c) For a time-dependent vector field Xt on a manifold N the
non-constant trajectories are still immersions, but now they can have
self-crossings: A trajectory γ : R → M might close up at some time
γ(t∗) = γ(0) without being t∗-periodic, even having a corner; think
about the figure eight curve. In this case γ : [0, t∗] → N is just a
closed finite path that solves the equation, but its image has nothing
to do with an orbit.17 In general there is no first return condition
z(T ) = z(0) – even when requiring equality ż(T ) = ż(0) of first or
higher order derivatives – that can guarantee that γ is a loop, let
alone that T determines the loop prime period. However, if γ is a
periodic trajectory, then its image is either an immersed circle or a
point. The vector field being autonomous, or not, the image of a
periodic trajectory is called a closed orbit.

d) The running-at-k-fold-speed operation zk, see (2.3.15), that
produces new loops from a non-constant trajectory z does not pro-
duce new trajectories in general, as zk might not satisfy the ODE
any more.

17 An orbit is the image of a trajectory, but the domain of such is R.
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Remark 2.3.14. Given F : M → R, note that z is a τ -periodic
trajectory of F iff z1/τ = z(·/τ) is a 1-periodic trajectory of τ−1F .
So while changing speed maps loops to loops, it does not map F -
trajectory to F -trajectory, in general.

Remark 2.3.15 (Multiple cover problem – variable period). This
doesn’t refer to change of speed, but to path concatenation: Given
a τ -periodic trajectory z : R → M , consider that same map instead
of on [0, τ ] on the larger domain [0, kτ ], k ∈ N, to get a periodic
trajectory k times covering z – same speed but k-fold time.

Proposition 2.3.16 (C1 and C2 small Hamiltonians, [HZ11, §6.1]).
Suppose M is a closed symplectic manifold. Sufficiently C1 small
Hamiltonians H : S1 × M → R do not admit non-contractible 1-
periodic trajectories. Sufficiently C2 small autonomous Hamiltonians
F : M → R do not admit 1-periodic trajectories at all – except the
constant ones sitting at the critical points.

Idea of proof. Pick an ω-compatible almost complex structure to con-
clude that the length of a periodic trajectory z of period one is small
if the Hamiltonian is C1 small, autonomous or not. Indeed

length(z) =

∫ 1

0

|ż(t)| dt =

∫ 1

0

|∇Ht(z(t))| dt.

But a short loop z in a compact manifold is contractible and its
image is covered by a Darboux chart. For autonomous F : M → R
the argument on page 185 in [HZ11] shows that ż = 0 whenever the
Hessian of F is sufficiently small.

Non-autonomous Hamiltonians H

A time dependent Hamiltonian H : R ×M → R, notation Ht(x) :=
H(t, x), generates a time dependent Hamiltonian vector field Xt :=
XHt by considering (2.3.16) for each time t. One obtains a family
ψt = ψHt of symplectomorphisms18 on M , called the Hamiltonian
flow generated by H, via

d

dt
ψt,0 = Xt ◦ ψt,0, ψ0,0 = id, ψt := ψt,0. (2.3.19)

18 A symplectomorphism is a diffeomorphism preserving the symplectic
form: ψ∗ω = ω.



i
i

“CBM31-ENG˙weber” — 2017/6/15 — 2:12 — page 49 — #57 i
i

i
i

i
i

[SEC. 2.3: HAMILTONIAN TRAJECTORIES 49

The family19 ψ = {ψt} is called a complete flow if it exists for
all t ∈ R. Important examples are autonomous Hamiltonians F and
periodic in time Hamiltonians Ht+1 ≡ Ht, both on closed manifolds.
A Hamiltonian trajectory, is a path of the form z(t) = ψtp with
p ∈M . In case z is a loop we call it a Hamiltonian loop. In either
case z satisfies the Hamiltonian equation

ż(t) = Xt(z(t)), z(0) = p.

Hamiltonian flows, autonomous or not, preserve the symplectic form.
By definition20 of the Lie derivative and Cartan’s formula

d

dt
ψ∗t ω =: ψ∗t (LXtω) = ψ∗t (iXtdω + diXtω) . (2.3.20)

This shows that the family of diffeomorphisms ψt generated by the
family of vector fields Xt preserves ω, that is ψ∗t ω = ω, if and only if
the 1-form iXtω is closed.21 This holds, for instance, if Xt is Hamil-
tonian (diXtω = ddH = 0).

Periodic trajectories and their loop types

Remark 2.3.17 (Loops, loop trajectories, closed characteristics).

Topology. A non-constant loop γ : R/τZ → N is a simple, thus
prime, loop if it admits no self-intersections, in symbols γ−1(γ(t)) =
{t} ∀t. Given two non-constant loops γ and γ̃, if γ̃ = γ(k·) for some
integer k, one says that γ is k-fold covered by γ̃, or a multiply
covered loop in case |k| > 1, in symbols γk = γ̃. Two loops γ
and γ̃ are called geometrically distinct if their images are not
equal as sets. Otherwise, they are geometrically equivalent, in
symbols γ ∼ γ̃. Geometrically equivalent loops, although having the
same image set, certainly can be very different as maps. For instance,

19 If Xt depends on time, it is wise to keep track of the initial time t0. As
indicated in (2.3.19) we shall always use t0 = 0. The notation ψt,0 helps to
remember that ψt+s,0 is in general not a composition of ψs,0 and ψt,0. To obtain
the composition law ψt,sψs,r = ψt,r one would have to allow for variable initial
times, not just t0 = 0. For simplicity ψt,0 =: ψt.

20 Defining LX axiomatically, the definition becomes Thm. 2.2.24 in [AM78].
21 Such vector fields are called symplectic, generalizing the Hamiltonian ones.
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subloops of a figure-eight can be traversed a different number of times
or in a different order.

Analysis. Whereas any loop in a manifold N is a periodic trajec-
tory of some periodic vector field Xt, only the rather restricted class
of embedded loops arises as (prime parts of) periodic trajectories of
autonomous vector fields; see Exercise 2.3.18. By (2.3.10) the prime
part of a periodic trajectory of an autonomous vector field X is ei-
ther constant, an embedded loop or self-concatenations of such (same
speed but k-fold life time). Moreover, in the autonomous case two
periodic trajectories z, z̃ are geometrically distinct iff their images
are disjoint, they are geometrically equivalent iff one k-fold covers
the other one.

Geometry. Let X be an autonomous vector field on a manifold N .
Let Pall(X) be the set of loop trajectories, whatever (finite) period,
and P∗all(X) the non-constant ones. The set of equivalence classes

C(X) := P∗all(X)/ ∼ (2.3.21)

represents the geometrically distinct non-constant closed orbits of X.
Different elements are disjoint embedded circles tangent to X. Rep-
resentatives y, z of the same element of C(X) are multiple covers of
a common simple trajectory x. In other words, the set C(X) corre-
sponds to the integral submanifolds of the vector field X which are
diffeomorphic to S1. These are called the closed characteristics of
the (autonomous) vector field X.

In Chapters 4 and 5 we will deal with the following special
case: The manifold is a closed regular level set S := F−1(c) of an
autonomous Hamiltonian F on a symplectic manifold (M,ω) and
X = XF is the Hamiltonian vector field. Note that in this case there
are no zeroes of XF , equivalently of dF , on F−1(c) by regularity of
the value c. Furthermore, whenever S is a regular level set of both
Hamiltonians F and K, then XF = fXK along S for some non-
vanishing function f on S; cf. Exercise 4.1.8. We use the notation

C(S) = C(S, ω) := C(XF |S) (2.3.22)

for the set of closed characteristics on the closed regular level set
S ⊂ (M,ω).
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Exercise 2.3.18 (Loops are generated by vector fields).
a) A loop z in N is the trajectory of a periodic vector field Xt+τ = Xt.
b) An embedded loop z in N is a trajectory of some autonomous
vector field X.
[Hint: First case N = Rk, graph of z in [0, 1]×Rk, cutoff functions.]

Exercise 2.3.19 (Periodic geodesics are self-transverse, but not self–
tangent). Let N be a Riemannian manifold with Levi-Civita connec-
tion ∇. Let γ : R → N be a non-trivial periodic geodesic, that is
γ is non-constant periodic and satisfies ∇tγ̇ = 0. There are precisely
two options. Such γ is

1) either multiply covered or
2) self-transverse and γprime : R/τγZ→ N is called prime closed.

Self-transverse means that if two arcs of γ meet in M they intersect
transversely, so there is just a finite number of intersection points by
compactness of S1.

a) Show that the two options are characterized by the two possi-
bilities whether the set T of times t0 such that γ(t0) has more than
one pre-image22 under γ is an infinite set (in fact S1) or a finite set.

b) Why are there no self-intersections of trajectories of au-
tonomous vector fields, but for geodesics they can appear?
[Hint: Either γ admits a self-tangency (ODE of 2nd order), or not.]

2.3.3 Conley-Zehnder index of Hamiltonian loops

Given a symplectic manifold (M,ω), consider a 1-periodic family of
Hamiltonians Ht+1 = Ht : M → R with Hamiltonian flow ψt = ψt,0.
Let P(H) be the set of 1-periodic Hamiltonian loops z : S1 →M .

Exercise 2.3.20. Check that P(H)→ Fixψ1, z 7→ z(0), provides a
bijection towards the set of fixed points of the time-1-map.
[Hint: Recall that ψ1 abbreviates ψ1,0.]

A 1-periodic trajectory z is called non-degenerate if 1 is not an
eigenvalue of the linearized time-1-map, that is

det (dψ1(p)− 1l) 6= 0, p := z(0). (2.3.23)

22 In symbols |γ−1(γ(t0))| ≥ 2. Such γ(t0) is called a multiple or a double
(= 2) point.
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Exercise 2.3.21. Show that condition (2.3.23) implies that p is
an isolated fixed point of ψ1. Vice versa, would isolatedness im-
ply (2.3.23)? [Hint: Condition (2.3.23) means that the graph of ψ1

in the product manifold M ×M is transverse at p to the diagonal
∆ := {(p, p) | p ∈M}.]

Exercise 2.3.22 (Finite set). If the manifold M is closed and all
1-periodic trajectories are non-degenerate, then the set Fixψ1, hence
P(H), is a finite set.

In addition to non-degeneracy, suppose the loop trajectory z :
S1 = ∂D → M is contractible. Fix an extension of z, namely a
smooth map v : D→M that coincides with z on ∂D. Moreover, pick
an auxiliary ω-compatible almost complex structure J ∈ J (M,ω),
so the Hermitian vector bundle (E,ω, J, gJ) with E = v∗TM → D
admits a unitary trivialization Φv by Proposition 2.2.2, that is Φv
identifies the compatible triples (ω0, J0, 〈·, ·〉0) and (ω, J, gJ) where
J0 rotates counter-clockwise and corresponds to i. Restriction to the
boundary S1 provides a unitary trivialization, say Φz, of the pull-
back bundle z∗TM → S1. These choices provide a symplectic path
Ψz,v ∈ SP∗(2n) defined by

R2n R2n

Tz(0)M Tz(t)M

Ψz,v(t)

Φv(z(t))Φv(z(0))−1

dψt(z(0))

(2.3.24)

The standard and the canonical Conley-Zehnder indices of the
non-degenerate 1-periodic trajectory z are defined and related
by

µCZ(z) := µCZ(Ψz,v) = −µCZ(Ψz,v) =: −µCZ(z). (2.3.25)

In general these indices depend on the spanning disk v, unless
c1(M)|π2(M) = 0. Sometimes it is useful to denote µCZ(z) by
µCZ(z;H) or even by µCZ(z;H,ω).

Exercise 2.3.23. Show that Ψz,v(t) ∈ Sp(2n) and that Ψz,v(1) ∈
Sp∗. Show that µCZ(Ψz,v) does not depend on the particular unitary
trivialization Φz. Show that µCZ(z) is independent of the choice of v
if c1(M) vanishes on π2(M).
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Exercise 2.3.24 (Critical points are periodic trajectories). Suppose
z0 is a non-degenerate critical point of a time independent function
H : M → R. Then the constant periodic trajectory t 7→ z0 is non-
degenerate and the canonical Conley-Zehnder index and the Morse
index of z0, see Section 3.1.1, are related by

µCZ (z0) : = µCZ
(
Ψz0 : t 7→ e−tJ0St

)
=

1

2
sign (S)

= n− indH(z0) = ind−H(z0)− n
(2.3.26)

whenever ‖S‖ < 2π and where dimM = 2n. To obtain the first
displayed formula, pick an ω-compatible almost complex structure J ,
the induced metric gJ , and an orthonormal basis of eigenvectors of
the Hessian of H at z0 and denote the corresponding Hessian matrix
by S.23 Apply the axiom (signature)can.

2.4 Cotangent bundles

Cotangent bundles are the phase spaces in the Hamiltonian formu-
lation of classical mechanics. Given the tremendous success of the
theory in physics, not to mention daily life, one wouldn’t risk much
predicting that these bundles should have a distinct position in the
mathematical world as well. Indeed

Cotangent bundles π : T ∗N → N over a manifold

(S1) admit a canonical symplectic form and a canonical 1-form24

ωcan = dλcan = ”dp ∧ dq ”, λcan(z) : TzT
∗N → R,
ζ 7→ z ◦ dπ(z)ζ

The Liouville form λcan is characterized by the property that

σ∗λcan = σ (2.4.27)

for every 1-form σ ∈ Ω1(N), thus called tautological 1-form;

23 Xω
H = J∇H for (M,ω, J, gJ ), but Xω0

K = −J0∇K for (R2n, ω0, J0, 〈·, ·〉0.
24 Local coordinates ϕ : U → Rn on N induce the diffeomorphism T ∗ϕ :

T ∗U → ϕ(U) × Rn taking z = (q, p) to (x, y) := (ϕ(q), (dϕ(q)−1)∗p) ∈ R2n and
identifying ωcan with ωcan(R2n).
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(S2) have a canonical Lagrangian subbundle of the tangent bundle25

V := ker dπ ⊂ T (T ∗N);

(S3) admit along their zero section a natural Lagrangian splitting26

TONT
∗N =

=:H︷ ︸︸ ︷
im do⊕

=:V︷ ︸︸ ︷
ker dπ

∼=−→ TN ⊕ T ∗N, ON = o(N),

(h, v) 7→ (wh, θv)

The isomorphisms27 w : im do → TN and θ : ker dπ → T ∗M
are determined via the inclusion o : N ↪→ T ∗N , q 7→ (q, 0), by

do(wh) = h, θv(·) := ωcan(v, do·),

and o∗ωcan = (w, θ)∗Ωcan where

Ωcan(wh ⊕ θv, wh′ ⊕ θv′) := θv(wh′)− θv′(wh);

(S4) have trivial first Chern class: c1(TQT
∗N) = 0 for every oriented

closed28 submanifold Q. If Q = N , then c1(TQ⊕ T ∗Q) = 0.29

To get in the structures introduced in earlier sections is simple:

Pick a Riemannian metric g on N to obtain

(H1) a global Lagrangian splitting T (T ∗N) ∼= π∗ (TN ⊕ T ∗N) given
pointwise by the isomorphism which takes the derivative of a
curve t 7→ z(t) = (x(t), y(t)) in T ∗N to the pair of derivatives

Tz(t)T
∗N

∼=−→ Tx(t)N ⊕ T ∗x(t)N, ż(t) 7→ (ẋ(t),∇ty(t)) .

The isomorphism takes ωcan to Ωcan extending the one in (S3);

25 The previous coords. identify each Vz symplectically with Lagrangian 0×Rn.
26 TON T

∗N = H ⊕ V is a direct sum: Linearize the composition π ◦ o = id :
N → T ∗N → N to get H ∩ V = {0}. So H + V = TON T

∗N since ranks add up.
27 It suffices to show either surjectivity or injectivity (equal dimension of do-

main/codomain). As do is injective it is an isomorphism do : TN → im do onto
its image with inverse w. Assuming θv ≡ 0 with v ∈ V means v ∈ Hω . So v ∈
V ∩H = {0}, as H = Hω is Lagrangian: The restriction o∗ωcan = do∗λcan = do
is zero as o ∈ Ω1(N) is the zero section.

28 This involves Poincaré duality. Closedness: Push obstruction to infinity.
29 If Q = N = Σ use Exercise 2.2.10. In general, let Ẽ∗ be the C-dual of the vec-

tor bundle Cn ↪→ Ẽ = TQT
∗N → Q. Then c1(Ẽ) = −c1(Ẽ∗) = −c1(ΛnẼ∗) =

0 ∈ H2(Q) by [GH78, p.414] and as the restriction of ω∧ncan to Q is a non-vanishing
section; cf. [Web99, App. B.1.7].
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Figure 2.6: Liouville 1-form λcan ∈ Ω1(T ∗Q) on π : T ∗Q→ Q

(H2) a canonical Hermitian structure (ωcan, Jg, Gg) on E = T (T ∗N)
defined pointwise for z = (x, y) on TxN ⊕ T ∗xN by

Jg :=

(
0 g−1

−g 0

)
, Gg :=

(
g 0
0 g∗

)
; (2.4.28)

cf. Exercise 2.1.15. Throughout we denote by g not only the
Riemannian metric on N , but also the induced isomorphism

g : TN → T ∗N, v 7→ g(v, ·).

Exercise 2.4.1. Prove properties (S1–S4) and (H1–H2).30

Exercise 2.4.2. Any diffeomorphism ψ : N → N of a manifold lifts
to a symplectomorphism of the cotangent bundle

(T ∗N,ωcan) (T ∗N,ωcan)

N N

Ψ:=T∗ψ

∼=
π π

ψ

∼=

defined by Ψ(q, p) =
(
ψ(q), (dψ(q)−1)∗p

)
. Prove that Ψ∗λcan = λcan.

What can one say if (N, g) is a Riemannian manifold and ψ is an
isometry (ψ∗g = g)?

30 For details of the proof of (H1–H2) see e.g. [Web99, App. B.1.2–B.1.4].
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Exercise 2.4.3. Suppose the vector field Y : N → TN generates
a 1-parameter group of diffeomorphisms ψt : N → N . Consider the
corresponding group of symplectomorphisms Ψt of (T ∗N,ωcan) and
denote by X : T ∗N → TT ∗N the generating vector field, that is

X(q, p) = d
dt

∣∣
t=0

Ψt(q, p) =
(
Y (q), d

dt

∣∣
t=0

(dψt(q)
−1)∗p

)
.

Show X is the Hamiltonian vector field of H(q, p) := p ◦ Y (q).
[Hint: 0 = LXλcan = ωcan(X, ·) + d (λcan(X)) by Exercise 2.4.2 and
Cartan’s formula. By definition λcan(X(z)) := z ◦ (dπ(z)X(z)).]

2.4.1 Electromagnetic flows – twisted cotangent
bundles

Classical mechanics describes the motion of a particle of unit mass
m = 1 and unit charge e = 1 located at time t at position γ(t) in
a configuration space, a manifold Q. The electromagnetic sys-
tem31 is described by the following three structures on Q: A Rie-
mannian metric g (providing kinetic energy), a smooth one form θ
(the magnetic potential), and a smooth function V (the electric
potential).

Exercise 2.4.4 (Reformulating Maxwell’s equations). Let us refor-
mulate (some of) Maxwell’s equations on R3 in terms of quanti-
ties which are at home on manifolds – differential forms (see e.g.
[BT82,War83]). Consider R3 with its natural orientation and the eu-
clidean metric g0. One-forms θ ∈ Ω1 = Ω1(R3) are in bijection with
vector fields A ∈ X = X (R3), just identify components:

Ω1 3 θ = θ1dx1 +θ2dx2 +θ3dx3
g−1
07→ θ1∂x1 +θ2∂x2 +θ3∂x3 =: A ∈ X .

31 Maxwell’s equations for magnetic field B and electric field E in R3:

B = rotA = ∇×A, E = −∇V − Ȧ.

HereA is the magnetic vector potential and V the electric scalar potential.
The Lorentz force law of a particle of mass m and charge e at position r(t) is
(cf. [AKN06, §1.1.2])

mr̈ = e (E + ṙ ×B) .
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Let us indicate the isomorphism Ω1 ' X by writing dxj 7→ ∂xj .
Consider the isomorphism ∗ : Ω→ Ω which relates the degree of the
differential forms by Ωj → Ω3−j and is determined on the elements
of the natural bases by

Ω0 → Ω3, 1 7→ dx1 ∧ dx2 ∧ dx3,

Ω1 → Ω2, dx1 7→ dx2 ∧ dx3,

Ω2 → Ω1, dx1 ∧ dx2 7→ dx3,

Ω3 → Ω0, dx1 ∧ dx2 ∧ dx3 7→ 1,

and cyclic permutations. Note that ∗ is an involution, that is ∗∗ =
1l.32 With ∇ = (∂x1

, ∂x2
, ∂x3

) check the following table33

X g0−→ Ω1 ∗←→ Ω2 Remark

A θ magnetic potential
∇×A ∗dθ dθ exact magnetic field
B ∗σ σ magnetic field, needs

divB = 0 (⇔ dσ = 0)
V ν velocity V = ṙ
V ×B ∗(ν ∧ ∗σ) ν ∧ ∗σ

= −iV σ explicit calculation
Y (V ) Lorentz force

Yrṙ := ṙ ×Br

This shows that the Lorentz force Yr ṙ := ṙ×Br experienced by
a particle of unit mass and unit charge is determined in terms of the
closed 2-form σ encoding the magnetic field by the identity

iY (V )g0 = −iV σ. (2.4.29)

For differential forms in electrodynamics cf. [Des81,Bot85,WR14].

32 More generally, on odd dimensional space ∗∗ = 1l, but on even dimensional
space ∗∗ = ±1l on forms of even/odd degree.

33 To B = B1∂x1 + B2∂x2 + B3∂x3 corresponds σ = B1dx2 ∧ dx3 + B2dx3 ∧
dx2 +B3dx1 ∧ dx2.
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Exercise 2.4.5 (Twisted symplectic structures ωσ = ωcan + π∗σ).
Suppose σ is a closed 2-form on the closed manifold Q. Denote by
π : T ∗Q → Q the bundle projection. Show that ωcan + π∗σ is a
symplectic form on T ∗Q. Now fix a Riemannian metric g on Q and
check that the identity

gq(Yqv, ·) = −σq(v, ·)

pointwise at q ∈ Q and v ∈ TqQ determines a fiber preserving
anti-symmetric vector bundle map Y : TQ → TQ, i.e. fiberwise
the map Yq : TqQ → TqQ is linear and anti-symmetric. The map
Y is the Lorentz force associated to the magnetic field σ; see
e.g. [CMP04]. We chose the minus sign in order to match the classical
scenario (2.4.29) in R3; cf. [BRCF05].

Exercise 2.4.6 (Twisted geodesic flow). A curve γ solves the Euler-
Lagrange equations (2.4.30) of a Lagrangian Lθ : TQ→ R

Lθ(q, v) := T (q, v) + θ(q)v − V (q), T (q, v) := 1
2 |v|

2 := 1
2gq(v, v),

where T is called kinetic energy, if and only if (cf. [Gin96, §2])
the pair (γ, gγ̇) is an integral curve of the Hamiltonian vector field
Xωdθ
H associated to the Hamiltonian H and the twisted symplectic

structure ωdθ on T ∗Q given by

H(q, p) = T (q, g−1p) + V (q), ωdθ := ωcan + π∗dθ.

The flow of Xωdθ
H is called twisted geodesic flow, its flow lines

twisted geodesics. Note: In the Hamiltonian formulation there is
no need that the magnetic field σ = dθ is exact, any closed 2-form on
Q will do by Exercise 2.4.5.

Concerning existence of periodic electromagnetic trajectories we
recommend the (older) survey [Gin96] and the comments [Gin01].
For more recent results see e.g. [Mer11] and references therein.

Lagrangian and Hamiltonian formalism

Lagrangian formulation of the dynamics: Given two points
q0, q1 ∈ Q, the motion of the particle is a curve γ : [t0, t1] → M
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with γ(ti) = qi extremizing the classical action functional

S(γ) =

∫ t1

t0

L(γ(t), γ̇(t)) dt.

The electromagnetic Lagrangian L : TQ→ R of the system is

L(q, v) = Lθ(q, v) : =
1

2
mgq(v, v) + e (θqv − V (q))

=
1

2
|v|2 + θv − V.

The extremals (critical points) γ are the solutions of the Euler-
Lagrange equations which in local coordinates can be written as

d

dt
∂vL(γ(t), γ̇(t)) = ∂qL(γ(t), γ̇(t)). (2.4.30)

For the physics behind we recommend [FLS64]. For the variational
theory in the more general setting of Tonelli Lagrangians34 see
e.g. [Maz12] or [Abb13].

The Hamiltonian description of the system replaces the La-
grangian Lθ by its Legendre transform Hθ : T ∗Q → R called the
electromagnetic Hamiltonian of the system and given by

Hθ(q, p) = (∂vL(q, v))v − L(q, v)

=
1

2
|v|2 + V

=
1

2
|p− θ|2 + V.

Here we substituted v according to p := ∂vLθ(q, v) = gqv + θq. The
dynamics of the particle on T ∗Q is governed by the Hamiltonian
vector field Xωcan

Hθ
.

Alternatively, the dynamics of the same particle is described by
the Hamiltonian vector field Xωdθ

H associated to the standard non-
magnetic Hamiltonian

H(q, p) =
1

2
|p|2 + V (q), ωdθ := ωcan + π∗dθ = d(λcan + π∗θ),

34 A Lagrangian L : TQ→ R is Tonelli if it is fiberwise uniformly convex and
superlinear.
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and the magnetically twisted symplectic structure ωdθ. This al-
ternative description works not only for exact magnetic fields σ = dθ,
but for any closed 2-form σ on Q; cf. [Gin96, Thm. 2.1 (ii)].

Exercise 2.4.7. Hamiltonian dynamics of (Hθ, ωcan) and (H,ωdθ)
coincides.

For further details of the relation of symplectic geometry and
classical mechanics see [Arn78] or [AG01, Ch. 3] or [AKN06, §1, §4].
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Chapter 3

Fixed period – Floer
homology

Towards Floer homology

Consider a symplectic manifold (M,ω). Given an autonomous Hamil-
tonian F : M → R, it is an interesting but rather challenging problem
to investigate the set “of geometrically distinct closed orbits” of the
Hamiltonian vector field on a given regular energy level S = F−1(E).
A little thought reveals that this cannot be a set of Hamiltonian loops
R/τZ → M , but rather it should be a set of equivalence classes of
such or, in geometric terms, of their images – embedded circles tan-
gent to the Hamiltonian vector field XF . These circles form the set
C(S, ω) of closed characteristics of XF on S; cf. (2.3.22).

Back to Hamiltonian loops (parametrized closed orbits). Let
us simplify the problem, firstly, by searching for loop trajectories
R/τZ→M of XF without taking any equivalence classes at all, and
secondly, by just focussing on the plain existence problem. Let us
break this further down into smaller pieces.

Period one. The problem reduces to detect Hamiltonian loops of
period one: A τ -periodic trajectory z of F on the level set F−1(E)
corresponds to the 1-periodic trajectory z1/τ (t) := z(t/τ) of τ−1F on
the level set (τ−1F )−1(τ−1E) (= F−1(E)); indeed τ−1XF = Xτ−1F .
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So there is a little price to pay: One looses the freedom to fix an en-
ergy value E. (The notion of energy value/level is lost anyway as soon
as one allows time-dependent Hamiltonians.) So let us then investi-
gate the set P(F ) of 1-periodic Hamiltonian loops z of XF . Two loops
z, z̃ ∈ P(F ) are geometrically distinct if their images z(S1)∩z̃(S1) = ∅
are disjoint, otherwise they are equivalent z ∼ z̃; cf. Remark 2.3.17.

There are two problems with autonomous Hamiltonians F con-
cerning non-constant Hamiltonian loops z, say of period 1.

(mult. covers) How can you find out if a Hamiltonian loop z : R/Z→M does
not multiply cover another one z̃ ? In other words, is 1 the
prime period of z : R→M ?

(degeneracy) A non-constant Hamiltonian loop z provides an S1 family via
time-shift

S1 3 τ 7→ z(τ)(·) := z(·+ τ).

The multiple cover problem makes it difficult to decide if a newly
detected periodic trajectory, say in the form of a critical point of
a functional on loop space, is geometrically different from known
ones. The fact that the elements of P(F ) are never isolated obstructs
reformulating the problem in terms of Morse theory, a powerful tool
to analyze sets of critical points in terms of topology.

Non-autonomous 1-periodic Hamiltonians and their 1-periodic
trajectories. Both problems disappear if we allow time-dependent
Hamiltonians H : S1 ×M → R and direct our attention to the set
P(H) of 1-periodic Hamiltonian loops with respect to Xt+1 = Xt :=
XHt ; see (2.3.19). Is there a lower bound for the cardinality |P(H)|
uniformly in H? in fact, this problem reduces to study P0(H), the
set of contractible 1-periodic Hamiltonian loops:

Contractible 1-periodic Hamiltonian loops and closedness of M .
For the special case of C2 small autonomous Hamiltonians all 1-
periodic trajectories are constant by Proposition 2.3.16, so there are
no non-contractible ones. But a C2 small Hamiltonian is obtained
by multiplying any given H : M → R by a small constant ε > 0.
Really? Correct, at least, if M is closed. So from now on we assume
closedness of M – conveniently guaranteeing completeness of flows
– and aim for a lower bound for the cardinality of the set P0(H),
uniformly in H.
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Assumption 3.0.8. Throughout Chapter 3 we assume, unless said
differently, that the symplectic manifold (M,ω) is closed and sym-
plectically aspherical, see (3.0.1), and we study the set P0(H) for
Hamiltonians H : S1 ×M → R.

Arriving at Floer’s ideas. It was well known before Floer that the
contractible 1-periodic Hamiltonian loops are precisely the critical
points of a (possibly multi-valued) functional AH , but at the time it
seemed that this functional was “certainly not suitable for an exis-
tence proof. [Mos76, (1.5)]”. However, this changed with the success
of Rabinowitz [Rab78] in applying minimax methods to detect criti-
cal values of AH and Floer’ s idea [Flo88] to rather differently over-
come the obstruction presented by infinite Morse index and coindex,
namely by looking at a relative index between critical points – which
is finite! Thereby Floer discovered relative Morse theory and suc-
cessfully reformulated the problem. Floer’s insights also included de-
parting from looking at the L2 gradient equation formally as an ODE
on the loop space, but instead noticing that it represents a well posed
PDE Fredholm problem for maps from the cylinder R × S1 into the
manifold M itself whenever suitably compactified by imposing non-
degenerate Hamiltonian loops z∓ to sit at ±∞. Assuming transver-
sality, the dimension of the associated moduli space is finite, as it
is the Fredholm index which itself is given by the spectral flow, the
relative Morse index, along a flow cylinder. Non-degeneracy amounts
to AH being a Morse functional, this holds true for generic H, and
in good cases (say Ic1 = 0) the relative index becomes the difference
of an absolute index associated to the non-degenerate Hamiltonian
loops z∓ – the Conley-Zehnder index of Section 2.1.3. The funda-
mental results of Floer’s construction are the lower bounds (1.0.1)
and (1.0.2) proving the Arnol′d conjecture [Flo89] in many cases; in
general see [FO99,LT98].

Back to autonomous Hamiltonians: Closed characteristics. Given
an autonomous Hamiltonian F : M → R, a natural approach to ana-
lyze the set C(XF ) of closed characteristics of XF , see (2.3.21), would
certainly be – in view of Floer’s estimate |P0(H)| ≥ SB(M) – to focus
on P0(F ) in a first step: Approximate F in an appropriate topology
by non-degenerate, thus non-autonomous, Hamiltonians Hν → F .
By Floer’s estimate every set P0(Hν) is non-empty, so picking one el-



i
i

“CBM31-ENG˙weber” — 2017/6/15 — 2:12 — page 68 — #76 i
i

i
i

i
i

68 [CAP. 3: FIXED PERIOD – FLOER HOMOLOGY

ement zν for every ν provides a sequence of Hamiltonian loops. Now
one can try to extract a convergent subsequence using the Arzelà-
Ascoli Theorem 3.2.10 and show that the limit loop, say z, satisfies
the equation ż = XF (z) of the limit Hamiltonian. There are two
problems.

I. Firstly, the Hamiltonian limit loop z, in fact already some or
all of the zν , could be constant. This is excluded if the energy hy-
persurface S = F−1(c) of z is known to be regular, that is if c is a
regular value of F . This brings us to action filtered Floer homology;
cf. Section 3.4.5.

II. The second problem are multiplicities. If you get two, or more,
limit solutions z, z̃ this way and suppose you even already know that
they are different and non-constant elements of P0(F ), say by having
information about the action values AHν (zν) and those of the z̃ν ’s.
Even then, how would one decide whether z and z̃ are geometrically
distinct or whether one multiply covers the other one?
It helps looking at the particular Hamiltonian loops on a cotangent
bundle over a closed Riemannian manifold Q which correspond to
geodesics γ : S1 → Q in the base manifold and remembering Bott’s
analysis [Bot56] of how the Morse index changes under iterations
γk(·) := γ(k·) : S1 → Q. For Hamiltonian loops the correspond-
ing index formulae have been pioneered by Long [Lon02]. For recent
tremendous success of studying iterations, in a slightly different direc-
tion though, see Ginzburg’s proof [Gin10] of the Conley conjecture.
See [GG15] for a recent survey about existence of infinitely many
simple periodic trajectories.

Cotangent bundles and loop spaces. If one gives up the compact-
ness requirement for the symplectic manifold and looks at the natu-
ral class of cotangent bundles (T ∗Q,ωcan) over closed, say orientable
spin, Riemannian manifolds (Q, g), equipped with physical Hamil-
tonians H of the form kinetic plus potential energy and a natural
almost complex structure Jg, then Floer homology is totally differ-
ent: It does not represent singular homology of T ∗M , but it is nat-
urally isomorphic to singular homology of the free loop space LQ;
cf. Section 3.5. If Q is not simply connected, then there is one iso-
morphisms for each component of LQ, so here Floer homology even
detects non-contractible periodic trajectories.
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Outline of Chapter 3

Consider a Hamiltonian H : S1 ×M → R. Motivated by the Morse
complex Floer’s program, see [Flo89], is to use the symplectic action
functional

AH : L0M = C∞contr(S1,M)→ R, z 7→
∫
D
z̄∗ω −

∫ 1

0

Ht(z(t)) dt,

as a Morse function to construct a Morse type chain complex.
In Section 3.1 we briefly recall the usual construction of the Morse

complex associated to a Morse function f : Q → R on a closed Rie-
mannian manifold of dimension n by using the critical points as gen-
erators, the Morse index as grading, and counting downward gradient
flow lines to define a boundary operator. We also recall the geometric
realization of the Morse cochain complex using the same generators
and grading, but counting upward flow lines.

Section 3.2 is devoted to a detailed study of the action functional
AH : L0M → R starting with a list of serious deficiency and explain-
ing sign conventions. Then we calculate the differential and, with
the help of a family Jt of ω-compatible almost complex structures,
also the L2 gradient of AH . This shows that the critical points are
precisely given by the set

CritAH = {z : R→M | ż = XHt(z), 1 ∈ Per(z), z ∼ pt} =: P0(H).

of 1-periodic contractible Hamiltonian loops. We calculate the Hes-
sian operator Az of AH at a critical point z to define non-degeneracy
of critical points. Next we insert an excursion to Baire’s category
theorem trying to separate the surrounding and easily confusable no-
tions of “residual” and “second category” subsets. The purpose is
to detail the informal notion of genericity in theorems like the one
asserting that AH is Morse for generic H (“transversality on loops”).
Given Section 3.2, we define, for generic H, the Floer chain group
CF∗(H) as the Z2 vector space generated by the finite set P0(H)
of contractible 1-periodic trajectories and graded by the canonical
Conley-Zehnder index µCZ in (2.3.25):

CFk(H) = CFk(M,ω,H) :=
⊕

z∈P0(H)

µCZ(z)=k

Z2z.
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Section 3.3 introduces the substitute for the non-existent down-
ward gradient flow, namely solutions u : R × S1 → M to Floer’s
elliptic PDE1

0 = ∂su− Jt(u)
(
∂tu−XHt(u)

)
= ∂su− Jt(u)∂tu−∇Ht(u)

called Floer cylinders or Floer trajectories. A Floer trajectory
defines what we informally call a “flow line” or “integral curve” in
the loop space, namely the image set {u(s, ·) | s ∈ R} ⊂ LM . Any
two trajectories producing the same flow line differ by composition
with time-shift s 7→ σ+ s. It is useful to switch view points using the
correspondence “cylinder in M” ↔ “path in LM”, namely

u : R× S1 →M , (s, t) 7→ u(s, t) ↔ u : R→ LM , s 7→ u(s, ·)

Back to Floer trajectories u. Imposing as asymptotic boundary con-
ditions at ±∞ × S1 Hamiltonian loops z∓ we call u a connect-
ing trajectory from z− to z+. Let M(z−, z+) be the space of
all of them. At this point we insert Section 3.3.2 on relevant ele-
ments of Fredholm theory needed to analyze under which conditions
the spaces M(z−, z+) are manifolds and to calculate their dimen-
sions. Since AH is Morse all asymptotic boundary conditions are
non-degenerate. This causes the operators Du defined by lineariz-
ing Floer’s equation at any connecting trajectory u to be Fredholm.
For the manifold property of M(z−, z+) and the dimension formula
µCZ(z−) − µCZ(z+) one needs to make sure that Du is onto, often
referred to as “transversality on cylinders”. But this can be achieved
for generic H again. The necessary perturbation not only preserves
the Morse property, but even the set of critical points. The machinery
to deal with transversality issues, be it non-degeneracy of the critical
points of AH or surjectivity of the Fredholm operators, goes under
the name Thom-Smale transversality theory and will be discussed in
detail following [Sal99b]. In Section 3.3, also in 3.4, we essentially
follow [Sal99a].

1 Gromov’s [Gro85] J-holomorphic curve equation is ∂su+ J(u)∂tu = 0, now
add a lower order perturbation∇H. Here we have a J-holomorphic curve equation
where J := −J . Alternatively, time reflection ũ(s, t) := u(−s, t) relates the
solutions u of the displayed equation to solutions of the perturbed J-holomorphic
curve equation ∂sũ+ Jt(ũ)∂tũ+∇Ht(ũ) = 0.
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Given Section 3.3, we define, for generic (H,J), Floer’s boundary
operator as the mod two count of flow lines connecting Hamiltonian
loops of index difference 1: On basis elements x ∈ P0(H) of canonical
Conley-Zehnder index k, set

∂x = ∂F(M,ω,H, J)x :=
∑

y∈P0(H)

µCZ(y)=k−1

#2(mxy) y

where #2(mxy) is the number modulo 2 of flow lines from x to y.
Section 3.4 is the heart of Chapter 3. First the property ∂2 = 0

is shown. The resulting chain complex is denoted by CF(H) :=
(CF∗(H), ∂). Its homology is a graded Z2 vector space denoted
by HF∗(H) = HF∗(M,ω,H; J) and called Floer homology. Next
continuation isomorphisms are constructed which naturally identify
Floer homology under change of Hamiltonian. Then we discuss two
methods of constructing a natural isomorphisms to singular homology
of the manifold M itself, namely by choosing for H a C2 small Morse
function or, alternatively, by studying “spiked disks”. Section 3.4
concludes with a brief account of action filtered Floer homology.

In Section 3.5 we have a glimpse at Floer homology for cotangent
bundles, as opposed to compact symplectic manifolds.

Preliminaries

As a line in LM is a cylinder in M , the formal L2 gradient equation
for AH on LM corresponds to a PDE in M . Thus carrying out the
program of constructing a Morse complex relies heavily on non-linear
functional analysis. So it is useful to impose in a first step condi-
tions in order to “facilitate” the analysis and look for generalizations
subsequently. Closedness of M we already mentioned.

(C1) The symplectic manifold (M,ω) is closed.

(C2) Evaluating ω and c1(M) on π2(M) is zero (cf. (3.0.2))

Iω = 0 = Ic1 . (3.0.1)

Under these conditions we sketch the construction of the
Floer complex in Sections 3.2–3.4; for details, including history,
see [Sal99a], or [MS04].
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In Section 3.5 the closedness condition (C1) gets dropped and we
consider cotangent bundles T ∗Q equipped with the canonical sym-
plectic form ωcan = dλcan over closed base manifolds Q. Here both
conditions in (C2) are satisfied automatically, the lack of compact-
ness (C1) will be compensated by restricting to a class of Hamiltoni-
ans that grow fiberwise sufficiently fast, such as physical Hamiltoni-
ans of the form kinetic plus potential energy.

Definition 3.0.9. A symplectic manifold (M,ω) is called symplec-
tically aspherical, or ω-aspherical for short, if the homomorphism

Iω : π2(M)→ R, [v] 7→ [ω]([v]) :=

∫
S2
v∗ω, (3.0.2)

vanishes for every class and each smooth representative v : S1 →M .
We denote by Ic1 : π2(M) → Z the corresponding evaluation homo-
morphism for the first Chern class c1 ∈ H2(M ;Z) of the (homotopic)
complex vector bundles TM → M associated to any family Jt of
ω-compatible almost complex structures.

Exercise 3.0.10. Show that Iω is well defined and a homomorphism
of groups.

Example 3.0.11 ((C2) implies π1(M) 6= 0). Since M is closed
H2(M) is non-trivial, indeed [ω] 6= 0. So the condition Iω = 0 causes
π1(M) 6= 0 via the Hurewicz homomorphism; see [HZ11, p.228].

(tori) As tori T` are aspherical, in fact πk(T`) = 0 for k ≥ 2, sym-
plectic forms ω on T2n satisfy (C2). Tori were treated in [CZ83].

3.1 Toy model

The Morse complex goes back to the work of Thom, Smale, and
Milnor in the 40s, 50s, and 60s, respectively, and was rediscovered in
an influential paper of Witten in 1982. It has been studied since by
many people. The standard reference is the 1993 monograph [Sch93]
by Schwarz. For more on the history and references after 1993 see
also our recent lecture notes manuscript [Web] which covers in detail
the dynamical systems approach from [Web93]; cf. [Web06b].
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3.1.1 Morse homology

Given a closed manifold Q of dimension n, one can utilize gradi-
ent dynamical systems to recover the integral singular homology
H∗(Q) := H∗(Q;Z). Among all smooth functions on Q there is an
open and dense subset consisting of Morse functions f : Q → R,
that is all critical points x are non-degenerate in the sense that all
eigenvalues of the Hessian symmetric bilinear form Hessxf on TxQ
are non-zero. The number of negative eigenvalues, counted with mul-
tiplicities, is called the Morse index of x denoted by indf (x). The
negative space associated to the critical point x is the subspace
Ex ⊂ TxQ spanned by all eigenvectors associated to negative eigen-
values. Non-degenerate critical points are isolated, so by compactness
of Q they form a finite set Critf .

An oriented critical point ox, also called an orientation of a
critical point and alternatively denoted by 〈x〉, is a critical point
x together with a choice of orientation of its negative space Ex. For
each k ∈ Z, let the Morse chain group CMk(f) be the abelian
group generated by the oriented critical points ox of Morse index k
and subject to the relations ox + ōx = 0 where ōx is the opposite
orientation of ox.2 Let us denote by [x] the equivalence class of an
oriented critical point under the relation ox + ōx = 0.3

To define a boundary operator on CM∗(f) pick a Riemannian
metric g on Q and consider the corresponding downward gradient
flow on Q: The 1-parameter group of diffeomorphisms ϕ = {ϕt}t∈R
determined by

d

dt
ϕt = −∇f ◦ ϕt, ϕ0 = id. (3.1.3)

By non-degeneracy of x ∈ Critkf the un/stable manifolds

Wu/s(x) := {q ∈ Q | ϕtq → x, as t→ −/+∞}

are embedded submanifolds of Q of dimension/codimension k; see
e.g. [Web15]. Slightly perturbing the Morse function f outside a
small neighborhood of its critical points leads to a function with the

2 By convention the empty set ∅ generates the trivial group {0}.
3 A choice 〈Critkf〉 of an orientation of each critical point of index k is a basis

of CMk(f).
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same critical points, still Morse and still denoted by f , but whose
flow satisfies in addition the Morse-Smale condition:4 Namely,
any intersection

Mxy := Wu(x) tW s(y), dimMxy = indf (x)− indf (y), (3.1.4)

of an unstable and a stable manifold is cut out transversely, hence
a manifold – the connecting manifold of x and y. The spaces of
connecting flow lines

mxy := Mxy t f−1(r), dimmxy = indf (x)− indf (y)− 1,

where r ∈ (f(y), f(x)) is any choice of a regular value of f , are not
only manifolds, but are what is called compact up to broken trajec-
tories; cf. Figure 3.1. Consequently in case of index difference one
the mxy are finite sets whose elements u represent isolated flow lines
running from x to y. Given such u and an orientation ox of Ex, one
can define a push-forward orientation u∗ox of Ey that respects
orientation reversal, that is u∗ōx = u∗ox. Thus u∗[x] := [u∗ox] is well
defined on the generators [x] of the quotient group CMk(f). The
Morse boundary operator is then defined on the generators by

∂k = ∂k(f, g) : CMk(f)→ CMk−1(f), [x] 7→
∑

y∈Critk−1

∑
u∈mxy

u∗[x]

and extended to the whole group by linearity. That ∂2 = 0 boils down
to the fact that ∂2[x] is a sum over all 1-fold broken flow lines (u, v)
where u is a flow line from x to some y and v is one from that same y
to some z as indicated by Figure 3.1. As also indicated by the figure
such broken orbits correspond precisely to the ends of a 1-dimensional
manifold-with-boundary. In other words, these broken orbits appear
in pairs and, moreover, one partner provides the opposite coefficient
v∗u∗[x] = −ṽ∗ũ∗[x] in front of [z] as the other one. So in sum each
partner pair contributes zero, but ∂2[x] is precisely a sum of partner
pair contributions. For details of the facts above/below see e.g. [Web].

4 If the Morse-Smale condition (3.1.4) holds true, we call h := (f, g) a Morse-
Smale pair.
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Mq
xz

v

u

ṽ
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Figure 3.1: Partner pair property (u, v) ∼ (ũ, ṽ) leads to ∂2 = 0

The corresponding homology groups HMk(Q;h) are actually in-
dependent of the Morse-Smale pair h = (f, g) as one shows, for
instance,5 by choosing a generic homotopy ft between two Morse
functions fα and fβ and similarly gt among the Riemannian metrics.
Counting flow lines of the time-dependent gradient equation – just re-
place h = (f, g) in (3.1.3) by the time-dependent pair hαβ = (ft, gt) –

provides a chain complex homomorphisms ψβαk (hαβ). The induced
maps on homology are isomorphisms denoted by

Ψβα
k : HMk(fα, gα)→ HMk(fβ , gβ)

and called continuation maps. They do not depend on the choice
of homotopy hαβ . On the chain level the continuation maps have the
trivial, but important, property that the constant homotopy, denoted
by hα, induces the identity map, that is ψααk (hα) = 1l. Looking at

homotopies of homotopies not only shows that the Ψβα
k are indepen-

dent of hαβ , but also provides the crucial relations

Ψγβ
k Ψβα

k = Ψγα
k , Ψαα

k = 1l.

A rather nice way to construct a natural isomorphism

Ψh : HMk(Q;h)
∼=−→ Hk(Q) (3.1.5)

5 Alternatively, use Poźniak cones; see [Web].
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to singular homology of Q is via the Abbondandolo-Majer filtra-
tion [AM06].6

Remark 3.1.1 (Z2 coefficients). The kth Morse chain group with Z2

coefficients is the Z2 vector space CMk(f ;Z2) whose canonical basis
Critkf are the critical points of Morse index k. The Morse boundary
operator is on the basis elements x ∈ Critkf defined by

∂kx :=
∑

y∈Critk−1f

#2(mxy) y (3.1.6)

where #2 denotes “number of elements modulo 2”.

The Z2 Morse boundary operator counts modulo 2 downward

flow trajectories between critical points of index difference 1.

Exercise 3.1.2 (Closed orientable surfaces). Calculate the Z2 Morse
homology of your favorite closed orientable surface. [Hint: Embedd
in R3; height function.]

Exercise 3.1.3 (Real projective plane RP2). Find a Morse function
on RP2 with exactly three critical points. Find the Z2 Morse complex
and homology. [Hint: Think of RP2 as unit disk D ⊂ R2 modulo
opposite boundary points.]

3.1.2 Morse cohomology

By definition cohomology arises from homology by dualization: Any
chain complex C = (C∗, ∂∗) comes naturally with a cochain complex
C# = (C∗, δ∗), the dual complex of C: It consists of the dual

spaces Ck := C#
k and transposed maps δk := ∂#

k+1. The cohomology

H∗(C#) of the cochain complex C# is called the cohomology of C
and denoted by H∗(C).

Morse cohomology

For a Morse-Smale pair h = (f, g) the Morse cochain groups are
defined by

CMk(f) := CM#
k (f) := Hom(CMk(f),Z)

6 If f(x) = k for x ∈ Critkf , then {f < k + 1
2
} leads to such filtration;

cf. [Mil65, Thm. 7.4].
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for any k and the Morse coboundary operators δk(h) by

CMk+1(f)
(

CMk+1(f) Z
)

CMk(f)
(

CMk(f) Z
)
.

∂k+1δkα:= (∂k+1)#

The transposed map acts by δkα(γ) = γ ◦ ∂k+1. The quotient space

HMk(Q;h) :=
ker δkα

im δk−1
α

is called the kth Morse cohomology of Q with Z coefficients.
From now on we restrict to Z2 coefficients for simplicity of the pre-

sentation. Since Z2 is a field the Kronecker duality theorem implies
that the homomorphism induced on cohomology [ψβα(hαβ)#] by the
transpose is the transpose of the homology continuation isomorphism
Ψβα. So the transposes HM∗(Q;hβ ;Z2)→ HM∗(Q;hα;Z2), namely

(Ψβα)# = [ψβα(hαβ)]# = [ψβα(hαβ)#],

are isomorphisms and satisfy the identities

(Ψβα)#(Ψγβ)# = (Ψγα)#, (Ψαα)# = 1l. (3.1.7)

Geometric realization

For simplicity we restrict to Z2 coefficients, so there are no ori-
entations involved and so Bf := Critf is a canonical basis of
CM∗(f ;Z2). By compactness of Q the dimension of CM∗(f ;Z2),
thus of its dual space CM∗(f ;Z2), is finite. So the dual basis of Bf
exists. It is given by the set B#

f = Crit#f := {ηx | x ∈ Critf} of
Dirac δ-functionals; denoted by ηx for distinction from the cobound-
ary operator δ. Each functional is determined by its values

ηx : CM∗(f ;Z2)→ Z2, y 7→

{
1 , y = x,

0 , else,
(3.1.8)
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on the basis elements y ∈ Critf . Since CM∗(f ;Z2) is of finite dimen-
sion any element ω can indeed be written as a linear combination of
the ηx’s, that is

ω =
∑

x∈Critf

ωxη
x, ωx := ω(x) ∈ Z2. (3.1.9)

The dual basis, so CM∗(f ;Z2), inherits the Morse index grading:

|ηx| := |x| := indf (x).

To geometrically identify the action of the coboundary operator
δk := ∂#

k+1 on a cochain ω ∈ CMk(f ;Z2) observe that

(δkω)x = (δkω)(x) = ω(∂k+1x) =
∑

y∈Crit
f(x)
k f

#2(mxy)ωy

for every x ∈ Critk+1f . Here we used definition (3.1.6) of ∂k+1. Thus
by (3.1.9) we obtain that

δkω =
∑

x∈Critk+1f

(
δkω

)
x
ηx

=
∑

x∈Critk+1f

( ∑
y∈Crit

f(x)
k f

#2(mxy)ωy

)
ηx

for every cochain ω ∈ CMk(f ;Z2). In particular, we obtain that

δkηy =
∑

x∈Critk+1f

#2(mxy) ηx (3.1.10)

for every basis element ηy ∈ Crit#
k f . But this means the following.

The Z2 Morse coboundary operator counts modulo 2 upward

flow trajectories between critical points of index difference 1.
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3.2 Symplectic action AH – period one

Suppose (M,ω) is a closed symplectic manifold. The by H per-
turbed symplectic action functional on the space L0M of con-
tractible smooth loops z : S1 →M is defined by

AH : L0M → R, z 7→
∫
D
z̄∗ω −

∫ 1

0

Ht(z(t)) dt, (3.2.11)

where z̄ = v : D → M is a spanning disk, i.e. a smooth extension
of z = v|∂D. Some remarks are in order. The symplectic action

• is not well defined, unless M is ω-aspherical (the differential
dAH makes sense though);

• is not bounded below, neither above.7 Unfortunately, com-
mon variational techniques build on at least semi-boundedness,
say from below.

One circumvents this problem by restricting attention to those
L2 (not W 1,2) gradient trajectories R→ L0M along which the
action remains bounded; see Remark 3.3.3. It is the set M of
these – called the set of finite energy trajectories of the L2

gradient gradAH – that carries the complete homology infor-
mation of M whenever AH is Morse. This brings in, through
the back door, another common assumption in variational the-
ory: Although in general AH is not Palais-Smale with respect
to the W 1,2 gradient (cf. [Hof85, VI.1] and [HZ11, § 3.3]), it is
sufficient that the Palais-Smale condition holds on M;

• has critical points of infinite Morse index; see Exam-
ple 3.2.15 for H = 0. Unfortunately, therefore the symplectic
action functional will not admit fundamental Morse theoretical
tools such as the cell attachment theorem: The unit sphere in
an infinite dimensional Hilbert space is contractible!8

One circumvents this problem by looking at the change of Morse
index, also called relative Morse index or spectral flow,
along a trajectory between two critical points.

7 Figure out how term one behaves under replacing loops z by zk(t) := z(kt)
und v by vk.

8 See Kakutani [Kak43] or apply Kuiper’s theorem [Kui65].



i
i

“CBM31-ENG˙weber” — 2017/6/15 — 2:12 — page 80 — #88 i
i

i
i

i
i

80 [CAP. 3: FIXED PERIOD – FLOER HOMOLOGY

Remark 3.2.1 (Signs in AH – see Notation 1.0.5 for details).
Closed manifolds. At the level of closed symplectic manifolds the
sign choices in (3.2.11) are not relevant. Changing the sign of ω is
equivalent by (1.0.12) to changing the sign of H. But changing the
sign of H, more precisely replacing H = Ht by Ĥ = Ĥt := −H−t,
results in HFk(H) ' HF−k(Ĥ) induced by natural identification of
the two chain complexes. Together with continuation HF−k(Ĥ) '
HF−k(H) and the natural isomorphisms to singular (co)homology
such change of sign induces nothing but the Poincaré duality iso-
morphisms Hk+n(M) ' H2n−(k+n)(M) of the closed symplectic, so
orientable, manifold M .
Cotangent bundles. Motivated by classical mechanics one wants as
integrand p dq−H dt; true for convention (3.2.11) with ωcan = dλcan.

Remark 3.2.2 (Palais-Smale condition). Suppose f is a C1 func-
tion on a Banach manifold B equipped with a Riemannian metric,
see [Pal66], and ∇f denotes the gradient. A sequence zi ∈ B along
which f is bounded and ∇f converges to zero is called a Palais-
Smale sequence. One says that the Palais-Smale condition
holds on a subset U ⊂ B if every Palais-Smale sequence in U admits
a subsequence converging to a critical point. For a detailed account
of the Palais-Smale condition and its history see the survey [MW10].

Remark 3.2.3 (Non-exact cases). Exactness of ω facilitates the def-
inition of action functionals on loops, but it can be dropped on the
cost of either

• restricting to contractible loops and spanning in disks or

• fixing one reference loop in each component of loop space and
spanning in cylinders.

The thereby potentially arising multi-valuedness of the action can

• either be ruled out by asking ω symplectically aspherical (span-
ning disks) or symplectically atoroidal (spanning cylinders),9

• or be accepted and dealt with by constructing chain complexes
with coefficients in Novikov rings; cf. [HS95].

9 Symplectically or ω-atoroidal means that
∫
T2 v
∗ω = 0 for every smooth

map v : T2 →M ; see [Mer11, §2.3] for sufficient conditions in case M = T ∗Q.



i
i

“CBM31-ENG˙weber” — 2017/6/15 — 2:12 — page 81 — #89 i
i

i
i

i
i

[SEC. 3.2: SYMPLECTIC ACTION FUNCTIONAL AH 81

3.2.1 Critical points and L2 gradient

The critical points of the action functional AH are the 1-periodic
trajectories of XH by formula (3.2.13) for the differential of AH at
any10 loop z.

Remark 3.2.4 (Paying dynamics to get compactness). To turn the
differential into a gradient one needs to pick a Riemannian metric
on the loop space. Looking at the differential suggests the W 1,2

topology (absolutely continuous loops with square integrable deriva-
tives), but for this choice desirable compactness properties fail, as
mentioned above. It was Floer’s insight that taking L2 gradient in-
stead provides sufficient compactness on relevant parts of loop space;
see Section 3.4.1. The price to pay will be that the L2 gradient does
not generate a flow on the whole loop space – but it does on relevant
parts. The relevant part actually consists of the loops represented by
the spaceM of finite energy trajectories; cf. (3.3.28). It is this space
that carries the homology of M .

Pick a 1-periodic family Jt of ω-compatible almost complex struc-
tures and let gJt = 〈·, ·〉t be the associated family of Riemannian
metrics on M . Define the L2 inner product on the loop space at
any loop z, contractible or not, by

〈·, ·〉 = 〈·, ·〉0,2 : TzLM × TzLM → R,

(ξ, η) 7→
∫ 1

0

〈ξ(t), η(t)〉t dt,
(3.2.12)

where ξ and η are smooth vector fields along the loop z.

Exercise 3.2.5. a) Show that AH is well defined, if Iω = 0. Recall
that the identity dHt = −ω(XHt , ·) determines the vector field XHt .

10 The differential is well defined at any loop, contractible or not.
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(r, t)

expz(t)ρ(r)ζ(t)

uτu ◦ ατ

(r, t)

t

D Dτ Aτ

0

1 1

0 11 1− τr r

ρ(r) = r − 1 + τ

0 τ
ρ

ατ

u

z zτ = expzτζ

u(D) = uτ (Dτ )

( r
1−τ

, t)

uτ (Aτ )

Figure 3.2: dAH(z)ζ := d
dτ

∣∣
0
AH(expz τζ) and spanning disks uτ

Prove that

dAH(z)ζ =

∫ 1

0

ω (ζ, ż −XHt(z)) dt

=

∫ 1

0

〈
ζ,−Jt(z)

(
ż −XHt(z)

)〉
t
dt

=

∫ 1

0

〈ζ,−Jt(z)ż −∇Ht(z)〉t dt

=
〈
ζ,−Jt(z)ż −∇H(z)︸ ︷︷ ︸

=: gradAH(z)

〉
(3.2.13)

for every smooth vector field ζ along a contractible loop z in M ; see
also the hint to Exercise 3.3.2.11

b) For general Iω show that, although AH is not well defined, its
linearization does not depend on the choice of spanning disk. Think

11 Hint: To see identity one, pick an auxiliary Riemannian metric on M with
corresponding Levi-Civita connection ∇ and exponential map exp. Given z and
ζ, pick the families of loops zτ and spanning disks uτ in Figure 3.2. (In the figure
we have identified the closed unit disk in R2 minus the origin with the cylinder
(0, 1] × S1 which we denote by D! This abuses notation, but might facilitate
reading.) In the calculation use that the integral is additive under the domain
decomposition D = Dτ ∪Aτ to obtain a sum of three terms: One of them vanishes,
as
∫
Dτ u

∗
τω =

∫
D u
∗ω is constant in τ , and one of them leads easily to XHt . The
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about spanning disks as cylinders connecting the periodic trajectory
z with some fixed constant loop z0(t) ≡ p ∈M . Extend the definition
of AH to components of the free loop space other than that of the
contractible loops.

Lemma 3.2.6 (Compactness of critical set). The set of critical points

CritAH = {z ∈ L0M | ż = XHt(z) = Jt(z)∇Ht(z)} =: P0(H)

is compact with respect to the C1 topology.

Proof. Pick a sequence zi of critical points and consider the sequence
wi = (zi(0), żi(0)) in the tangent bundle TM . Pick a Riemannian
metric on M . As |żi(0)| = |XH0 ◦ zi(0)| ≤ maxS1×M |XH |, the se-
quence lives in a compact subset of TM . Thus there is a subsequence,
still denoted by wi, converging to an element w = (p, v) ∈ TM .
But the zi(0) are fixed points of the time-1-map ψ1 of the Hamilto-
nian flow (2.3.19) and so is the limit p by continuity of ψ1. Hence
the periodic trajectories zi converge in C1 to the periodic trajectory
z(t) := ψtp.

Exercise 3.2.7. Use the Arzelà-Ascoli Theorem 3.2.10 to prove
Lemma 3.2.6.

The L2 gradient gradAH as section of a Hilbert space bundle

Concerning analysis one prefers to work in Banach or even Hilbert
spaces. As the gradient (3.2.13) of AH involves one derivative of the
loop, the most natural space to consider is the space

ΛM := W 1,2
contr(S1,M)

third one is

d
dτ

∣∣∣
0

∫
Aτ

u∗τω =

∫ 1

0

d
dτ

∣∣
0

∫ 1
1−τF (τ, r, t) dr︸ ︷︷ ︸

−F (τ,r=1−τ,t)|0
d
dτ

∣∣
0
(1−τ)

dt =

∫ 1

0
F (τ = 0, r = 1, t)︸ ︷︷ ︸

ω(ζ,ż)

dt

for F = ω
(
E2(z, ρζ)ζ, E1(z, ρζ)ż + E2(z, ρζ)ρ∇tζ

)
and Ei(z(t), ζ(t)) : Tz(t)M →

Texpz(t) ζ(t)
M for i = 1, 2 denoting the covariant partial derivatives of the ex-

ponential map (Ei(z, 0) = 1l as shown e.g. in the section Analytic setup near
hyperbolic singularities in [Web, App.]).
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of contractible absolutely continuous loops z : S1 → M with square
integrable derivative.12 Although not a linear space, it is a Hilbert
manifold, modeled locally at a loop z on the Hilbert space

W 1,2(S1, z∗TM) = TzΛM

of absolutely continuous vector fields along z with square integrable
derivative. A standard reference for the geometry of manifolds
of maps is [El̆ı67]. If z ∈ ΛM , then gradAH(z) is an L2 integrable
vector field along z, that is

gradAH(z) ∈ L2(S1, z∗TM) =: Ez.

Remark 3.2.8 (No flow). To put it differently, the L2 gradient
gradAH of the action functional is not a tangent vector field to the
Hilbert manifold W 1,2(S1,M), nor to any W k,2, due to the loss of a
derivative.13 The initial value problem is not well posed and gradAH
does not generate a flow. The reason is that, by regularity, the loops
of which a solution cylinder is composed are smooth, so the flow
cannot pass any of the many non-smooth elements z ∈ ΛM .

The union of all the Hilbert spaces Ez = L2(S1, z∗TM) forms a
Hilbert space bundle E over ΛM . A section is given by the L2 gradient
gradAH . Figure 3.3 illustrates the gradient section and indicates the
natural splitting

TzEM ∼= TzΛM ⊕ Ez = W 1,2(S1, z∗TM)⊕ L2(S1, z∗TM)

of the tangent bundle TE along the zero section ΛM of E .

Lemma 3.2.9 (Regularity). A zero z ∈ ΛM of gradAH is smooth.

Proof. By the Sobolev embedding theorem W 1,2(S1) ↪→ C0(S1) we
get z ∈ C0. By assumption z admits a weak derivative of class L2,
say y, and y = XHt(z) almost everywhere. But the RHS, hence
y, is of class C0. Thus the weak derivative is actually the ordinary
derivative ż = y ∈ C0. Hence ż = XHt(z) ∈ C0, therefore z ∈ C1.
But then ż = XHt(z) ∈ C1, hence z ∈ C2, and so on.

12 An absolutely continuous map S1 →M is differentiable almost everywhere.
13 Given u ∈ Wk,2 , then gradAH(u) lies in Wk−1,2. So gradAH is not a

vector field on Wk,2, i.e. a section of TWk,2, so the formal equation d
ds
u(s) =

− gradAH(u(s)) isn’t an ODE.
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Ez

ΛM

gradAH

E = ∪zEz

z
TzΛM

Figure 3.3: Hilbert bundle E → ΛM over loop space and section

3.2.2 Arzelà-Ascoli – convergent subsequences

Theorem 3.2.10 (Arzelà-Ascoli Theorem). Suppose (X , d) is a com-
pact metric space and C(X ) is the Banach space of continuous func-
tions on X equipped with the sup norm. Then the following is true.
A subset F of C(X ) is precompact if and only if the family F is
equicontinuous14 and pointwise bounded 15.

Proof. [Rud91, Thm. A.5].

The theorem generalizes to functions that take values in a metric
space.

Exercise 3.2.11. Suppose (X , d) is a metric space and L > 0 is a
constant. a) Show that any family F of Lipschitz continuous func-
tions on X with Lipschitz constant L is equicontinuous.
b) Show that any family of differentiable functions on a closed man-
ifold Q whose derivative is bounded by L is equicontinuous.

Further examples of equicontinuous families are provided by α-
Hölder continuous functions. In practice one often encounters families
of weakly differentiable functions on a compact manifold Q that are
uniformly bounded in some Sobolev space W k,p(Q). If α = k− n

p > 0
where n = dimQ then these functions are α-Hölder continuous by the
Sobolev embedding theorem which applies by compactness of Q.

14 ∀ε > 0 ∃δ > 0 such that |f(x)− f(y)| < ε whenever d(x, y) < δ and f ∈ F .
15 supf∈F |f(x)| <∞ for every x ∈ X .
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3.2.3 Hessian

A Hessian is usually the second derivative of a function or, more
generally, of a section of a vector bundle at a point in the domain.
However, this is in general only well defined at a critical point, respec-
tively a zero. To extend the concept to general points one chooses
a connection or, equivalently, a family of horizontal subspaces. Fur-
thermore, it is often convenient to express the Hessian bilinear form
via an inner product as a linear operator, the Hessian operator.

Our setting is the following. Given a symplectic manifold (M,ω)
and a Hamiltonian H : S1 ×M → R, pick a family Jt = Jt+1 of ω-
compatible almost complex structures and denote by gt the associated
family of Riemannian metrics on M . At each time t consider the
corresponding Levi-Civita connection ∇t with exponential map expt

and parallel transport

T tp (v) : TpM → Texptp
M

along the curve [0, 1] 3 τ 7→ exptp τv.16 Given a vector field ζ along
an arbitrary loop z,17 set

expz ζ : S1 →M, t 7→ exptz(t) ζ(t),

to obtain a loop in M homotopic to z through τ 7→ zτ := expz τζ.
Consider the map between Banach spaces defined near 0 by

fz : TzΛM → Ez, ζ 7→ Tz(ζ)−1 gradAH(expz ζ). (3.2.14)

Since a W 1,2 vector field is in particular of class L2, there is the nat-
ural inclusion TzΛM ⊂ Ez which suggests to view this linearization
as an unbounded operator with dense domain. Taking the derivative
at the origin, that is Dfz(0)ζ = d

dτ

∣∣
τ=0

fz(τζ) defines the covariant
Hessian operator of AH , namely

Az : L2
z ⊃W 1,2

z → L2
z = L2(S1, z∗TM)

Azζ := Dfz(0) = −Jt(z)∇tζ − (∇ζJ)(z)ż −∇ζ∇Ht(z),
(3.2.15)

at any loop z ∈ ΛM .

16 To easy notation we write ∇ = ∇t and exp = expt and so on. But we
keep indicating time dependence of quantities which involve perturbation at some
stage, such as Ht and Jt.

17 Assuming that ‖ζ(t)‖ is smaller than the injectivity radius of (M, gt) at z(t).
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gradAH (zτ )

gradAH

⊂ Ez
Tz(τζ)−1

fz(τζ)

ΛM
z zτ = expzτζ

τζ

E
TzΛM Ezτ

Figure 3.4: Hessian operator Azζ = d
dτ

∣∣
τ=0

fz(τζ) at any loop z

Exercise 3.2.12. Check that Dfz(0)ζ is indeed given by (3.2.15).
Show that Az is symmetric and even self-adjoint with compact resol-
vent. Show that the eigenvalues of Az are real and converge to ±∞.
[Hint: For symmetry use Exercise 2.2.3. Self-adjointness is a reg-
ularity problem. Concerning compact resolvent compare discussion
in [Web02, §2.3].]

The eigenvalues of Az are real by self-adjointness. A critical point
z of the symplectic action AH is called non-degenerate if zero is not
an eigenvalue of the Hessian Az. After picking a trivialization below
we shall say more about the spectrum. A Morse function is a func-
tion all of whose critical points are non-degenerate. A Hamiltonian
H is a regular Hamiltonian if AH is Morse.

Exercise 3.2.13. Non-degeneracy of z ∈ CritAH as a critical point
coincides with non-degeneracy (2.3.23) of z as a 1-periodic trajectory.

Lemma 3.2.14. A non-degenerate critical point z of AH is isolated.

Proof v1. The critical points of AH near z are in bijection with the
zeroes near the origin of the map fz given by (3.2.14) and z corre-
sponds to the origin. But no point other than the origin gets mapped
to zero, because fz is a local diffeomorphism near the origin by the
inverse function theorem. The latter applies since the linearization
Dfz(0) = Az is a bijection: It is injective by the non-degeneracy
assumption, hence surjective by self-adjointness.
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Proof v2. Recall the bijection z 7→ z(0) =: p from Exercise 2.3.20.
Note that

ζ(t) := dψt(p)ζ0

already lies in the ’kernel’ of the differential equation (3.2.15) for any
ζ0 ∈ Tz(0)M . But ζ(t) must close up at time one in order to lie in the
kernel of Az. This happens precisely if ζ0 is eigenvector of dϕ1(z(0))
associated to the eigenvalue 1. Thus there is an isomorphism

kerAz ∼= Eig1dψ1(z(0)), ζ 7→ ζ(0). (3.2.16)

Now recall Exercise 2.3.21.

The Hessian with respect to a unitary trivialization

Given a loop z, pick a unitary trivialization (2.2.8) of the symplectic
vector bundle z∗TM → S1, namely a smooth family Φ of vector space
isomorphisms Φ(t) : R2n → Tz(t)M intertwining the Hermitian triples
ω0, J0, 〈·, ·〉0 and ω, J, gJ ; cf. (1.0.9). Conjugation transforms the Hes-
sian Az into the unbounded linear operator on L2 = L2(S1,R2n) with
dense domain W 1,2 given by

A(z) := Φ−1AzΦ : L2 ⊃W 1,2 → L2 = L2(S1,R2n)

ζ 7→ −J0ζ̇ − Stζ.
(3.2.17)

Here St is the 1-periodic family of symmetric matrizes given by

Stv = Φ−1
(
Jt(z) (∇tΦ) v + (∇ΦvJ)(z) ż +∇Φv∇Ht(z)

)
(3.2.18)

for v ∈ R2n; cf. Exercise 3.2.12.

Example 3.2.15 (Infinite Morse index). The operator −i ddt on
C∞(S1,Cn) has eigenvectors ζk = e−i2πktz and eigenvalues λk = 2πk
for k ∈ Z and where z ∈ C \ {0}.

3.2.4 Baire’s category theorem – genericity

Since the notions surrounding Baire’s category theorem can be
slightly confusing we enlist them for definiteness in more detail than
needed here. However, all you should take with you in Section 3.2.4
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is Baire’s category Theorem 3.2.18 part (C) and the first application
in Theorem 3.2.22 (AH Morse for generic H).

A subset A of a topological space T is called nowhere dense if
its closure Ā has empty interior, that is if there is no neighborhood
U on which A is dense: For each non-empty open set U in T there
is a non-empty open subset V contained in U and disjoint from A.18

Any countable union of nowhere dense subsets is called a meager
subset of T .19 All other subsets, that is all non-meager subsets, are
said to be of the second category in the sense of Baire. These
are, of course, somewhere dense. As first readings we recommend the
Wikipedia article Meagre set, the online handout The Baire category
theorem and its consequences, the Blog The Baire category theorem
and its Banach space consequences, and §1 of the book [Oxt80].

Exercise 3.2.16. Show that the setM of meager subsets of T is a σ-
ideal of subsets: Subsets of a meager set are meager, countable unions
of meager sets are meager. [Hint: Countable unions of countable
unions are countable.]

How about the complements MC of meager sets M? Let’s call
them residuals. Actually they are called residual subsets or
comeager subsets. Let R be the set of residual subsets. Can
the complement R of a meager set be meager? Or is it always non-
meager, i.e. of the second category?

Exercise 3.2.17. Let U,R be subsets of a topological space T , show:

(i) U open and dense ⇔ UC closed and nowhere dense;

(ii) R residual ⇔ R ⊃ countable intersect. of open dense sets.

(iii) Countable intersections of residuals are residuals.

[Hint: (i) Interior intU = UCC
. (ii) ’⇒’ Families de Morgan [Kel55,

Thm. 0.3]. ’⇐’ Suffices to show: RC is contained in a meager set.]

18 Equivalently, the closure Ā of a nowhere dense set has a dense complement.
Equivalently, the complement AC of a nowhere dense set is a set with dense
interior. (Not every dense set has a nowhere dense complement.)

19 A meager subset, although a union of nowhere dense sets, can be dense:
Consider Q ⊂ R.

https://en.wikipedia.org/wiki/Meagre_set
http://www.ucl.ac.uk/~ucahad0/3103_handout_7.pdf
http://www.ucl.ac.uk/~ucahad0/3103_handout_7.pdf
https://terrytao.wordpress.com/2009/02/01/245b-notes-9-the-baire-category-theorem-and-its-banach-space-consequences/
https://terrytao.wordpress.com/2009/02/01/245b-notes-9-the-baire-category-theorem-and-its-banach-space-consequences/
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Figure 3.5: Partition of power set P(X ) of complete metric space X

Complete metric spaces

Theorem 3.2.18 (Baire category theorem). In a complete metric
space X

(A) meager sets (countable unions of nowhere dense sets) have
empty interior;

(B) the complement of any meager set is dense, that is residual sets
are dense;

(C) countable intersections of dense open sets, thus residuals, are
dense.

Exercise 3.2.19. Show that the three assertions (A), (B), (C) are
equivalent. [Hint: Take complements.]

By the exercise it suffices to prove part (C) of the theorem.20 In
applications one often gets away with the following weak form of the
Baire theorem (just replace ’dense’ by ’non-empty’).

Corollary 3.2.20 (Baire category theorem – weak form). For a non-
empty complete metric space X the following is true.

(b) One cannot write X as a countable union of nowhere dense sets.
(A non-empty complete metric space is non-meager in itself.)

20 For a proof see e.g. [Rud91, Thm. 2.2] or [Kel55, Thm. 6.34] or [Oxt80,
Thm. 9.1]. See also [KN76, §9] and for references to the original papers see [RS80,
Notes to Ch. III].
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(b̃) If X is written as a countable union of closed sets, then at least
one of them has non-empty interior.

(c) Countable intersections of dense open sets are non-empty.

So in a non-empty complete metric space, any set with non-empty
interior is of the second category (non-meager) by (A). Moreover, the
complement R of a meager set M cannot be meager: Otherwise X =
M ∪MC contradicting (b). Thus R∩M = {MC |M ∈M}∩M = ∅
which answers the introductory questions; cf. Figure 3.5.

Note that the properties nowhere dense, dense, and somewhere
dense do not correspond to the sets M, R, and P(X ) \ (M∪ R).
While all elements of R are dense subsets of X and all nowhere dense
subsets are located in M, it is possible that even dense subsets are
elements of M, e.g. M = Q ⊂ X = R.

Remark 3.2.21 (Warning). Obviously, not all subsets of the second
category are dense. For example, the non-dense subset A = [−1, 1] ⊂
X = R is of the second category: It is not meager since its comple-
ment is not dense. In view of this, the in the literature not uncommon
wording “every set of the second category is dense by Baire’s category
theorem” is rather misleading, often based on defining the sets of the
second category as those that contain countable intersections of open
dense sets, that is on confusing second category and residual.

It is common to call a property P generic if it holds for ’typical’
examples. More precisely, in our context a generic property is one
that is true for the elements of the set R of residual subsets of a
complete metric space X . In this case the property is shared by the
elements of a dense set. In other words, by a small perturbation of
an arbitrary pick one can get the desired property.21

For closed manifolds Q the set of smooth functions equipped with
the metric

d(f, g) :=

∞∑
k=0

1

2k
‖f − g‖Ck

1 + ‖f − g‖Ck
(3.2.19)

is a complete metric space denoted by C∞(Q); see e.g. [Rud91, 1.46]
and [Con85, IV.2]. The Ck norm is the sum of the C0 norms of all
partial derivatives up to order k where ‖f‖C0 := supQ|f |.

21 Saying “pick a generic element x of X” actually means “pick x ∈ R”.
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Non-degeneracy is a generic property

Theorem 3.2.22 (AH Morse for generic H). Let (M,ω) be a sym-
plectic manifold. There is a residual subset Hreg ⊂ C∞(S1×M) such
that the symplectic action functional AH : L0M → R is Morse for
any H ∈ Hreg. If M is closed, then Hreg is open and dense in C∞.

The proof will be given at the end of Section 3.3.4 on Thom-Smale
transversality. It will serve to illustrate abstract transversality theory
in a simple setting.

Definition 3.2.23 (Non-degenerate case, Morse-regular Hamiltoni-
ans). The terminology non-degenerate case refers to the situation
H ∈ Hreg, that is all 1-periodic trajectories z ∈ P0(H) = CritAH
are non-degenerate, that is AH is Morse. Let us call the elements
H ∈ Hreg Morse-regular or M-regular Hamiltonians.

Proposition 3.2.24 (Finite set). Given a closed symplectic mani-
fold (M,ω) and a M-regular Hamiltonian H ∈ Hreg, then CritAH =
P0(H) is a finite set.

Proof. v1. CritAH is compact (Lemma 3.2.6) and also discrete
(Lemma 3.2.14). v2. Exercise 2.3.22.

3.3 Downward gradient equation

Throughout (M,ω) is a closed symplectic manifold. To empha-
size time dependence we denote time 1-periodic Hamiltonians H ∈
C∞(S1 ×M) by Ht. Let

J = {Jt = Jt+1} ⊂ J (M,ω) (3.3.20)

be a 1-periodic family of ω-compatible almost complex structures
with associated 1-periodic families of Riemannian metrics gJ =
{gJt =: gt} and Levi-Civita connections ∇ = {∇(gt) =: ∇t}. Let
L0M = C∞contr(S1,M) be the space of free contractible loops in M
and P0(H) = CritAH the set of 1-periodic contractible trajectories
of the Hamiltonian flow ψ given by (2.3.19).

As we indicated in Remark 3.2.8 the initial value problem of the
L2 gradient gradAH is ill-posed on the loop space, no matter which
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Hilbert or Banach completion one takes into consideration; see also
Remark 3.2.4. The way out is to interpret a curve R → LM in the
loop space asymptotic to critical points z∓ ∈ CritAH as a cylin-
der in M and the formal downward gradient equation on LM as a
PDE for the cylinder R × S1 → M in the manifold with asymptotic
boundary conditions given by the two 1-periodic trajectories z∓. The
key property that makes the analysis work is non-degeneracy of the
critical points z∓: This assumption leads to a Fredholm problem,
hence to solution spaces of finite dimension. In Section 3.3 we follow
mainly [Sal99a,FHS95] and [HZ11, §6.5].

In Section 3.3 we fix J as in (3.3.20) and pick H Morse-regular.

3.3.1 Connecting trajectories

Fix J as in (3.3.20). Pick H ∈ Hreg, that is the functional AH is
Morse, so its critical points are isolated. A smooth map u : R×S1 →
M , (s, t) 7→ u(s, t), is called a trajectory or a Floer cylinder if it
satisfies the perturbed non-linear Cauchy-Riemann type elliptic PDE,
also called Floer’s equation, given by

F(u) := ∂su+gradAH(us) = ∂su−Jt(u)∂tu−∇Ht(u) = 0. (3.3.21)

Here us denotes the loop u(s, ·), for the L2 gradient gradAH(us)
see (3.2.13). Floer’s equation generalizes three theories:

Figure 3.6: Floer’s equation interpolates between three theories
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For H ∈ Hreg and z∓ ∈ CritAH the set of connecting tra-
jectories or the connecting manifold22 or the moduli space of
connecting solutions

M(z−, z+) =M(z−, z+;H,J) (3.3.22)

consists of all Floer cylinders u with asymptotic limits

lim
s→∓∞

u(s, t) = z∓(t) (3.3.23)

where the convergence is uniform in t ∈ S1, in other words in C0(S1).

Remark 3.3.1 (Asymptotic convergence: C0 versus W 1,2). Only
asking C0(S1) convergence in the boundary condition of a connect-
ing trajectory u may come as a surprise, given that the natural do-
main of the symplectic action functional AH is the Banach manifold
of W 1,2 loops in M . For instance, one would expect that the en-
ergy of a connecting trajectory is the difference of the action values
of the two asymptotic boundary conditions whenever the asymptotic
convergence happens with respect to the functional’s natural topol-
ogy, in this case W 1,2. However, Lemma 3.3.2 below shows that C0

asymptotic convergence (3.3.23) is already sufficient to enforce finite
energy of u. But is this really that surprising? 23 Indeed, together
with non-degeneracy of the boundary conditions z∓, Theorem 3.3.5
below guarantees even exponential convergence – based on just a C0

convergence assumption, but don’t forget u solves an elliptic PDE..

Energy

A useful notion concerning gradient type equations is the energy of
arbitrary paths, that is arbitrary cylinders in M in our case. It is
defined by

E(u) :=
1

2

∫ 1

0

∫ ∞
−∞

(
|∂su|2 + |Jt(u)∂tu+∇Ht(u)|2

)
ds dt ≥ 0

(3.3.24)

22 Although at this stage M(z−, z+) is not yet a manifold.
23 As the L2 gradient does not generate a flow, the cylinder substitutes are

already special to start with. Secondly, being solutions to a PDE, as opposed
to an ODE, they are rather exotic, hence rare, creatures. But from exceptional
objects one may expect exceptional behavior.
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for any smooth cylinder u : R× S1 →M and where the integrand is
evaluated at (s, t), of course. Note the following.

• The energy E(u) ≥ 0 vanishes precisely on the periodic trajec-
tories, that is the constant trajectories u(s, ·) ≡ z ∈ P0(H);

• The energy of a trajectory is the square of the L2 norm, namely

E(u) = ‖∂su‖22; (3.3.25)

• Among all smooth cylinders w : R × S1 → M subject to
the same asymptotic boundary conditions (3.3.23), whether
z∓ ∈ CritAH are non-degenerate or not, it is precisely the Floer
cylinders u that minimize the energy with E(u) = AH(z−) −
AH(z+); see Exercise 3.3.4.

Lemma 3.3.2 (Connecting trajectories are of finite energy). Given
a connecting trajectory u ∈ M(z−, z+), non-degeneracy of z∓ is ac-
tually not needed, then24

E(u) =

∫
R×S1

u∗ω −
∫ 1

0

Ht(z
−(t)) dt+

∫ 1

0

Ht(z
+(t)) dt

= AH(z−)−AH(z+).

(3.3.26)

Proof. By (3.3.25) and the gradient nature of the Floer equation

E(u) =

∫ ∞
−∞
〈∂sus, ∂sus〉L2(S1) ds

= lim
T→∞

(
AH(u−T )−AH(uT )

)︸ ︷︷ ︸
≤AH(z−)−AH(z+)

= lim
T→∞

(∫
[−T,T ]×S1

u∗ω −
∫ 1

0

H ◦ u−T dt+

∫ 1

0

H ◦ uT dt

)
.

In the final step we fixed an extension v : D → M of z− : S1 → M .
Then we chose the extensions of the loops u−T and uT required by the

24 By definition
∫
R×S1 v

∗ω :=
∫ 1
0

∫∞
−∞ ω(∂su, ∂tu) dsdt, mind that the order of

s, t in R× S1 must be the same as of ∂s, ∂t when inserted into u∗ω.
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definition of AH by simply connecting these loops along the cylinder
u to z− and its spanning disk v. In the difference AH(u−T )−AH(uT )
each of the integrals

∫
D v
∗ω and

∫
(−∞,−T ]×S1 u

∗ω appears twice, but

with opposite signs. As the difference is uniformly bounded from
above, the limit as T →∞ exists and is given by the RHS of the first
identity in (3.3.26); here C0 convergence (3.3.23) enters.
Identity two in (3.3.26) holds by the earlier argument: Given an
extension v : D → M of the loop z−, choose the natural extension
u#v of z+.

Remark 3.3.3 (Circumventing non-boundedness of AH – finite en-
ergy). To construct a Morse complex one needs that the trajectories
used to define the boundary operator have precisely one critical point
sitting asymptotically at each of the two ends. In our case, suppose
u : R × S1 → M is a trajectory, how can we guarantee existence
of asymptotic limits z∓ ∈ CritAH? Well, if they exist, the energy
identity (3.3.27) shows that u is of finite energy. Indeed it turns out,
see Theorem 3.3.5, that finite energy of a trajectory u is sufficient
to enforce existence of asymptotic limits z∓ ∈ CritAH – under the
assumption that our functional AH is Morse. This is why we pick
H ∈ Hreg in Section 3.3.

Exercise 3.3.4. Any smooth cylinder w : R × S1 → M subject to
the asymptotic boundary conditions (3.3.23), whether z∓ ∈ CritAH
are non-degenerate or not, satisfies the identity

E(u) =
1

2

∫ 1

0

∫ ∞
−∞
|∂su− Jt(u)∂tu−∇Ht(u)|2 ds dt

+A(z−)−A(z+).

(3.3.27)

[Hint: Start at the integral term in (3.3.27). Permute the integrals,
so the integral over t becomes the L2(S1) inner product of ∂sus +
gradAH(us) with itself. Use the gradient nature of the Floer equation
to end up with E(u) + limT→∞ (AH(uT )−AH(u−T )) which is equal
to E(u) +AH(z+)−AH(z−), as shown in the proof of Lemma 3.3.2.]
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Finite energy trajectories

Consider the set of finite energy Floer trajectories

M := {u : R× S1 →M solving (3.3.21) and E(u) <∞}.

If AH is Morse, then by Theorem 3.3.5 below every finite energy
trajectory is connecting and this non-trivial fact contributes the in-
clusion ⊂ in the identity

M =
⋃

z∓∈P0(H)

M(z−, z+). (3.3.28)

The other inclusion ⊃ already holds without the Morse assumption
by (3.3.26). In the non-degenerate case, still assuming that ω and
c1(M) vanish over π2(M), counting with appropriate signs the 1-
dimensional components appearing on the RHS of (3.3.28) defines
the Floer boundary operator. In the special case of an autonomous
C2 small Morse function H, see Proposition 2.3.16, and autonomous
J , the count defines the Morse boundary operator and the RHS
of (3.3.28) is naturally homeomorphic to M itself. Consequently
Floer homology represents the singular integral co/homology of M .25

These remarks show the significance of

Theorem 3.3.5. Let u : R × S1 → M be a Floer cylinder in the
non-degenerate case,26 then the following are equivalent.

(finite energy) E(u) <∞.

(asymp.limits) There exist periodic trajectories z∓ ∈ P0(H) which
are the C0 limits (3.3.23) of the loops us and ∂sus(t) → 0, as
s∓∞, again uniformly in t.

(exp.decay) There exist constants δ, c > 0 such that

|∂su(s, t)| ≤ ce−δ|s|

at every point (s, t) of the cylinder R× S1.

25 As M is closed and orientable, by Poincaré duality H2n−k ∼= Hk.
26 That is u satisfies Floer’s equation (3.3.21) on the closed mfM andH ∈ Hreg.
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Outline of proof. The proof is non-trivial, for details we recom-
mend [Sal99a]. Roughly speaking, (finite energy), namely by
(3.3.25) finiteness of the integral ‖∂su‖22 = E(u) < ∞ over the
whole cylinder R × S1, enforces via additivity of the integral with
respect to disjoint union of the domain that the integrals over annuli
(T, T −1)×S1 must converge to zero, as T → ∓∞. But a mean value
inequality for e = |∂su(s, t)|2 based on a differential inequality

∆e := ∂s
2 + ∂t

2 ≥ −c1 − c2e2

provides a pointwise estimate of |∂su(s, t)| in terms if the L2 norm
over some annulus As which does not depend on s. Thus |∂sus| =
|∂tus−XHt(us)| converges to zero, as s→ ∓∞, uniformly in t. From
this one already concludes existence of a sequence sk → ∞ such
that usk converges uniformly to some periodic trajectory z+. But
by non-degeneracy all periodic trajectories are isolated which implies
that any sequence diverging to +∞ leads to the same limit; simi-
larly for s → −∞. One has confirmed (asymptotic limits). But
(asymptotic limits) implies (finite energy) by Lemma 3.3.2.

Obviously (exponential decay) immediately leads to (finite

energy) by (3.3.25) and explicit integration. Conversely, how
(finite energy) leads to (exponential decay) is hard to illus-
trate, have a look at [Sal99a, §2.7]. A key observation is that
ξs(t) = ∂sus(t) lies in the kernel of the trivialization

D =
d

ds
+A(s) = ∂s − J0∂t − S(s, t)− C(s, t)

of the linearized operator Du, see (3.3.32) and (3.3.36), and that for

kernel elements the function f(s) := 1
2

∫ 1

0
|ξs(t)|2 dt satisfies a differen-

tial inequality f ′′(s) ≥ δ2f(s) for |s| sufficiently large; this is based on
invertibility of the Hessian operators A(s) at ∓∞, hence near ∓∞. It
is here where non-degeneracy of the asymptotic boundary conditions
z∓ enters. This way one arrives at an L2 version of the desired esti-
mate, namely f(s) ≤ c′e−δ|s|. Application of the operator ∂s+J0∂t to
Dξ = 0 leads to a differential inequality ∆|ξs(t)|2 ≥ −c′′|ξs(t)|2, thus
to a mean value inequality for |ξs(t)|2 which together with the for-
merly obtained L2 estimate establishes (exponential decay).
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3.3.2 Fredholm theory

For convenience of the reader we enlist some basic notions and tools of
Fredholm theory. Concerning details we highly recommend [Sal99b].

Suppose throughout that X,Y, Z are Banach spaces. Denote by
L(X,Y ) the Banach space of bounded linear operators T : X →
Y equipped with the operator norm ‖T‖ := sup‖x‖=1{‖Tx‖ : x ∈
X}. A bounded linear operator D : X → Y is a Fredholm operator
if it has a closed range and finite dimensional kernel and cokernel. The
latter is given by the quotient space cokerD = Y/imD and inherits
the Banach space structure of Y by closedness. The map defined on
the space of Fredholm operators F(X,Y ) by

indexD := dim kerD − dim cokerD

is called the Fredholm index of D.

Exercise 3.3.6 (Stability properties). a) Show that the subset
F(X,Y ) ⊂ L(X,Y ) is open with respect to the operator norm and
the index is locally constant, that is constant on each component.

b) A compact operator is a (bounded) linear operator K : X →
Y which takes bounded sets to precompact sets, that is sets of
compact closure. Show that the sum D +K of a Fredholm operator
D and a compact operator K is Fredholm and of the same index.

Theorem 3.3.7 (semi-Fredholm estimate). Given D ∈ L(X,Y ) and
a compact operator K : X → Z, if there is a constant c > 0 such that

‖x‖X ≤ c (‖Dx‖Y + ‖Kx‖Z) , ∀x ∈ X, (3.3.29)

then D has closed range and finite dimensional kernel.

Exercise 3.3.8. Prove the previous theorem. Use it to show open-
ness F ⊂ L. [Hint: Concerning finite dimensionality it suffices to
show that the unit ball in kerD is compact. Use finite dimension to-
gether with the Hahn-Banach theorem to reduce the proof of closed
range to the case in which D is injective; choose a complement X1 of
kerD and replace X by X1. Concerning openness use again finiteness
of k = dim kerD to define an augmentation (D,K0) : X → Y ⊕ Rk
of D which is injective and has closed range Z. Apply the open map-
ping theorem, cf.proof of Lemma 3.3.9, to conclude that the inverse
of the bounded linear bijection (D,K0) : X → Z is continuous.]
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Lemma 3.3.9. For an operator D ∈ L(X,Y ) are equivalent:

• D is an injection with closed range

• There is a constant c > 0 such that

‖x‖X ≤ c ‖Dx‖Y (3.3.30)

for every x ∈ X.

Proof. ’⇒’ By the open mapping theorem27 the inverse of a bounded
linear bijection between Banach spaces is continuous. Now pick
c := ‖(D̃)−1‖L(imD,X) where D̃ : X → imD, x 7→ Dx. ’⇐’ By
contradiction the inequality itself shows that kerD = {0}. By Theo-
rem 3.3.7 the range of D is closed.

Definition 3.3.10. A complement, often called topological com-
plement, of a closed linear subspace X0 ⊂ X is a closed linear sub-
space Z ⊂ X such that X0 ⊕ Z = X.28 If X0 admits a complement
it is a complemented subspace.

Examples of complemented subspaces are finite dimensional sub-
spaces and closed subspaces of finite codimension. In a Hilbert space
every closed subspace is complemented. We recommend the book by
Brezis [Bre83, II.4].

Definition 3.3.11. A right inverse of a surjective bounded linear
operator D : X → Y is a bounded linear operator T : Y → X such
that DT = 1lY .

Exercise 3.3.12. Given a surjective operator D ∈ L(X,Y ), then

D admits a right inverse T ⇔ kerD is complemented.

[Hint: ’⇒’ A natural try is Z := imT . Use DT = 1lY to derive the
injectivity estimate (3.3.30) for T and to conclude imT ∩kerD = {0}.
Writing x = x− TDx+ TDx shows that X = (kerD) + Z. ’⇐’ The
restriction D|Z : Z → Y to the complement is a bounded bijection.]

27 The open mapping theorem. A bounded linear surjection between Ba-
nach spaces is open. A map is called open if it maps open sets to open sets.

28 Here ⊕ denotes the internal direct sum of two closed subspaces which by
definition means X0 + Z = X and X0 ∩ Z = {0}.
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The previous exercise shows that any surjective Fredholm opera-
tor admits a right inverse. This generalizes, see part ii), as follows;
for details see e.g. [Web02].

Exercise 3.3.13. Let D : X → Y be Fredholm and Z ∈ L(Z, Y ).

i) The range of the bounded operator

D ⊕ L : X ⊕ Z → Y, (x, z) 7→ Dx+ Lz,

is closed with finite dimensional complement. How about
dim ker(D⊕L)? Give an example in which dim ker(D⊕L) =∞.

ii) IfD⊕L is surjective, then ker(D⊕L) admits a complement, thus
a right inverse. Moreover, the projection P : ker(D ⊕ L)→ Z,
(x, z) 7→ z, to component two is a Fredholm operator with

kerP ' kerD, cokerP ' cokerD,

thus indexP = indexD.

Remark 3.3.14 (Non-linear Fredholm theory). A C1 map f : X →
Y is a Fredholm map if the derivative df(x) : X → Y is a Fredholm
operator for every x ∈ X. In this case index(f) := index df(x) is the
Fredholm index of the Fredholm map f .

For a C` map f : X → Y , ` ≥ 1, Fredholm or not, an element
y ∈ Y is called a regular value of f if the linear operator D =
df(x) : X → Y is onto and admits a right inverse for every element
x ∈ f−1(y) in the pre-image of y.29 Then by the implicit function
theorem, see e.g. [MS04, Thm. A.3.3], the regular level set

M := f−1(y) ⊂ X (3.3.31)

is a C` Banach manifold with tangent spaces given by the kernels

TxM = ker df(x).

This result is called the regular value theorem. If f is even a
Fredholm map, thenM is finite dimensional and dimM = index(f).

Exercise 3.3.15. The Fredholm index of a Fredholm map is well
defined.

29 Any y outside the image of f , i.e. with f−1(y) = ∅, is a regular value.
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3.3.3 Connecting manifolds

Consider a connecting manifoldM(z−, z+;H,J) defined by (3.3.22).
Recall that H ∈ Hreg is Morse-regular. In this section we show that
it is a smooth manifold for generic Hamiltonian H and its dimension
is the difference of the canonical Conley-Zehnder indices of z∓.

To start with denote the left hand side of Floer’s equation (3.3.21)
by FH(u), also often denoted by ∂̄H,J to emphasize its Cauchy-
Riemann type nature. Consider the linearization

Du = DFH(u) : W 1,p
u := W 1,p(R× S1, u∗TM)→ Lpu

at a zero u of FH . Here p > 2 is a constant; see Remark 3.3.21. As
outlined below, see (3.3.33), the linearized operator is of the form

Duζ = ∇sζ − Jt(u)∇tζ −∇ζ∇Ht(u)− (∇ζJ) (u)∂tu

=
(
D
ds +Aus

)
ζ

(3.3.32)

for every smooth compactly supported vector field ζ along u. Here
Aus denotes the covariant Hessian operator (3.2.15) of AH based at a
loop us := u(s, ·). Actually formula (3.3.32) not only makes sense for
p > 2, let us allow p > 1. The Sobolev spaces Lpu and W 1,p

u are the
closures of the vector space of smooth compactly supported vector
fields ζ along u with respect to the Sobolev norms

‖ζ‖pp :=

∫ ∞
−∞

∫ 1

0

|ζ|p , ‖ζ‖p1,p :=

∫ ∞
−∞

∫ 1

0

(|ζ|p + |∇sζ|p + |∇tζ|p) .

Definition 3.3.16. Set H := C∞(S1 ×M). The elements of the set

Hreg(J) := {H ∈ H | DFH(u) onto ∀u ∈M(z−, z+) ∀z∓ ∈ P0(H)}

are called MS-regular or Morse-Smale Hamiltonians.

Exercise 3.3.17 (Constant connecting trajectories, MS-regular ⇒
M-regular). Suppose H ∈ Hreg(J). Show that every Hamiltonian
loop z ∈ P0(H) is non-degenerate, hence AH is Morse. This shows
that Hreg(J) ⊂ Hreg. [Hint: Constant trajectory us ≡ z.]
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Exercise 3.3.18 (Morse-Smale condition). As indicated in Fig-
ure 3.6, if u,H, J are independent of t, then the Floer equation re-
covers the gradient flow of ∇H on the closed Riemannian manifold
(M, gJ). Show that in this case the elements of Hreg(J) are precisely
those Morse functions on M which satisfy the Morse-Smale con-
dition, i.e. all stable and unstable manifolds intersect transversely.

The significance of MS-regular Hamiltonians H ∈ Hreg(J) lies in
the fact that their connecting manifolds are smooth manifolds, even
of finite dimension, as a consequence of the regular value theorem; cf.
Remark 3.3.14. However, to apply that theorem, two assumptions
need to be verified: Firstly, for zero to be a regular value, the kernel
of Du needs to be complemented; cf. Exercise 3.3.12. Secondly, to
get to finite dimension ofM(z−, z+;H,J) the kernel has to be finite
dimensional. Fredholm operators satisfy both criteria.

Thus, modulo proving that Du is a Fredholm operator and calcu-
lating its Fredholm index, the regular value theorem yields (ii) in

Theorem 3.3.19 (Connecting manifolds). Given a closed symplectic
manifold (M,ω) and a family of ω-compatible almost complex struc-
tures Jt = Jt+1, then

(i) the set Hreg(J) is a residual of H := C∞(S1 ×M);

(ii) for H ∈ Hreg(J) any space M(z−, z+) =M(z−, z+;H,J) is a
smooth manifold. The dimension of the component of u is 30

dimM(z−, z+)u = index DFH(u) = µCZ(z−)− µCZ(z+)

where µCZ is the Conley-Zehnder index normalized by (2.1.5).

For the proof of part (i) we refer to [FHS95, §5]. It utilizes a tool
called Thom-Smale transversality theory, see Section 3.3.4 below. It
is crucial that the linearized operator DFH(u) is already Fredholm to
start with, but this holds true precisely for Morse-regular Hamiltoni-
ans. This explains one reason for our standing assumption H ∈ Hreg.
Concerning part (ii) we shall sketch below the proof of the Fredholm
property of Du = DFH(u) and the calculation of its Fredholm index
denoted by index Du.

30 Do not miss our standing assumptions Ic1 = 0 = Iω ; see (3.0.1).
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Remark 3.3.20 (Critical points unaffected by MS-perturbation).
By [FHS95, Thm. 5.1 (ii)] one can C∞ approximate a given Morse-
regular H by MS-regular Hamiltonians Hν which C2 agree with H
along its (finitely many) 1-periodic trajectories. Thus CritAH ⊂
CritHν . In [FHS95, Rmk. 5.2 (ii)] it is pointed out that it is an open
problem whether it is sufficient to perturb H outside some open neigh-
borhood U ⊂ M of the images of the 1-periodic trajectories of H.
This would guarantee equality CritAH = CritAHν for large ν. How-
ever, the authors point out that it is possible to perturb the family J
outside such neighborhood U to achieve MS-regularity for the given
M-regular Hamiltonian H itself, just with respect to a perturbed 1-
periodic family of ω-compatible structures.

Linearization at general cylinders u

When it comes to gluing, in Section 3.4.2, it is necessary to linearize
F = FH given by (3.3.21) not only at zeroes of FH , but at more
general smooth cylinders u : R × S1 → M . The procedure is com-
pletely analogous to the definition of the covariant Hessian (3.2.15),
just replace the map in (3.2.14) by the map

fu : Lpu ⊃W 1,p
u → Lpu, ζ 7→ Tu(ζ)−1FH(expu ζ), (3.3.33)

given any cylinder u ∈ B1,p(z−, z+). Here B = B1,p(z−, z+) de-
notes the Banach manifold which, roughly speaking, consists of all
continuous cylinders u : R × S1 → M which are locally of Sobolev
class31 W 1,p and converge asymptotically in a suitable way to the
given periodic trajectories z∓. Convergence of the elements u of
B must be such that the tangent space TuB coincides with the
space W 1,p

u := W 1,p(R × S1, u∗TM) of W 1,p vector fields along u;
see [FHS95, Thm. 5.1] for details. Note that FH(u) ∈ Lpu is a vector
field along u of class Lp. All these spaces fit together in the form of
a Banach space bundle E → B whose fiber over u ∈ B is Eu = Lpu; see
Figure 3.3 for a similar case. Now FH is a section of E whose regu-
larity depends on the regularity of the function H; which is smooth

31 Here it is crucial to choose p > 2, because in this caseW 1,p implies continuity,
so one can work with local coordinate charts on M to analyze u.
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here. To show that

DFH(u)ζ :=
d

dτ

∣∣∣∣
0

fu(τζ) (3.3.34)

is equal to the operator Du displayed in (3.3.32) one can either utilize
local coordinates on M or work with global notions.32 Details of both
possibilities can be found in [Web99, App. A] in the slightly different
but related context of Section 3.5.

Remark 3.3.21 (The condition p > 2). Roughly speaking, maps on
a 2-dimensional domain of Sobolev class W k,p are continuous, so one
can localize, and well behaved with respect to relevant compositions
and products whenever kp > 2; for details see in [MS04] the para-
graphs prior to Prop. 3.1.9 and App. B, see also the Blog Lp or not
Lp, that is the question.
For instance, the non-linear Fredholm theory, see Remark 3.3.14, re-
quires to equip the domain B of the section F = FH in (3.3.21)
with the structure of a differentiable Banach manifold. Choosing
B = B1,p(z−, z+) with p > 2, as we did in the previous remark, does
the job (and is the usually selected option), but leads into the realm
of Lp estimates which are much harder to obtain than L2 estimates.
Another option is to choose k = 2 and p > 2

2 , of course p = 2, and
view FH as a section of the Hilbert space bundle E1,2 → B2,2(z−, z+).
Unfortunately, this choice brings in higher derivatives.

The Fredholm operator Du

Consider two (non-degenerate) critical points z∓ ∈ CritAH and sup-
pose that u ∈M(z−, z+;H,J) is a connecting trajectory.

Theorem 3.3.22 (Fredholm operator). By non-degeneracy of z∓

the linear operator Du : W 1,p
u → Lpu given by (3.3.32) is Fredholm for

1 < p <∞ and its index is given by the difference

indexDu = µCZ(z−)− µCZ(z+). (3.3.35)

To prove the theorem it is convenient to represent Du by an op-
erator D acting on vector fields that take values in R2n.

32 We use the notation DFH(u)ζ of a Fréchet derivative, but define it by
Gâteaux derivative D

dτ
|τ=0 FH(expu τζ). See e.g. [LV03, § 3.1] for these notions

and when they coincide.

https://symplecticfieldtheorist.wordpress.com/2015/05/08/lp-or-not-lp-that-is-the-question/
https://symplecticfieldtheorist.wordpress.com/2015/05/08/lp-or-not-lp-that-is-the-question/
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Trivialization

The connecting trajectory u ∈M(z−, z+;H,J) extends continuously
from the open cylinder Z = R× S1 to its compactification Z = (R ∪
{∓∞})×S1, because there are the two periodic trajectories z∓ sitting
at the ends by the asymptotic C0 limit condition (3.3.23). Thus
we have in fact a hermitian vector bundle u∗TM over the compact
cylinder-with-boundary Z. Pick a canonical unitary trivialization
Φ(s, t) : R2n → Tu(s,t)M according to Proposition 2.2.2. In fact, for
ease of notation, let us right away agree to omit any ’bars’ from now
on completely. Proceed as in (3.2.17) and represent Du : W 1,p

u → Lpu
by the operator

D = d
ds +A(s) = ∂s− J0∂t−S(s, t) +C(s, t) : W 1,p → Lp (3.3.36)

where W 1,p := W 1,p(R × S1,R2n) and Lp := Lp(R × S1,R2n). Here
the family of symmetric matrizes S(s, t) = S(s, t)T ∈ R2n×2n is given
by replacing in (3.2.18) the loop z by the family of loops s 7→ us and
Φ(t) by Φ(s, t). The only new element is the matrix family C(s, t) =
Φ(s, t)−1 (∇sΦ(s, t)) which converges to zero, as s∓∞, uniformly in t,
because ∇s actually stands for ∇∂su and ∂su vanishes asymptotically
by (asymptotic limits).33 The bad news is that in general C is
not symmetric, thereby destroying self-adjointness of A(s). The good
news is that C only amounts to a compact perturbation of D (cf.
[RS95, Le. 3.18]), so Fredholm property and index, if any, will not
change by Exercise 3.3.6 if we simply ignore C (while investigating
these two properties).

From now on we set C = 0. For fixed s ∈ R the path of symmetric
matrizes Ss : [0, 1] → R2n×2n, t 7→ S(s, t), determines a symplectic
path t 7→ Ψs(t) by

Ψ̇s = J0SsΨs = J0(−Ss)Ψs, Ψs(0) = 1l,

see Figure 3.7 and Exercise 2.1.10. The asymptotic limit matrizes
S∓(t) := lims→∓∞ S(s, t) are given by (3.2.18) with z = z∓ and their
corresponding symplectic paths Ψ∓ lie in SP∗(2n): Indeed the paths
Ψ∓ coincide with the paths Ψz∓,v∓ in (2.3.24), because they satisfy
the same ODE and initial condition, but the latter lie in SP∗(2n) by

33 For any cylinder u ∈ B1,p(z−, z+) asymptotic convergence ∂su→ 0 holds.
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Figure 3.7: Rectangles worth of matrices: Symmetric −→ symplectic

non-degeneracy of z±; cf. Exercises 2.3.23 and 3.2.13. Thus Ψ∓ do
admit Conley-Zehnder indices for which we shall choose the canon-
ical normalization (2.1.5), of course. By the uniform limit condi-
tion (3.3.23) these indices are actually already shared by the paths
Ψ∓T ∈ SP∗(2n) whenever T > 0 is sufficiently large. For simplicity

Ψz∓ := Ψ∓T . (3.3.37)

Fredholm property

To prove that D : W 1,p → Lp is a Fredholm operator one first es-
tablishes for D the semi-Fredholm estimate (3.3.29) with some suit-
able compact operator, say the operator K : W 1,p → W 1,p

T ↪→ LpT
given by restriction (continuous) followed by inclusion (compact
by [RS95, Le. 3.8]). Here T > 1 is a large constant and W 1,p

T de-
notes W 1,p([−T, T ] × S1,R2n). The semi-Fredholm estimate can be
established for any 1 < p <∞.34 This is non-trivial, we recommend
the excellent presentation in [Sal99a, § 2.3], Via the transformation
s 7→ −s, one derives a semi-Fredholm estimate for the formal ad-
joint operator35 D∗ = − d

ds + A(s) acting on W 1,q → Lq where
1
p + 1

q = 1. Consequently both D and D∗ have finite dimensional
kernel and closed range. Using elliptic regularity theory one shows

34 Here we do linear Fredholm theory. The necessity for p > 2 only arises
later on when we use non-linear Fredholm theory, cf. Remark 3.3.21, to show the
manifold property of the spaces of connecting flow lines. Of course, the non-linear
application is based on the present linear findings.

35 defined by the identity 〈D∗η, ξ〉 = 〈η,Dξ〉 on C∞0 ⊂W 1,p (comp. support)
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that if η lies in the annihilator of the image of D, that is

η ∈ Ann(imD) := {η ∈ (Lp)∗ = Lq | 〈η,Dξ〉 = 0 ∀ξ ∈W 1q},

then η ∈W 1,q and D∗η = 0; cf. [Sal99a, Pf. of Thm. 2.2]. Thus

W 1,q ⊃ kerD∗ = Ann(imD) ∼= cokerD :=
Lp

imD
η 7→ [η]

(3.3.38)

and similarly one gets the analogous isomorphism

W 1,p ⊃ kerD = Ann(imD∗) ∼= cokerD∗ :=
Lq

imD∗
. (3.3.39)

This shows that both D and D∗ are Fredholm operators.

Fredholm index

Let’s get back to the rectangle [0, 1]× [−T, T ] 3 (t, s) worth of sym-
plectic matrizes Ψs(t) ∈ Sp(2n) introduced prior to (3.3.37) and il-
lustrated by Figure 3.7. Let Γ denote the loop of symplectic matrizes
obtained by cycling along the rectangle’s boundary once. In [RS93]
Robbin and Salamon introduced a Conley-Zehnder type index for
rather general symplectic paths in the sense that there are no re-
strictions on initial and endpoint; see Section 2.1.5. Among the most
useful features of the Robbin-Salamon index µRS is that it is additive
under concatenations of paths. Furthermore, constant paths have in-
dex zero and paths homotopic with fixed endpoints share the same
index. Moreover, the Robbin-Salamon index coincides with the Con-
ley Zehnder index µCZ (= −µCZ) on the set SP∗(2n) of admissible
paths; see Section 2.1.3. Thus

0 = µRS(Γ)

= µRS(1l)︸ ︷︷ ︸
0

+µRS(Ψz−)︸ ︷︷ ︸
−µCZ(Ψz− )

+µRS (Ψ·(1)) + µRS(Ψz+(1− ·))︸ ︷︷ ︸
µCZ(Ψz+ )

. (3.3.40)

So to conclude the proof of the index formula (3.3.35) it remains to
identify the yet anonymous term in the sum with the Fredholm index
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of Du. We relate the unkown term in an intermediate step to another
quantity called spectral flow.

The Robbin-Salamon index counts with multiplicities the inter-
sections (called crossings) of a symplectic path s 7→ Ψ(s) with the
Maslov cycle C in the symplectic linear group Sp(2n). Let us repeat
the definition given in [Sal99a, § 2.4] that starts from Φ′ = J0SΦ.
Slightly perturbing the path, if necessary, leads to finitely many reg-
ular crossings si, that is crossings at which the following quadratic
form is non-degenerate. Suppose that Ψ has only regular crossings.
The multiplicity at a regular crossing s is measured by the signature
of the quadratic form

Γ(Ψ, s) : ker (1l−Ψ(s))→ R, ζ0 7→ ω0 (ζ0,Ψ
′(s)ζ0) = 〈ζ0, S(s)ζ0〉0,

called the crossing form of the symplectic path at s. The Robbin-
Salamon index, in case there are no crossings at the endpoints, is the
sum of signatures

µRS(Ψ) :=
∑
si

sign Γ(Ψ, si)

over all crossings. As long as endpoints are fixed, the definition does
not depend on perturbations, if any, required to get regular crossings.

Recall that by (3.2.16) the domain of the crossing form Γ(Ψ, s)
is isomorphic to the kernel of the unbounded self-adjoint operator
A(s) = −J0∂t − S(s) on the Hilbert space L2 = L2(S1,R2n). Thus
in the present context a crossing s corresponds to A(s) having non-
trivial kernel. The quadratic form

Γ(A, s) : kerA(s)→ R, ζ 7→ 〈ζ,A′(s)ζ〉L2 ,

is the crossing form of the family of selfadjoint operators A(s).
One can show, see [Sal99a, Le. 2.6], that the two crossing forms are
isomorphic under the natural isomorphism (3.2.16). Thus the integer

µspec(A) :=
∑
si

sign Γ(A, si) = µRS (s 7→ Ψs(1)) ,

called the spectral flow of the operator family A = {A(s)}, fills
in the yet missing piece in (3.3.40).
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Exercise 3.3.23. a) Check that the signature of the crossing form
Γ(A, si) at a regular crossing si measures the number of eigenvalues
of A(s), with multiplicities, that change from negative to positive
minus those changing from positive to negative. So the total change
µspec(A) is a relative Morse index.
b) Suppose the asymptotic operators A∓ have finitely many nega-
tive eigenvalues – the number of which, including multiplicities, is
called the Morse index of A∓ and denoted by ind(A∓). Check that
µspec(A) = ind(A−)− ind(A+).

To conclude the proof of the index formula (3.3.35) we cite the
result in [RS95, Thm. 4.21] that the spectral flow of the family A =
{A(s)} is equal to the Fredholm index of the operator D = d

ds +A(s)
given by (3.3.36).36

This concludes the (sketch of the) proof of Theorem 3.3.22.

3.3.4 Thom-Smale transversality

Assume ` ≥ 1 is an integer. Suppose U and V are Banach manifolds
of class C` each of which admits a countable atlas and is modeled
on a separable37 Banach space. Consider a Banach space bundle
E → U × V of class C` and denote by E(u,V ) the fiber over (u, V ).

Suppose F is a section of E of class C`. It is convenient to introduce
the notation

FV (u) := F(u, V ) =: Fu(V ), u ∈ U , V ∈ V.

Recall that the tangent bundle of a vector bundle splits naturally
along the zero section. In what follows we use the notation D to
denote the linearization of a section at a point of the zero section:
The (Fréchet) derivative as a map, from now on called differential,
composed with projection onto the fiber. For instance, at (u, V ) ∈
F−1(0) the symbol

DF(u, V ) : TuU × TV V → E(u,V )

denotes the composition of the differential

dF(u, V ) : TuU × TV V → TF(u,V )E ' (TuU × TV V)⊕ E(u,V )

36 The sign conventions in [RS95] differ from ours in two neutralizing locations.
37 A Banach space is called separable if it admits a dense sequence.
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followed by projection onto the second component E(u,V ). Note that
restriction of E to U × {V } yields a bundle EV → U of which FV is
a section and with fibers EVu = E(u,V ); similarly Eu → V with section
Fu.38 Note also that

DF(u, V ) =

=:D︷ ︸︸ ︷
DFV (u)⊕

=:L︷ ︸︸ ︷
DFu(V ) : TuU ⊕ TV V → E(u,V )

(ξ, v) 7→ Dξ + Lv

(3.3.41)

at every zero (u, V ) of F .

Theorem 3.3.24 (Thom-Smale transversality). Let F be a C` sec-
tion of E such that

(F) D = DFV (u) : TuU → EVu is Fredholm and ` ≥ max{1, 1 +
indexDFV (u)} for each V ∈ V and every u ∈ F−1

V (0).

(S) DF(u, V ) = D⊕L : TuU×TV V → E(u,V ) is surjective for every
zero (u, V ) ∈ F−1(0).

Then the subset of the parameter manifold V given by

Vreg := {V ∈ V | DFV (u) surjective ∀u ∈ F−1
V (0)}

is residual, hence dense, in V.

Remark 3.3.25. In practice, instead of verifying the conditions (F)
& (S) for a given section F , it is often more convenient to verify the
Fredholm condition (F) and the trivial-annihilator condition:

(A) At every zero (u, V ) of the section F the annihilator

Ann(u,V ) : = {η ∈ E∗(u,V ) | η(ξ) = 0 for every ξ ∈ imDF(u, V )}
= {0}

of the image of the linearization DF(u, V ) is trivial.39

Lemma 3.3.26. If F satisfies (F) & (A), then it satisfies (F) & (S).

38 To make this precise, consider the inclusion ιV : U → U × V, u 7→ (u, V ),
and denote the pull-back bundle (ιV )∗E → U by EV ; analogously for Eu.

39 Here E∗
(u,V )

:= L(E(u,V ),R) is the dual space of the vector space E(u,V ).
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Proof. Suppose F(u, V ) = 0. As a consequence of the Hahn-Banach
theorem, see [Bre83, Cor. I.8], triviality of the annihilator Ann(u,V )

is equivalent to density of the image of DF(u, V ). But the image is
also closed by Exercise 3.3.13 i).

The proof of Theorem 3.3.24 rests on two pillars. Firstly, the
slightly miraculous equality of the set Vreg of parameters for which the
Fredholm operator D = DFV (u) is surjective for all u ∈ F−1

V (0) and
the set of regular values of the projection π : U × V ⊃ F−1(0) → V
onto the second component. Secondly, the generalization of Sard’s
theorem to infinite dimensions, due to Smale [Sma65]. Applied locally
to π, Sard-Smale yields the assertion of Theorem 3.3.24.

Theorem 3.3.27 (Sard-Smale). Suppose Y and Z are separable Ba-
nach spaces and W ⊂ Y is an open connected 40 subset. If f : W → Z
is a Fredholm map of class C` with ` ≥ 1+index(f),41 then the subset
Zreg ⊂ Z of regular values,

Zreg := {z ∈ Z | im df(x) = Z for every x ∈W with f(x) = z},

is a residual subset of Z, thus dense, hence non-empty.42

Remark 3.3.28. The Fredholm condition is necessary; cf. [Sma65].
Also separability is essential in order to localize the proof: In a sep-
arable Banach space every open cover admits a countable subcover ;
cf. [Sal99b, Prop. B.14].

Proof of Theorem 3.3.24 (Thom-Smale transversality)

Suppose F is a C` section with ` ≥ 1 of the Banach space bundle E →
U ×V and it satisfies conditions (F) & (S). Let us call F a universal
section, just to emphasize that FV and Fu are its restrictions. The
proof takes four steps I–IV.

Step I. Suppose F(u, V ) = 0 and recall the notation DF(u, V ) =
D⊕L from (3.3.41) where D = DFV (u) is Fredholm from X = TuU
to Y = E(u,V ) by assumption (F) and L = DFu(V ) is bounded from

40 If W isn’t connected, impose one condition ` ≥ 1 + index(f) per component.
41 Recall that being a Fredholm map already requires ` ≥ 1.
42 Note that Zreg contains any element z ∈ Z with empty pre-image f−1(z) = ∅.
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Z = TV V to Y due to ` ≥ 1. As DF(u, V ) is surjective by assumption
(S), Exercise 3.3.13 ii) asserts that

a) kerDF(u, V ) = ker(D⊕L) has a complement, so a right inverse;

b) projection onto the second component

Π = Π(u,V ) : TuU ⊕TV V ⊃ kerDF(u, V ) = ker(D⊕L)→ TV V

is a Fredhom operator with index(Π) = index(D).

Step II. Zero is a regular value of F by a). Thus by the regular
value theorem, see Remark 3.3.14, the universal moduli space,
namely the zero set

M := F−1(0)

of the universal section, is a C` Banach manifold modeled on a sep-
arable Banach space, 43 say M , and with tangent spaces

T(u,V )M = kerDF(u, V )

= {(ξ, v) | Dξ + Lv = 0} ⊂ TuU ⊕ TV V.

Since M is a C` manifold, projection to the second component

π : U × V ⊃M→ V, (u, V ) 7→ V,

is a map of class C`. But the linearization of this map at (u, V ) is
precisely the Fredholm operator Π(u,V ). Thus π is a C` Fredholm

map whose Fredholm index along the component M(u,V ) of (u, V )
is equal to the index of DFV (u).

Step III. For each of the countably many44 local coordinate
charts (ϕ,C) of M and (ψ,B) of V the representative45

πϕ,ψ := ψ ◦ π ◦ ϕ−1 : M ⊃W := ϕ(C)→ ψ(B) ⊂ Z

of the C` Fredholm map π satisfies the assumptions of the Sard-Smale
Theorem 3.3.27. Therefore the set R(πϕ,ψ) of regular values of πϕ,ψ

43 A subspace of a separable metric vector space is separable. But there is the
inclusion T(u,V )M⊂ TuU × TV V.

44 The Banach manifold U ×V admits a countable atlas since each of U and V
does. The Banach submanifold M ↪→ U × V is a closed subspace.

45 Denote again by Z the separable Banach space on which V is modeled.
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is residual in Z. Hence so is, by Exercise 3.2.17, the countable inter-
section ∩ϕ,ψR(πϕ,ψ) which is then dense in Z by the Baire Category
Theorem 3.2.18 (C). But each point in this intersection corresponds
precisely to a regular value of π in V.

Step IV. Theorem 3.3.24 is now reduced to the following Wonder-
Lemma:

Lemma 3.3.29. For F as in Theorem 3.3.24 the map π : M → V
is defined and

R(π) : = {regular values of π}
= {V ∈ V | DFV (u) surjective ∀u ∈ F−1

V (0)}
=: Vreg.

Proof. Suppose F(u, V ) = 0. It suffices to show

dπ(u, V ) surjective ⇐⇒ D := DFV (u) surjective.

Use the notation DF(u, V ) = D⊕L with L := DFu(V ); cf. (3.3.41).
’⇒’ Pick η ∈ E(u,V ), then η = DF(u, V )(ξ0, v) = Dξ0 + Lv for some
tangent vector (ξ0, v) ∈ T(u,V )(U ×V) by the surjectivity assumption
(S). Given v, then v = dπ(u, V )(ξ1, v) by surjectivity of dπ(u, V ) for
some element (ξ1, v) ∈ T(u,V )M = kerDF(u, V ), that is Dξ1 +Lv =
0. Hence D(ξ0 − ξ1) = η.
’⇐’ Pick v ∈ TV V, then Lv = Dξ for some ξ ∈ TuU by surjectivity of
D. Thus the pair (−ξ, v) lies in T(u,V )M. It gets mapped to v under
dπ(u, V ).

Thom-Smale transversality – openness

Theorem 3.3.30. Consider a C` section F of E → U × V that sat-
isfies the assumptions of Theorem 3.3.24. Suppose, in addition, that
the restriction πa of the projection π : M → V to some open subset
Ma ⊂M is a proper map.46 Then the set of regular parameters

Vareg := {V ∈ V | DFV (u) is surjective whenever (u, V ) ∈Ma}

is open and dense in the set V of all parameters.

46 proper map: pre-images of compact sets are compact
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Example: Classical action SV is Morse for generic V

Details of this have been worked out in [Web02].

Exercise: Symplectic action AH is Morse for generic H

Work out the proof of Theorem 3.2.22. The following figures sug-
gest choices of useful cutoff functions γ ∈ C∞(R, [0, 1]) and β ∈
C∞(R, [0, 1]).

Figure 3.8: γ ∈ C∞(R, [0, 1])

Figure 3.9: β ∈ C∞(R, [0, 1])
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3.4 Floer chain complex and homology

In this section we define the Floer complex associated to a regular
pair (H,J) on a closed symplectic manifold (M,ω). We only consider
the simplest case in which ω and c1(M) vanish over π2(M); cf. (3.0.1).
The corresponding homology, called Floer homology, transforms by
isomorphisms when changing regular pairs and in the end of the day
represents, again naturally, the singular homology of M . For simplic-
ity we take Z2 coefficients in all homology theories in Section 3.4.

Definition 3.4.1. A regular pair (H,J) consists of a Hamiltonian
H ∈ C∞(S1×M), that is a periodic family of functions Ht+1 = Ht :=
H(t, ·) of functions on M , and a periodic family Jt+1 = Jt ∈ J (M,ω)
of ω-compatible almost complex structures such that the following is
true: The action functional AH : LM → R given by (3.2.11) is Morse
and the linearized operators Du given by (3.3.32) are surjective for all
connecting trajectories u ∈ M(x, y;H,J) and all Hamiltonian loops
x, y ∈ P0(H) = CritAH .

Earlier we showed how to obtain a regular pair: To satisfy the
Morse condition, pick an element H0 of the residual subset Hreg ⊂
C∞(S1×M) provided by Theorem 3.2.22. Now pick a family Jt+1 =
Jt of ω-compatible almost complex structures on M . Then, either
perturb H0 away from its critical points, see Theorem 3.3.19, or stay
with H0 and perturb the family Jt, see [FHS95, Thm. 5.1], to obtain
a regular pair denoted by (H,J).

Definition 3.4.2. Given a regular pair (H,J), the Z2 vector spaces

CFk(H) = CFk(M,ω,H) :=
⊕

z∈P0(H)

µCZ
H (z)=k

Z2z

graded by the canonical (clockwise normalized) Conley-Zehnder in-
dex, see (2.1.5) and (2.3.25), are called the Floer chain groups
associated to the Hamiltonian H. By convention the empty set gen-
erates the trivial vector space.
The set P0(H) = Crit := CritAH of all contractible 1-periodic tra-
jectories is finite by Proposition 3.2.24. The subset Critk of those of
index k is a basis of CFk(H), called the canonical basis (over Z2).
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The Floer boundary operator is given on a basis element x by

∂ = ∂F(H,J) : CF∗(H)→ CF∗(H)

x 7→
∑

y∈Critk−1

#2(mxy) y (3.4.42)

where #2(mxy) is the number (mod 2) of connecting flow lines.47

Proposition 3.4.3 (Boundary operator). It holds that ∂2 = 0.

Exercise 3.4.4. Given x ∈ Critk+1, show that ∂2x is equal to the
sum over all z ∈ Critk−1 where the coefficient of each z is the number
(mod 2) of 1-fold broken trajectories (u, v) that start at x, end at z,
and pass an intermediate critical point y of index k at which u and
v meet.

So to prove ∂2 = 0 it suffices to show that the number of such
1-fold broken orbits (u, v) between x and z is even. To see this one
shows that for each (u, v) there exists precisely one partner pair (ũ, ṽ)
which is determined by the property that there is a 1-dimensional con-
nected non-compact manifold, i.e. an open interval, of trajectories
running straight from x to z and whose two ends correspond to the
two partner pairs; see Figure 3.1. The sense in which the two ends
correspond to partner pairs is introduced and detailed in Section 3.4.1
on compactness up to broken trajectories. The gluing procedure de-
veloped in Section 3.4.2 excludes that two families converge to the
same broken orbit (u, v). To summarize, the set of 1-fold broken or-
bits from x to z is in bijection with the ends of finitely many open
intervals, so the number of them is even.

Definition 3.4.5. The chain complex

CF(H) = CF(M,ω,H, J) :=
(
CF∗(H), ∂F(H,J)

)
is called the Floer complex associated to a regular pair (H,J). The
corresponding homology groups, called Floer homology groups,
are graded Z2 vector spaces. They are denoted by

HF∗(H) = HF∗(M,ω,H; J).

47 A flow line is an unparametrized curve (the image of a trajectory trajectory
R → LM , s 7→ us). Flow lines are in bijection with the set mxy of those
u ∈ M(x, y;H, J) with AH(u0) = 1

2
(AH(x) + AH(y)). This is a finite set by

Exercise 3.4.12. Let #2(mxy) be the number of elements modulo 2.
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Theorem 3.4.6 (Continuation). For any two regular pairs (Hα, Jα)
and (Hβ , Jβ) there is a natural 48 isomorphism

Ψβα : HF∗(α)→ HF∗(β).

Furthermore, given a third regular pair (Hγ , Jγ), then

ΨγβΨβα = Ψγα, Ψαα = 1l.

Theorem 3.4.7 (Calculation). Suppose (M,ω) is a closed symplectic
manifold such that ω and c1(M) vanish over π2(M). Then for any
regular pair (Hα, Jα) there is an isomorphism of degree n denoted by

Ψα : HF`−n(α)→ H`(M)

and these isomorphisms are natural in the sense that

ΨβΨβα = Ψα.

Corollary 3.4.8. The weak non-degenerate Arnol′d conjecture is
true; see (1.0.2).

3.4.1 Compactness – bubbling off analysis

Throughout let AH be Morse. LetMx,y be the spaceM(x, y;H,J),
see (3.3.22), of connecting trajectories between contractible 1-
periodic trajectories x, y ∈ CritAH .

Definition 3.4.9 (Convergence to broken trajectory). We say that
a sequence (uν) ⊂ Mxy of connecting trajectories converges to a
(k−1)-fold broken trajectory49 (uk, . . . , u1) if the following holds
true. There are

- pairwise different periodic trajectories zk = x, zk−1, . . . , z0 = y,

- (non-const.) conn. trajectories uj ∈Mzjzj−1
for j = 1, . . . , k,

- sequences (sνj ) ⊂ R of reals for j = 1, . . . , k,

48 Natural isomorphism means that there are no (further) choices involved.
49 or, alternatively, converges to a broken trajectory with k components
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such that the sequence of maps R × S1 → M , (s, t) 7→ uν(s + sνj , t)
converges to uj in C∞loc, as ν →∞, i.e. uniformly with all derivatives
on compact sets. By

uν → (uk, . . . , u1), as ν →∞,

we denote convergence to a broken trajectory; see Figure 3.10.

Figure 3.10: Convergence of (uν) to broken trajectory (uk, . . . , u1)

Exercise 3.4.10 (Strictly decreasing index in case of a regular pair).
Show that the index µCZ, strictly decreases along the members of a
broken trajectory (uk, . . . , u1) whenever (H,J) is a regular pair.
[Hint: By non-constancy each uj comes in a family of dimension at
least 1. But this dimension is a Fredholm index. Now recall (3.3.35).]

Proposition 3.4.11 (Compactness up to broken trajectories). Sup-
pose AH is Morse. Then any sequence (uν) ⊂ Mxy of connecting
trajectories admits a subsequence which converges to a broken trajec-
tory (uk, . . . , u1), as ν →∞.

It is interesting to observe that by the proposition the spaceM of
finite energy trajectories, see (3.3.28), is compact for a regular pair.

Exercise 3.4.12 (Finite set in case of a regular pair (H,J)). Show
that in case of index difference one, that is µCZ(x) − µCZ(y) = 1,
the set mxy of those connecting trajectores u ∈ Mxy whose initial
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loop u0 = u(0, ·) lies on a fixed intermediate action level, say r =
1
2 (AH(x) +AH(y)), is a finite set.50

Proof of Proposition 3.4.11 (Compactness up to broken tra-
jectories)

The proof has four steps the first of which is highly trivial, at least in
the present case of a compact manifold M . We only sketch the main
ideas. Actually the first three steps do not require that AH is Morse,
not even that x, y are non-degenerate. The Morse requirement enters
in Step IV through Theorem 3.3.5.

Step I. (Uniform C0 bound for uν)

Obvious by compactness of M .

Step II. (Uniform C0 bound for ∂su
ν – bubbling off analysis)

In fact, to carry out Step III below a uniform W 1,p bound, for some
constant p > 2, for the sequence of connecting trajectories uν would
be sufficient. Note that we get a uniform W 1,2 bound for free due
to the energy identity (3.3.26). But this is not good enough to get
uniform C0 bounds; cf. also Remark 3.3.21.

On the positive side, investing some work even leads to a uniform
C1 bound, that is

sup
ν
‖∂suν‖L∞ <∞.

To prove this, assume by contradiction there was a sequence of points
ζν along which the derivative |∂suν(ζν)| → ∞ explodes, as ν → ∞.
It is convenient to view maps defined on R× S1 likewise as maps on
C 3 s+it which are 1-periodic in the imaginary part t. Exploiting the
invariance of Mxy under shifts in the s variable in order to replace
uν(s, t) by the shifted sequence uν(s − sν , t) and then by compact-
ness of S1 picking a subsequence, we assume without loss of generality
that ζν = 0 + iτν → 0 + it0 =: z0, as ν → ∞. Now there appears
yet another Wonder-Lemma, called the Hofer-Lemma [HZ11, §6.4
Le. 5]. When applied for each ν to the continuous non-negative func-
tion g := |∂suν | on the complete metric space X := [−1, 1]× S1, the

50 The set mxy parametrizes the flow lines from x to y, in other words, the set
of connecting trajectores u modulo time shift. As maps u and u(σ) := u(σ + ·, ·)
are different, but their image curve in the loop space (flow line) is the same.
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point x0 := ζν ∈ X, and the constant ε0 := |∂suν(ζν)|−1/2 > 0,
the Hofer-Lemma yields a sequence of points zν ∈ X and constants
εν > 0 such that

• 0 < εν ≤ |∂suν(ζν)|−1/2 → 0

• Rνεν := |∂suν(zν)| εν = g(zν)εν

≥ g(ζν)
|∂suν(ζν)|1/2 = |∂suν(ζν)|1/2 →∞

• ‖zν − ζν‖ ≤ 2
|∂suν(ζν)|1/2 → 0

• supBεν (zν) |∂suν | ≤ 2 |∂suν(zν)| = 2Rν

Note that Rν := |∂suν(zν)| → ∞, so the derivative explodes as well
along the new sequence of points zν which also converges to z0, but
for which we have more information than we had for ζν . The key
step is then to consider the sequence of rescaled smooth maps

vν : C→M, z 7→ uν(zν + (Rν)−1z).

These maps have the property that they are non-constant and uni-
formly C1 bounded on balls BRνεν (0) whose radius Rνεν tends to
infinity. More precisely,

• |∂svν(0)| = 1;

• |∂svν | ≤ 2 on BRνεν (0), see Figure 3.11;

• ∂svν + Jtν+(t/Rν)(v
ν)∂tv

ν = 1
Rν∇Htν+(t/Rν)(v

ν).

Now one shows that there is a smooth map v : C→M and a subse-
quence, still denoted by vν , such that vν → v in C∞(C,M), that is
uniformly with all derivatives on C. In view of the Arzelà-Ascoli The-
orem 3.2.10 it suffices to establish uniform in ν bounds on compact
sets for vν and each of its derivatives. In view of the Sobolev em-
bedding theorem, see e.g. [MS04, Thm. B.1.11], it suffices to establish

uniform W k,p
loc bounds for vν , that is for each k ∈ N and each compact

set K ⊂ C find a W k,p bound c for the restriction vν |K to K such that
c serves for all ν. The key input is the Calderón-Zygmund inequal-
ity (3.4.44) for the Cauchy-Riemann operator ∂̄. The desired bounds
are established by induction on k. For details see e.g. [Sal90, Le. 5.2],
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using elliptic bootstraping techniques, or [HZ11, §6.4 Le. 6], using the
Gromov trick to first get rid off the Hamiltonian term followed by
a proof by contradiction.

The limit map v : C→M satisfies the equation

∂sv + J(v)∂tv = 0 (3.4.43)

where J(v) = Jt0(v). The solutions w : C → M of this elliptic
PDE are called J-holomorphic planes or pseudo-holomorphic
planes. They have been introduced in Gromov’s 1985 landmark
paper [Gro85]. Since

|∂sv(0)| = 1, |∂sv| ≤ 2,

∫
C
v∗ω = ‖∂sv‖2L2 > 0,

we arrive at a contradiction as soon as we can show that v extends
continuously from C to the Riemann sphere, that is to a continuous
map ṽ : S2 = C ∪ {∞} → M . Indeed in this case the proof of
Proposition 3.4.11 is complete since

0 =

∫
S2
ṽ∗ω =

∫
C
v∗ω > 0.

Here the first identity uses that by our standing assumption (C2) the
evaluation map Iω = 0 of ω over π2(M) vanishes, see (3.0.2), and the
second identity holds since a point has measure zero.

So it remains to construct the continuous extension ṽ. For each
radius R > 0 the map v : C → M gives rise to a loop in M by
restriction to the radius-R sphere in C centered at the origin; notation
vR : C ⊃ {|z| = R} →M ; indicated red in Figure 3.11. In [Sal90, Pf.
of Prop. 4.2] it is shown, see also [HZ11, paragraph before (6.94)],
that the lengths of the image circles γR in M of the maps vR tends
to zero, as R→∞. While along any sequence Rj →∞ the family of
points {v(R) = v(R + i0)}R>0 admits a convergent subsequence by
compactness of M , continuity of v together with the length shrinking
property imply uniqueness of the limit p and independence of the
choice of the sequence Rj →∞. Clearly p := limR→∞ v(R) completes
the image v(C) to be a 2-sphere and we are done.51

51 As p lies in the closure of the image of v, it lies in the closure of the union
of all images uν(R× S1). So the bubble is attached at p to whatever is the limit,
see Step IV, of the uν ’s.
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Figure 3.11: Bubbling off of spheres requires that ω|π2(M) 6= 0

Step III. (Uniform C∞loc bound for uν – elliptic bootstrapping)

First of all, in view of the uniform C1 bound for our sequence of
connecting trajectories uν , obtained in Steps I and II, the Arzelà-
Ascoli Theorem 3.2.10 provides a continuous map u : R×S1 →M to
which some subsequence, still denoted by uν , converges uniformly on
compact sets. This allows to analyze the problem in local coordinates
on M , hence for maps taking values in R2n.
To derive uniform C∞ estimates for the sequence uν on compact
sets is, surely without surprise, an iterative procedure. To illustrate
the basic mechanism behind, let us incorrectly oversimplify things by
assuming that (i) each uν is a map C→ (R2n, J0), s+ it 7→ uν(s, t),
supported in a compact set K – which it clearly isn’t, given the non-
linear target M and the asymptotic boundary conditions x and y –
and that (ii) each uν satisfies the much simpler PDE

∂̄uν = ∇H(uν), ∂̄ := ∂s + J0∂t.

The iteration rests on the Calderón-Zygmund type inequality

‖v‖W 1,p ≤ cp
∥∥∂̄v∥∥

Lp
(3.4.44)

and its immediate consequence (replace v by derivatives of v)

‖v‖Wk,p ≤ cp,k
∥∥∂̄v∥∥

Wk−1,p .
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These hold true for any compactly supported map v ∈ C1
0 (C,R2n)

whenever k ∈ N and 1 < p <∞ and where the constant cp > 0 only
depends on p; see e.g. [Ste70, III §1 Prop. 4] or [Wen15, Thm. 2.6.1].

By continuity the estimates continue to hold for v in the closure W k,p
0

of C∞0 with respect to the W k,p norm.

Application to our oversimplified maps uν ∈W 1,p
0 (K,R2n) shows

‖uν‖Wk,p ≤ cp ‖∇H(uν)‖Wk−1,p ≤ C(p, k,K,H)

where the constant C does not depend on ν. More precisely, starting
with k = 2 we get a uniform W 2,p bound on K which then leads to a
uniform W 3,p bound and so on for every k ∈ N. The Sobolev embed-
ding theorem, see e.g. [MS04, Thm. B.1.11], then provides uniform
Ck bounds on K for every k. Now apply the Arzelà-Ascoli Theo-
rem 3.2.10 to each derivative of uν .

However, the general case is much harder, of course, mainly due
to the non-linearity J(uν) in front of the highest order term ∂tu

ν .
The fact that the maps uν are not of compact support at all, requires
the use of cutoff functions leading to additional terms as well. For
details see e.g. [HZ11, §6.4 Le. 6] or [Sal90, Le. 5.2].

Step IV. (The limit broken trajectory)

Pick T > 0 and consider the restrictions of uν to ZT := [−T, T ]× S1.
By Step III there are uniform C∞ bounds for uν on ZT , thus there
is a subsequence, still denoted by uν converging uniformly with all
derivatives to some smooth map u : ZT →M which solves the Floer
equation (3.6) as well. Replacing T by 2T and choosing subsequences
if necessary one concludes that uν restricted to Z2T converges to a
smooth solution Z2T → M which coincides with u on ZT . Iteration
leads to a smooth limit solution again denoted by u : R × S1 → M .
If we knew that u was of finite energy we would apply Theorem 3.3.5
to obtain existence of periodic trajectories z∓ ∈ P0(H) sitting at the
ends of u, that is u ∈Mz−z+ . With this understood apply the finite52

iteration detailed in [Sal90, Pf. of Prop. 4.2] to get the desired limit
broken orbit (uk, . . . , u1).

52 The downward procedure can only end at y and it ends after at most |CritAH |
many steps: The action strictly decreases from z` to z`−1 iff z` 6= z`−1 iff E(u`) >
0, but there are only finitely many periodic trajectories by Proposition 3.2.24.
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Let us check that the energy of the limit solution u : R × S1 →
M is indeed finite. By the energy identity (3.3.26) for connecting
trajectories we get

AH(x)−AH(y) = E(uν)

≥
∫ 1

0

∫ T

−T
|∂suν(s, t)|2 ds dt =: E[−T,T ](u

ν)

= AH(uν−T )−AH(uνT )

where uνT := uν(T, ·) and the last identity is true since ∂su
ν is the

downward L2 gradient of AH . By uniform C∞ convergence we can
take the limit over ν to get the estimate

AH(x)−AH(y) ≥ AH(u−T )−AH(uT ) = E[−T,T ](u) (3.4.45)

for every T , thus for T =∞. So ∞ > AH(x)−AH(y) ≥ E(u).53

This concludes the proof of Step IV and Proposition 3.4.11.

3.4.2 Gluing

Suppose (H,J) is a regular pair and pick periodic trajectories x, y, z
of µCZ-indices k + 1, k, k − 1, respectively. To conclude the proof of
Proposition 3.4.3 (∂2 = 0) let us construct a continuous map54

·#·· : mxy × [R0,∞)×myz → mxz, (u,R, v) 7→ u#Rv,

called the gluing map, whose image lies in one component of the
1-dimensional manifold mxz of which it covers one ’end’ in the sense
that u#Rv → (u, v), as R → ∞. In other words, the broken trajec-
tory (u, v) represents the boundary point of that end. Furthermore,
and most importantly, as it concludes the proof of ∂2 = 0, no se-
quence in mxz \ u#[R0,∞)v, that is no sequence away from the image
of the glued family R 7→ u#Rv, converges to (u, v); see Figure 3.12.

53 The case E[−T,T ](u) = 0 for every T > 0 is not excluded: Given v ∈ Mxy ,
consider the upward shifts uν(s, t) := v(s − ν, t). So uν−T = v(−ν − T, ·) and

uνT = v(−ν + T, ·). Then AH(uν−T ) and AH(uνT ) both converge to AH(x), as
ν → ∞. Indeed on compact sets uν converges uniformly with all derivatives to
the constant trajectory u(s, ·) = x(·).

54 Warning. Here u#Rv denotes the true zero, in [Sal99a, §3.4] the approximate
zero w̃R.
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Figure 3.12: (Gluing map) Convergence u#Rv → (u, v), as R→∞

The construction is by the Newton method to find a zero of
a map FH near a given approximate zero w̃R: Roughly speaking,
one needs that FH(w̃R) is ’small’, the derivative DR := Dw̃R :=
DFH(w̃R) at w̃R is ’steep’,55 and does not vary ’too much’ near the
approximate zero; see Figure 3.13.

Figure 3.13: (Newton method) True zero wR near approx. zero w̃R

We only outline the construction and refer to [Sal99a, §3.3] for
details. Obviously FH is the Floer section (3.3.21) of the Banach
bundle Ep → B1,p(x, z); cf. (3.3.33). To start with pick u ∈ mxy

and v ∈ myz and consider the approximate zero w̃R = w̃R(u, v) used
in [Sal99a] and illustrated by Figure 3.14. Next, as we wish to use
the implicit function theorem, we need to move from Banach bundles
to Banach spaces. So, we replace FH by the map

fR := fw̃R : Lpw̃R ⊃W
1,p
w̃R
→ Lpw̃R , ξ 7→ Tw̃R(ξ)−1FH(expw̃R ξ),

where T denotes parallel transport; cf. (3.2.14) and (3.3.33).

55 The linearization DR needs to admit a uniformly bounded right inverse T .
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Exercise 3.4.13. a) The map ξ 7→ expw̃R ξ is a bijection between
the zeroes of fR and those of FH . b) The linearization dfR(0)ξ :=
d
dτ

∣∣
τ=0

fR(τξ) is DR. [Hint: Compare [Web99, Pf. of Thm. A.3.1].]

So the tasks at hand are to

(a) show that fR admits a unique zero ηR sufficiently large R;

(b) show that wR := expw̃R ηR → (u, v), as R→∞;

(c) define u#Rv := wR.

Obviously we start with task (c). Next, concerning task (b), let us
argue geometrically by looking at Figure 3.14 where β : R→ [0, 1] is a
cutoff function that equals zero for s ≤ 0 and one for s ≥ 1. Observe
that the curve s 7→ w̃R(s·) follows more and more, the larger R, all
of u and all of v. Thus w̃R restricted to a fixed compact subdomain,
say of the form [−T, T ] × S1, runs into the constant in s solution y,
unless it is shifted appropriately backward or forward in s in which
case it runs towards a piece of u or v, respectively.

Figure 3.14: Approximate zero w̃R = w̃R(u, v) of Floer section FH

Concerning task (a) in the following we discuss informally the
three ingredients needed to carry out Newton’s method.
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I. Approximate zero. The Lp norm of fR(w̃R), hence of FH(w̃R)
since parallel transport T is an isometry, is equal to the Lp norm
of FH applied to the exp parts of w̃R along the length 1 domain
[−R2 − 1,−R2 ] × S1 and an analogous length 1 domain in the posi-
tive half cylinder. Let us pick the ∂s-piece of FH to illustrate what
happens.56 The derivative ∂s(expy βξ) is a sum of two terms: Term
one approaches zero, as s → ∞, since us approaches y uniformly
in t and term two approaches zero, as s → ∞, since ∂sus does.
By (exp. decay) in Theorem 3.3.5 both terms converge to 0 ex-
ponentially, as s → ∞. So the integral over the length 1 interval
[−R2 − 1,−R2 ] – which moves to +∞ with R – becomes as small as
desired by picking R large.

II. Right inverse. By assumption both Fredholm operatorsDu and
Dv, see (3.3.32), are surjective. Salamon proves in [Sal99a, Prop. 3.9]
that there are constants c > 0 and R0 > 2 such that for any R > R0

the Fredholm operator DR := Dw̃R based on the approximate zero is
surjective as well and, moreover, there is an injectivity estimate for
DR on the range of DR

∗. Namely, for every η ∈W 2,p
w̃R

one has

‖DR
∗η‖W 1m,p ≤ c ‖DRDR

∗η‖Lp .

It is, of course, crucial that the estimate is uniform in R.

Exercise 3.4.14. Suppose R > R0. (i) Show that DRDR
∗ : W 2,p

w̃R
→

Lpw̃R is a bijection and admits a continuous inverse. (ii) Show that

T := DR
∗ (DRDR

∗)
−1

: Lpw̃R →W 1,p
w̃R

is a right inverse and calculate its operator norm. [Hint: (3.3.39).]

III. Quadratic estimates. To see what is meant by quadratic
estimates have a look at [SW06, Prop. 4.5].

With all three preparations I-III in place, apply to fR the implicit
function theorem in the form of [SW06, Prop. A.3.4] with x0 = x1 = 0
to obtain a unique ηR ∈ imT such that fR(ηR) = 0, equivalently, such
that FH(wR) = 0 where wR := expw̃R ηR.

This concludes the construction of the gluing map and thereby
the proof of Proposition 3.4.3 (∂2 = 0).

56 Concerning the other piece of FH , check how J(·)∂t · −∇Ht(·) applied to
expy βξ approaches J(x)ẋ−∇Ht(x) = 0, as s→∞.
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3.4.3 Continuation

Suppose throughout that J ∈ J (M,ω) is fixed and that (Hα, J),

(Hβ , J), and (Hγ , J) are regular pairs.57 ByHαβ or {Hαβ
s,t } we denote

a homotopy between Hamiltonians, that is a smooth map R ×
S1 ×M → R such that

Hαβ
s,t =

{
Hα
t , s ≤ −1,

Hβ
t , s ≥ +1.

The key idea is to replace the s-independent Hamiltonians in the
Floer equation (3.3.21) by s-dependent homotopies, thereby destroy-
ing the occasionally disturbing symmetry under s-shifts; see footnote
to (3.4.45). Consider the PDE

∂su+ Jt(u)∂tu−∇Hαβ
s,t (u) = 0 (3.4.46)

for smooth cylinders u : R × S1 → M . It is called the homotopy
Floer equation and its solutions u homotopy trajectories. Im-
pose the usual asymptotic boundary conditions (3.3.23) for two pe-
riodic trajectories z− = xα ∈ P0(Hα) and z+ = xβ ∈ P0(Hβ) of
different Hamiltonians and denote the set of such u by

Mxαxβ =M(xα, xβ ;Hαβ).

Just as before, for a generic, called regular, homotopy this moduli
space is a smooth manifold for any choice of xα, xβ and the dimension
is the index difference µCZ(xα)− µCZ(xβ). There are also analogous
compactness and gluing properties. The difference is that due to the
missing invariance under shifts in the s-variable one uses the index
difference zero moduli spaces Mxαxβ (compact, thus finite, sets) to
define maps which are given on xα ∈ CritkAHα by

ψβα(Hαβ) : CF∗(H
α)→ CF∗(H

β)

xα 7→
∑

xβ∈CritkAHβ

#2(Mxαxβ )xβ . (3.4.47)

Index difference 1 moduli spacesMxαyβ lead to chain map property

ψβα∂α = ∂βψβα.
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Figure 3.15: Partner pairs (uα, v) ∼ (u, vβ) imply ψβα∂α = ∂βψβα

This identity is equivalent to all 1-fold broken trajectories from
xα to yβ appearing as partner pairs as indicated by Figure 3.15. Just
as before the partner pair property follows from compactness up to
1-fold broken orbits and a corresponding gluing construction. The
induced morphisms on homology

Ψβα := [ψβα(Hαβ)] : HF∗(H
α)→ HF∗(H

β), (3.4.48)

called Floer continuation maps, are independent of the homotopy.

Exercise 3.4.15. Denote the constant homotopy Hαα ≡ Hα

again by Hα for simplicity. Show that ψαα(Hα) = 1l is the iden-
tity on CF∗(H

α).

Lemma 3.4.16 (Salamon [Sal99a, Le. 3.11]). Given regular homo-
topies Hαβ from Hα to Hβ and Hβγ from Hβ to Hγ , define a map

Hαγ
R = Hαγ

R,s,t :=

{
Hαβ
s+R,t , s ≤ 0,

Hβγ
s−R,t , s ≥ 0,

where R ≥ 2 is a constant; see Figure 3.16. Then there is a constant
R0 > 0 such that for R > R0 the map Hαγ

R is a regular homotopy from
Hα to Hγ and the induced morphism ψγαR : CF∗(H

α)→ CF∗(H
γ) is

ψγαR = ψγβ ◦ ψβα. (3.4.49)

57 Pick three elements Hα, Hβ , Hγ of the set Hreg(J); see Theorem 3.3.19.
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Figure 3.16: The homotopy Hαγ
R from Hα to Hγ

Exercise 3.4.17 (Induced morphisms Ψβα are independent of homo-

topy). Given two regular homotopies Hαβ
0 and Hαβ

1 from Hα to Hβ ,

show that ψβα0 and ψβα1 are chain homotopy equivalent: Define a
homomorphism T : CF∗(H

α)→ CF∗(H
β) such that

ψβα1 − ψβα0 = ∂βT + T∂α. (3.4.50)

Note that such T raises the grading by +1.
[Hint: Pick a regular homotopy {Hαβ

λ } of homotopies Hαβ
λ = Hαβ

λ,s,t

from Hα to Hβ which agrees with Hαβ
0 for λ = 0 and with Hαβ

1 for
λ = 1. In case of index difference −1 the parametrized moduli spaces

M(yα, xβ ; {Hαβ
λ }) := {(λ, u) | λ ∈ [0, 1], u ∈M(yα, xβ ;Hαβ

λ )}

are 0-dimensional manifolds, in fact finite sets. Count them ap-
propriately to define T . Analyze compactness up to 1-fold bro-
ken orbits of the (1-dimensional) index difference 0 moduli spaces

M(xα, xβ ; {Hαβ
λ }) and set up corresponding gluing maps to prove

the desired identity (3.4.50); cf. [Sal99a, Pf. of Le. 3.12].]

Proof of Theorem 3.4.6 (Continuation)

To prove that Ψβα is an isomorphism with inverse Ψαβ pick a regular
homotopy Hαβ = Hαβ

s,t from Hα to Hβ and denote the (regular)

reverse homotopy by Hβα := Hαβ
−s,t. With the associated homotopy
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Hαα
R of Lemma 3.4.16 we get

ψαβ(Hαβ
−s,t) ◦ ψβα(Hβα

s,t ) = ψαα(Hαα
R )

= ψαα(Hα) + ∂αT + T∂α

= 1l + ∂αT + T∂α

where identity two is by (3.4.50) since the homotopies Hαα
R ∼ Hα

are homotopic and identity three is by Exercise 3.4.15. Hence
ΨαβΨβα = 1l. Repeat the argument starting with a homotopy from
Hβ to Hα to get ΨβαΨαβ = 1l. This shows that Ψβα is an isomor-
phism with inverse Ψαβ . That Ψαα = 1l follows from Exercises 3.4.15
and 3.4.17. The identity ΨγβΨβα = Ψγα holds by (3.4.49). This
proves Theorem 3.4.6.

3.4.4 Isomorphism to singular homology

Recall that we use Z2 coefficients. After introducing in great length
a new homology theory for the data (M,ω,H, J) – which does not
depend on (H,J) as we saw in the previous section on continuation –
it is natural to ask if Floer homology relates to any known homology
theory and if so, how? The answer is that Floer homology relates to
singular homology of the closed manifold M itself by isomorphisms
ΨεHα = ΨPSS compatible with the continuation maps Ψβα.

Method 1 (C2 small Morse functions)

Floer observed in [Flo89, Thm. 2] that, roughly speaking, if one
chooses a sufficiently C2 small Morse function h : M → R as Hamil-
tonian, then not only the 1-periodic trajectories are precisely the
critical points of the Morse function h, but also the connecting Floer
trajectories u = u(s, t) will not depend on s and turn into connecting
Morse trajectories γ = γ(s).58

Remark 3.4.18 (C2 small: Floer trajectories reduce to Morse –
not always!). Actually the situation is surprisingly more complex as

58 As it is already not obvious to prove this for constant in s trajectories
u = u(t), that is constant periodic trajectories, see Proposition 2.3.16, it should
be less obvious for general u = u(s, t).
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we said right above: Hofer and Salamon proved in [HS95, §7] that
for sufficiently C2 small Morse functions all connecting trajectories
of index difference one or less are independent of t and therefore
connecting Morse trajectories. But index difference one (and zero) is
all that is needed in either chain complex. (See [HS95, Ex. 7.2] for
an example how t-independence fails in case of index difference two
or larger. See also [HS95, Rmk. 7.5] saying that their proof does not
work for symplectic manifolds of minimal Chern number n− 1.)

From now on let h : M → R be Morse and C2 small. A closer
look shows that the Floer equation (3.3.21) turns for t-independent
trajectories u(s, t) =: γ(s) into the upward gradient equation

γ′ = ∂su = − gradAh(u) = ∇h (3.4.51)

for curves γ =: R→M ; cf. Figure 3.6. Note that CritAh = Crith by
Proposition 2.3.16 and that Ah = −h along the critical set. Further-
more, by (2.3.26) the Floer grading z as a constant periodic trajec-
tory and the Morse index of z as a critical point of h are related by
µCZ(z) = n− indh(z).

Recall from Section 3.1.2, see [Web] for details, that the Morse
cochain groups of a Morse function h on a closed manifold are gen-
erated by the critical points of h, graded by their Morse index indh,
and the coboundary operator is given by counting the flow lines of
the upward gradient ∇h, that is from critical points x of index, say
2n − k − 1 = indh(x), equivalently k + 1 − n = µCZ(x) to those of
index 2n− k = indh(y), equivalently k − n = µCZ(y).

Figure 3.17: Downward Floer grad degenerates to upward Morse ∇
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Note that ∂Fx = δMx by (3.4.51). Consequently for any suffi-
ciently C2 small Morse function, denoted for distinction by

εh : M → R,

the following chain and cochain complexes are naturally equal(
CF∗−n(εh), ∂F(εh)

)
≡
(
CM2n−∗(εh), δM(εh)

)
, (3.4.52)

up to grading shift, i.e. CFn−`(εh) is naturally equal to CM`(εh).

To prove Theorem 3.4.7 consider a regular pair (Hα, Jα) and de-
fine the desired isomorphism, say denoted by ΨεHα , by composing the
following three isomorphisms: Firstly, the Floer continuation map

HFk−n(Hα)→ HFk−n(εh)

for some C2 small Morse function εh. Secondly, the isomorphism

Ψεh : HFk−n(εh)→ HM2n−k(εh)

induced by the chain level identity (3.4.52), followed by the Poincaré
duality59 isomorphism

HM2n−k(εh) ' HMk(εh).

Thirdly, the fundamental isomorphism (3.1.5) of Morse homology

HMk(εh) ' Hk(M)

which is compatible with the Morse continuation maps. Recall that
all homologies are with Z2 coefficients.

As a consequence ΨεHα is compatible with the Floer continua-
tion maps as stated in Theorem 3.4.7. See also [SZ92] and [MS04,
Thm. 12.1.4]. For simplicity and in view of (3.4.53) let us denote
ΨεHα by Ψα from now on.

59 A symplectic manifold is naturally oriented and our M is assumed closed.
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Method 2 (Spiked disks –PSS isomorphism)

Piunikhin, Salamon, and Schwarz came up in [PSS96] with a rather
different idea to construct an isomorphism between Floer and Morse
homology, denoted by

ΦPSS : HM∗(M)→ HF∗−n(M,ω).

Fix a Morse function f and a (generic) Riemannian metric on M such
that the Morse complex is defined and pick a generator x ∈ Critkf .
Suppose (H,J) is a regular pair, so Floer homology is defined, and
pick a generator z ∈ Critk−nAH . The idea is to relate Morse and
Floer flow lines by first following a Morse flow line γ that comes from
x and then, say at time s = 0, change over to a Floer flow line that
goes to z. Of course, the transition from a family of points to a
family of circles requires some interpolation, i.e. some thought. The
idea is to look at J-holomorphic planes v : C→M , see (3.4.43), and
homotop, as the polar radius s of points in C traverses the interval
[1, 2], the zero Hamiltonian inside the unit circle (polar radius s = 1)
to the given Hamiltonian Ht on and outside the circle of polar radius
s = 2. Denote such a homotopy by Hs = Hs,t. Moreover, one
requires v(e2π(s+i·)) to converge to the given periodic trajectory z,
as s → ∞. The key condition that couples the two worlds is then
that γ meets v at s = 0. Such a configuration, called a spiked disk,
is illustrated by Figure 3.18. Now the codimension of the set of all

Figure 3.18: Counting spiked disks defines PSS chain map φPSS(H, f)

possible points γ(0) is 2n− indf (x). And the set of all v which satisfy
the homotopy Floer equation (3.4.46) for Hs and converge to z, as
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s→∞, has dimension n−µCZ(z).60 Thus the moduli space of spiked
disks is (for generic homotopy Hs) a 0-dimensional manifold in case
the Morse index of x is equal to µCZ(z) + n. Also there is ’no index
left’ for broken flow lines, so one has compactness, thus finiteness of
index difference zero moduli spaces. It is now clear that on the chain
level the homomorphism

φPSS = φPSS(H, f) : CM`(f)→ CF`−n(H)

is defined by counting (modulo 2) the finitely many spiked disks from
x to z. The index difference one moduli spaces are compact up to
1-fold broken orbits, the breaking can happen on either side, which to-
gether with a gluing construction shows that the 1-fold broken orbits
come in pairs, namely as partner pairs. This shows that φPSS(H, f)
is a chain map. But why is the induced homomorphism ΦPSS on
homology an isomorphism?

Exercise 3.4.19. Replace spiked disks by disks with spikes to de-
fine chain maps

ψPSS = ψPSS(f,H) : CFk(H)→ CMk+n(f).

Show by picture that both compositions

φPSS(H, f) ◦ ψPSS(f,H) ∼ 1lCF

and
ψPSS(f,H) ◦ φPSS(H, f) ∼ 1lCM

are chain homotopic to the identity.
[Hint: Draw a configuration for one of the compositions and see how
it can degenerate, that is identify the configurations in the boundary
of moduli space. Consult [MS04, §12.1] in case you get stuck.]

Exercise 3.4.20. Both methods lead to the same isomorphisms

ΨPSS = ΨεHα =: Ψα. (3.4.53)

[Hint: Consult [MS04, §12.1], prior to Rmk. 12.1.7, if stuck.]

60 The dimension formula 2n − µH(z) in [Sal99a, § 3.5] involves the quantity
µH(z) := n− µCZ(z) = n+ µCZ(z).
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3.4.5 Action filtered Floer homology

We summarize the main features in the form of an exercise.

Exercise 3.4.21. Use Z2 coefficients. Prove the energy identity
for connecting homotopy trajectories, that is

E(u) = ‖∂su‖2L2

= AHα(xα)−AHβ (xβ)−
∫ 1

0

∫ ∞
−∞

(∂sHs,t) (u) ds dt
(3.4.54)

for every connecting homotopy trajectory u ∈M(xα, xβ ;Hαβ) where
E(u) is defined by (3.3.24) for Hs,t. A monotone homotopy is a
homotopy Hs,t such that ∂sHs,t ≥ 0 pointwise on S1×M ×R. Show
that for monotone homotopies the action of xα is strictly larger than
that of xβ , unless the connecting homotopy flow line u is constant
in s in which case u ≡ xα = xβ . Suppose that a and b are regular
values of AHα and define the action filtered Floer chain groups

CF(a,b)
∗ (Hα)

as usual except for only employing critical points whose actions lie in
the action window (a, b). Define the boundary operator as before
in (3.4.42) except for only employing critical points of action in (a, b).

Show that ∂2 = 0. The homology HF(a,b)
∗ (Hα) of this chain complex

is called action filtered Floer homology.
Given a monotone homotopy Hαβ , define the corresponding

monotone continuation map ψβα(Hαβ) as before in (3.4.47) ex-
cept for only employing critical points of action in (a, b). Check that
this defines a chain map. The induced homomorphism Ψβα on ho-
mology is the monotone continuation map.
Now consider Hamiltonians that have the property that Hα ≤ Hβ

pointwise on S1 ×M . Pick a smooth cutoff function ρ : R → [0, 1]
which is 0 for s ≤ −1 and 1 for s ≥ 1. Check that for any
Hamiltonians with Hα ≤ Hβ the convex combination Hαβ

ρ :=

(1 − ρ)Hα + ρHβ is a monotone homotopy. Show that the corre-
sponding monotone continuation maps have composition properties

ΨγβΨβα = Ψγα, Ψαα = 1l,

whenever Hα ≤ Hβ ≤ Hγ analogous to Theorem 3.4.6.
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Recall from Proposition 2.3.16 that on a closed symplectic man-
ifold M there are Hamiltonians H : S1 × M → R without non-
contractible 1-periodic trajectories. So by continuation Floer ho-
mology is trivial on components of the free loop space of M other
than the component L0M consisting of contractible loops. However,
sometimes combining a suitable action window with a geometric con-
straint leads to nontrivial results; see e.g. [Web06a] for such a situa-
tion, although for a class of non-closed symplectic manifolds, namely
cotangent bundles.

3.4.6 Cohomology and Poincaré duality

Recall that we work with Z2 coefficients. Cohomology arises from
homology by dualization. In Section 3.1.2 this is explained in detail
including the geometric realization, just replace Morse co/homology
by Floer co/homology. So here we just summarize the geometric
realization of the Floer cochain complex. Given a regular pair (H,J),
the Floer cochain group is the Z2 vector space

CF∗(H) := Hom(CF∗(H),Z2).

Obviously the canonical basis BH of the Z2 vector space CF∗(H)
is the set of generators CritAH = P0(H), namely the finite set of
contractible 1-periodic Hamiltonian trajectories. Thus the (finite)

set B#
H := {ηx | x ∈ P0(H)} of Dirac δ-functionals61 on CF∗(H) is

a basis of CF∗(H), called the canonical basis of CF∗(H). Thus
CF∗(H) is a Z2 vector space of finite dimension. Let CFk(H) be
the subspace generated by those Dirac functionals whose canonical
Conley-Zehnder index µCZ(ηx) := µCZ(x) is equal to k. As we saw
in (3.1.10), the Floer coboundary operator

δk := (∂k+1)
#

: CFk(H)→ CFk+1(H)

acts on basis elements by

δkηy =
∑

x∈Critk+1AH

#2(mxy) ηx.

61 On basis elements y ∈ BH set ηx(y) = 1, if y = x, and ηx(y) = 0, otherwise.
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Here #2(mxy) is the number (mod 2) of connecting Floer flow lines,
cf. (3.4.42), and CritkAH is the set of critical points x with µCZ(x) =
k. By Proposition 3.4.3 we get that δ2 = (∂2)# = 0.

Tu put it in a nut shell, the Floer cochain groups are generated
by the contractible 1-periodic trajectories and graded by the canon-
ical Conley-Zehnder index, whereas the Floer coboundary operator
is given by the (mod 2) upward count of connecting Floer flow lines
between critical points of index difference one.

The quotient space

HFk(H) = HFk(M,ω,H; J) :=
ker δk

im δk−1

is called the kth Floer cohomology with Z2 coefficients associated
to H ∈ Hreg(J). Given regular pairs (Hα, Jα) and (Hβ , Jβ), contin-
uation isomorphisms of degree zero are given by the transposes

(Ψβα)# = [ψβα(Hαβ)#] : HF∗(β)→ HF∗(α)

of the continuation maps in Theorem 3.4.6; see (3.4.47) and (3.1.7).
The transpose of the natural isomorphism Ψα to singular homology
in Theorem 3.4.7 provides the isomorphism

(Ψα)
#

: H∗(M)→ HF∗−n(α)

which is of degree −n and compatible with the continuation maps.

Poincaré duality

Suppose (H,J) is a regular pair and x ∈ CritAH is a contractible
1-periodic Hamiltonian trajectory. Consider the maps

x̂(t) := x(−t), Ĥt := −H−t, Ĵt := J−t.

Exercise 3.4.22. Given a regular pair (H,J) and x, y ∈ CritAH ,
show that

µCZ(x̂; Ĥ) = −µCZ(x;H), AĤ(γ̂) = −AH(γ),

for every contractible loop γ : S1 →M and that

u ∈M(x, y;H,J) ⇔ û ∈M(ŷ, x̂; Ĥ, Ĵ)

where û(s, t) := u(−s,−t).
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Exercise 3.4.23. Given a regular pair (H,J), pick x ∈ Critk+1AH .
Check that the horizontal maps in the diagram

x x̂ ηx̂

Pdk+1 : CFk+1(H) CF−k−1(Ĥ) CM−k−1(Ĥ)

Pdk : CFk(H) CF−k(Ĥ) CF−k(Ĥ)∑
y #2mxy · y

∑
ŷ #2mxy · ŷ

∑
ŷ

#2mŷx̂
#2mxy

· ηŷ

̂
∂k+1(H,J) − gradAH(us)

#

δ̂−k−1(Ĥ,Ĵ)

̂
− gradAĤ(ûs)
=gradAH(us)

∂̂−k

#

are isomorphisms and that the diagram commutes,62 that is

δ̂−k−1 ◦ Pdk+1 = Pdk ◦ ∂k+1.

[Hint: Compare the mod 2 counts #2mxy(H,J) and #2mŷx̂(Ĥ, Ĵ);
cf. (3.4.42).]

Definition 3.4.24 (Poincaré duality). By Exercise 3.4.23 the chain
level isomorphisms Pdα̂αk , where α abbreviates (H,J), descend to
isomorphisms

PDα̂α
k := [Pdα̂αk ] : HFk(α)

'−→ HF−k(α̂)

which together with continuation provide the Poincaré duality iso-
morphisms

PDα
k−n :=

(
Ψα̂α

)#◦PDα̂α
k−n : HFk−n(α)︸ ︷︷ ︸

'Hk(M)

'−→ HFn−k(α̂)
'−→ HFn−k(α)︸ ︷︷ ︸
'H2n−k(M)

for every k and any regular pair (Hα, Jα) and where 2n = dimM .

62 The sums in the last line are over all critical points of canonical Conley-
Zehnder index equal to the grading of the corresponding (co)chain group in the
previous line.
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3.5 Cotangent bundles and loop spaces

Suppose (Q, g) is a closed Riemannian manifold. Pick a smooth func-
tion V on S1×M , called potential energy, and set Vt(q) := V (t, q).
For v ∈ TqQ we abbreviate gq(v, v) by |v|2q =: |v|2.

The Lagrange function or Lagrangian LVt(q, v) = 1
2 |v|

2
q − Vt(q),

defined on S1 × TQ, is the difference of kinetic and potential energy.

The functional SV (x) :=
∫ 1

0
LVt(x(t), ẋ(t)) dt defined on the free loop

space LQ := C∞(S1, Q) of Q is called the classical action func-
tional. Explicitly the functional SV is given by

SV = SV,g : LQ→ R, x 7→
∫ 1

0

1

2
|ẋ(t)|2 − Vt(x(t)) dt. (3.5.55)

Its extremals, i.e. the critical points of SV , are the perturbed63 peri-
odic geodesics on the Riemannian manifold Q. There is a bijection

CritSV = P(V ) ' CritAV , x 7→ zx := (x, ẋ),

where P(V ) = {−∇tẋ−∇Vt(x) = 0}; see (1.0.6). The functional

AV : LTQ→ R, z = (q, v) 7→
∫ 1

0

〈v(t), q̇(t)〉 −HVt(q(t), v(t)) dt,

is the (perturbed) symplectic action functional. The critical set
CritAV coincides with the set of 1-periodic trajectories of the Hamil-
tonian HV (q, v) := 1

2 |v|
2
q +Vt(q) on TQ ' T ∗Q, (q, v) 7→ gq(v, ·). For

generic V both functionals are Morse and the Morse index

indSV (x) = µCZ(zx) (3.5.56)

of a critical point x of SV coincides with the canonical Conley-
Zehnder index, see (1.0.11), of the corresponding critical point zx =
(x, ẋ) of AV whenever the vector bundle x∗TQ → Q is orientable;
otherwise a correction term σ(x) = +1 adds to µCZ(zx). For proofs of
these facts see [Web02]. It turns out, see [SW06], that the downward
L2 gradient equation of SV is the heat equation

∂su−∇t∂tu−∇Vt(u) = 0 (3.5.57)

63 If the perturbation V is ≡ const, the critical points are the periodic geodesics.
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for smooth cylinders u : R×S1 → Q in the manifold Q. Imposing on
u asymptotic boundary conditions x± ∈ P(V ), similarly to (3.3.23),
the operators Du obtained by linearizing the heat equation (3.5.57)
are Fredholm whenever the 1-periodic Hamiltonian trajectories x∓

are non-degenerate. If all x± ∈ P(V ) are non-degenerate and all lin-
earizations Du are surjective, in other words, if the Morse-Smale
condition holds for (3.5.57), then counting flow lines between crit-
ical points of Morse index difference one, say modulo 2, defines a
boundary operator on the Morse chain groups. With Z2 coefficients
these are defined by

CM∗(SV,g) :=
⊕

x∈P(V )

Z2x

and they are graded by the Morse index indSV , whatever coeffi-
cient ring. With integer coefficients the Morse complex CM(S) =
(CM∗, ∂∗) has been constructed in [Web13b,Web13a]. In [Web] it is
shown that there is a natural isomorphism to singular homology

HM∗(S) ' H∗(LQ)

of the free loop space. In [SW06] a natural isomorphism

HF∗(T
∗Q,HV ) ' HM∗(SV )

was established which, however, over the integers not only requires
that Q is orientable (w1(Q) = 0), but also that the second Stiefel-
Whitney class w2(Q) vanishes over (2-)tori; cf. subsection below.
The fact that the homology groups

HF∗(T
∗Q,ωcan,AV ) ' H∗(LQ) (3.5.58)

are isomorphic is called Viterbo’s theorem; see [Vit98] for the
Viterbo proof and [SW06,Web] and [AS06,AM06], otherwise.

Exercise 3.5.1 (Pendulum watched by uniformly rotating observer).
Consider the simplest closed manifold S1 and work out explicitely
the Morse and Floer chain complexes leading to (3.5.58). While one
quickly sees that a pendulum subject to gravity is described by a
Hamiltonian of the form HV (q, v) = 1

2 |v|
2 +V (q) on T ∗S1 = (R/Z)×

R, how could one change the system in order to make the potential
V not only time-dependent, but even time-1-periodic?
[Hint: Consult [Web96] in case you get stuck.]
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Orientations

For general closed manifolds Q equality of the Morse and the Conley-
Zehnder index of x ∈ P(V ) has been established in [Web02].

That even for orientable closed manifolds Q there is a problem to
construct coherent orientations of the spaces of connecting flow lines
has been discovered by Kragh [Kra07]; cf. [Sei10]. The problem arises
when the second Stiefel-Whitney class does not vanish over (2-)tori.
In such cases Abouzaid [Abo11] resolved the problem by using local
coefficients to construct the Floer homology goups of the cotangent
bundle; see also [AS14,AS15] and [Kra13]. The case of general closed
manifolds Q, orientable or not, is treated in [Abo15].

Remark 3.5.2. SupposeQ is a closed manifold. ThenQ is orientable
iff the first Stiefel-Whitney class (of its tangent bundle) is trivial,
that is w1(Q) = 0 ∈ H1(Q;Z2); see e.g. [MS74, p.148]. An orientable
manifold is called spin if it carries what is called a spin structure and
this is equivalent to w2(Q) ∈ H1(Q;Z2) being trivial; see e.g. [LM89,
II Thm. 2.1]. In other words, a manifold being spin is equivalent to
both w1(Q) and w2(Q) being trivial.

In particular, the isomorphism (3.5.58) holds true over the integers

• for orientable closed manifolds Q such that w2(Q) vanishes on
all 2-tori;

• in particular, for closed manifolds that carry a spin structure.

Examples of spin manifolds Q are

- all closed orientable manifolds of dimension n ≤ 3;

- all spheres (which is non-obvious only for two-spheres);

- all odd complex projective spaces CP2n+1, e.g. the Riemann
sphere CP1.

The even complex projective spaces CP2n are not spin, in particular,
the complex projective plane CP2 is not.
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Chapter 4

Contact geometry

From now on we consider autonomous Hamiltonians F : M → R
on symplectic manifolds (M,ω) and restrict our search for periodic
trajectories to closed regular level sets S = F−1(c) equipped with
the Hamiltonian vector field XF . One says that F defines S. If K
defines S, too, then XF = fXK for some non-vanishing function
f . So, given S, the set C(S) of closed flow lines P , called closed
characteristics of S, does not depend on the defining Hamiltonian F .
But the natural parametrizations of these embedded circles P depend
on F ; just multiplicate F by constants α > 1 to run faster, α ∈ (0, 1)
to run slower, or α < 0 to run in the opposite direction along P . So
in this context it doesn’t make sense to fix the period. One looks for
periodic trajectories, any period. But, even in (R2n, ω0), not every
regular level set S admits a periodic trajectory.

To guarantee existence of periodic trajectories one needs to impose
geometric conditions on a closed hypersurface in (M,ω). Firstly, co-
orientability and, secondly, there must exist a contact form α on
the hypersurface which is compatible with the ambient symplectic
manifold in the sense that the 2-form dα coincides with the restriction
of ω. Such co-orientable closed hypersurfaces are called hypersurfaces
of contact type and we denote them by Σ for distinction from ordinary
energy surfaces S. Our main reference in Chapter 4 is [HZ11]. We also
recommend the excellent surveys, [Etn16] and [Gei01], respectively,
and the very nicely written introduction in [Wen15, §1.6].
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Notation 4.0.3. We use the notation (M2n, ω) for symplectic and
(W 2n−1, α) for contact manifolds. Exact symplectic manifolds are
denoted by (V, λ) with symplectic form ω := dλ. For autonomous
Hamiltonians and their flows we use the letters F : M → R and
φ = φF , whereas for potentially time-dependent quantities we write
H and ψ = ψH ; see also Notation 1.0.5. Energy surfaces are closed
hypersurfaces S of the form F−1(c) where c is a regular value of
F . Hypersurfaces of contact type in a symplectic manifold (M,ω)
are denoted by (Σ, α), where the contact form α has to satisfy a
compatibility condition with ω which can be formulated, equivalently,
in terms of existence of a Liouville vector field Y near Σ. We assume
that the submanifolds S and Σ are closed.

4.1 Energy surfaces in (R2n, ω0)

Unless mentioned differently, let R2n be equipped with the standard
symplectic form ω0 = dλ0 =: dx ∧ dy; cf. (1.0.8). In fundamental
difference to Chapter 3 we consider now autonomous Hamiltonians
F : R2n → R. A hypersurface is a submanifold of codimension one,
sometimes called a regular hypersurface.

Definition 4.1.1. A hypersurface Σ in a non-compact manifold V is
called bounding if it is closed and its complement V \Σ consists of
two connected components, one of which, called the inside, has com-
pact closure, say M . Then M is a compact manifold-with-boundary
and ∂M = Σ is connected and closed. In this case we say that Σ
bounds M .

To understand the dynamics of the flow φ = φF on (R2n, ω0)
generated by the Hamiltonian vector field XF defined by (2.3.16)
recall that, by level preservation (2.3.18), it suffices to understand
the dynamics on each level set F−1(c). To have a realistic goal, still
ambitious though, we only consider compact level sets. In addition,
we require that c is a regular value of F . Hence F−1(c) ⊂ R2n is a
closed submanifold of codimension one by the regular value theorem.
Thus (F−1(c), φF ) is a compact smooth dynamical system. This
is true for almost every c ∈ R. (By Sard’s theorem the non-regular
values form a measure zero subset of R.) The converse is less obvious.
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Lemma 4.1.2. Any connected closed hypersurface S in Rm is (co-)
orientable and of the form f−1(0) for some smooth function f : Rm →
R with ∇f t S.
Smooth Jordan Brouwer separation theorem. S is bounding.

Note that ∇f t S tells that 0 is a regular value of f and [∇f ]
co-orients S.

Proof. Based on the fact that any closed hypersurface in Rm is ori-
entable, a construction of a function f on Rm such that f−1(0) = S
and ∇f t S and such that both sets {f < 0} and {f > 0} are con-
nected is given in [Lim88].1 By compactness of S there is a radius
R such that S lies inside the radius R ball B centered at the origin.
Suppose by contradiction that there are elements x ∈ {f < 0} and
y ∈ {f > 0} that both lie outside the ball B. Connect x and y by a
continuous path that lies outside B. Then f must be zero somewhere
along the path. Contradiction.

To summarize, in R2n connected compact regular level sets F−1(c)
and connected closed hypersurfaces S are the same. However, one is
related to functions, the other one to geometry. Whereas on F−1(c)
dynamics arises by XH , on the geometry side the dynamical informa-
tion has its description as well, namely through integral submanifolds
of what is called the characteristic line bundle LS → S. In the fol-
lowing we discuss both versions.

Hamiltonian dynamics – periodic trajectories

An autonomous Hamiltonian F : R2n → R has useful consequences:

(i) Level sets, called energy levels, are preserved by the Hamil-
tonian flow

φ = φF = {φFt }t∈R

as we saw in (2.3.18). Let us assume compactness of level sets,
so φ is indeed a complete flow, i.e. exists for all times in R.

1 The construction of f works if S is any codimension one submanifold, com-
pact or not, of any simply-connected manifold; see [Lim88, Rmk.]. Show that
1-connected is necessary.
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(ii) If c is a regular value of F , that is dF nowhere vanishes on
F−1(c), and F−1(c) is compact, then an energy surface is a
closed codimension 1 submanifold of the form

Sc := F−1(c) ⊂ R2n.

It may have finitely many connected components.

(iii) By Lemma 4.1.2 a connected2 closed hypersurface S ⊂ R2n is
a level set

S := S0 = F−1(0) (4.1.1)

for some smooth function F : R2n → R with regular value 0.

In R2n connected closed hypersurfaces are energy surfaces.

Observe that compactness is part of our definition of an energy
surface. Note that XF 6= 0 everywhere on S, so φ admits no
fixed points3 on S.

(iv) An energy surface S is naturally co-oriented (∇F ⊥ S), thus
oriented.

(v) A non-constant flow line that closes up at some time T > 0,
that is φTx = x where x ∈ S, describes an embedded cir-
cle P = O(x) := φRx in S. Such P comes with a natural
parametrization γ = γx : R → S, t 7→ φtx, whose prime pe-
riod4 τP := inf{periods T > 0 of P} > 0 is called the period
of the closed flow line P on S. By continuity of the flow
φτP y = y for any y ∈ P .

Energy preservation shows that Hamiltonian systems describe
physical systems without friction, so for instance oscillations never
decrease. This indicates that Hamiltonian flows might be rather com-
plicated. Indeed, as opposed to gradient flows, under a Hamiltonian
flow any particle returns close to its origin again and again (for a
proof see e.g. [HZ11, §1.4]):

2 For a connected hypersurface it is much easier to decide if it is a level set.
3 A fixed point of a flow φ = {φt}t∈R is a point x such that φtx = x for

every t ∈ R.
4 A number T > 0 such that φT y = y for some, hence any, point y ∈ P = O(x)

is called a period of the closed flow line P .
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Theorem 4.1.3 (Poincaré recurrence theorem). Under the Hamil-
tonian flow φ on a (closed) energy surface S almost every 5 point on
S is a recurrent point: For almost every x ∈ S there is a sequence
tj →∞ such that limj→∞ φtjx = x.

It sounds like some points, if not many, might close up in finite
time, returning exactly to their origins. For generic Hamiltonians of
class C2 this is indeed true! This result of Pugh and Robinson [PR83]
is called the Closing-Lemma.

As opposed to this generic phenomenon, the general existence
question is:

Does any energy surface S ⊂ (R2n, ω0) admit a periodic trajectory?

This question has only relatively recently been given the answer

”No.” (4.1.2)

by Ginzburg and Gürel [GG03] for a C2 smooth energy surface
S ⊂ R4 diffeomorphic to S3; see also references therein and the fea-
tured review MR2031857. This answered the Hamiltonian version of
Seifert’s question from 1950, commonly known as the Seifert conjec-
ture: Does any non-vanishing vector field on the unit sphere S3 admit
a periodic trajectory? Restricting the classes of vector fields, start-
ing with the original class of C1 vector fields, one gets a hierarchy of
questions. For the history of counterexamples,6 including references,
we refer to the survey [Gin01] and also the review MR1909955.

Geometric reformulation – closed characteristics

The Hamiltonian vector field XF = Xω0

F is non-zero on an energy
surface S = F−1(0). Thus XF generates an oriented line bundle

LF = Lω0

F : R R ·XF TS

S S

XF 6=0

5 w.r.t. the regular measure on S associated to the induced volume form on S
6 Examples for “No” are said counterexamples to the Seifert conjecture.

http://www.ams.org/mathscinet/search/publdoc.html?pg1=INDI&s1=314002&vfpref=html&r=26&mx-pid=2031857
http://www.ams.org/mathscinet/search/publdoc.html?pg1=INDI&s1=314002&vfpref=html&r=31&mx-pid=1909955
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in other words, a distribution7 of rank one in TS.

Exercise 4.1.4. Consider the inclusion ι : S ↪→ R2n and the restric-
tion ω0|S := ι∗ω0 of the symplectic form to S = F−1(0). Show

LS = Lω0

S := kerω0|S = R ·XF =: LF .

[Hint: Show this pointwise. Inclusion ⊃ is easy and dim ker(ω0|S)x =
1: Exclude = 0 by odd dimension of S and ≥ 2 by non-degeneracy
of the 2-form.]

So LS is a line bundle with a non-vanishing section, namely

LS : R kerω0|S

S

XF 6= 0 whenever F−1(0) = S regular

(4.1.3)

Definition 4.1.5. One calls LS = Lω0

F the characteristic line bun-
dle of the energy surface S in (R2n, ω0). A closed characteristic of
LS is a closed integral curve of the distribution LS , i.e. an embedded
circle C ⊂ S, likewise denoted by P ⊂ S, whose tangent bundle TC
is equal to the restriction LS |C .

Remark 4.1.6 (Energy surfaces in symplectic manifolds). The same
constructions work if S = F−1(0) is a closed regular level set in a gen-
eral symplectic manifold (M,ω); such S is called an energy surface
in (M,ω). However, not every connected closed hypersurface in a
manifold is a level set. A sufficient condition is simply-connectedness
of the manifold; see Exercise 4.3.1.

Definition 4.1.7. Given a symplectic manifold (M,ω), suppose S ⊂
M is a closed hypersurface. A function F : M → R is called a
defining Hamiltonian for S if S = F−1(c) for some regular value
c of F . Let H(S) be the set of defining Hamiltonians for S.

Summarizing, in R2n any connected closed hypersurface S is an
energy surface for some Hamiltonian, that is H(S) 6= ∅. Furthermore,

7 A distribution of rank k in a tangent bundle is a subbundle of rank k.



i
i

“CBM31-ENG˙weber” — 2017/6/15 — 2:12 — page 159 — #167 i
i

i
i

i
i

[SEC. 4.1: ENERGY SURFACES IN (R2n, ω0) 159

Figure 4.1: Closed hypersurfaces Σ ⊂ (R2n, ω0) with C(Σ) 6= ∅

for any energy surface F−1(0) =: S ⊂ (R2n, ω0) closed characteristics
of the line bundle Lω0

S coincide with closed flow lines of the Hamilto-
nian vector field Xω0

F , as XF is a (non-vanishing) section of LS .

Exercise 4.1.8 (Line bundle Lω0

S independent of defining Hamil-
tonian). Suppose S is closed hypersurface of (R2n, ω0) and F,K ∈
H(S). Then XF = fXK for some non-vanishing function f on S.
[Hint: Note that ∇F (x) and ∇K(x) are both non-zero and orthog-
onal to the codimension-1 subspace TxS ⊂ R2n. Alternatively, their
co-vectors are colinear, as the kernel of each is precisely TxS, and
non-zero, as codimTxS > 0.]

Since the line bundle LS only depends on the closed (smooth)
hypersurface S ⊂ (R2n, ω0), we denote the set of closed character-
istics of LS by C(S) = C(S;ω). The earlier question can now be
reformulated geometrically as follows:

Is C(S) non-empty for any connected closed hypersurface S ⊂ (R2n, ω0)?

As we saw above, in this generality the answer is “No”.

Energy surfaces of contact type – Weinstein conjecture

The previous question was answered positively for convex and star-
shaped hypersurfaces by Weinstein [Wei78] and Rabinowitz [Rab78],
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respectively. Weinstein isolated key geometric features of a star-
shaped hypersurface in R2n and introduced the notion of hypersurface
of contact type in a symplectic manifold.

Conjecture 4.1.9 (Weinstein conjecture [Wei79]). A closed hy-
persurface 8 of contact type with trivial first real cohomology carries
a closed characteristic.

The Weinstein conjecture in (R2n, ω0) was confirmed by
Viterbo [Vit87], even without any assumption on the first cohomol-
ogy. More generally, existence of a Reeb loop for any contact form on
the 3-sphere, even for any closed orientable contact 3-manifold with
trivial π2, was shown by Hofer [Hof93] and generalized to arbitrary
π2 by Taubes [Tau07]; cf. [Hut10]. Let us now follow Weinstein iden-
tifying the key geometric features. Consider the radial vector field

Y0 : R2n → R2n, z = (x, y) 7→ z =

n∑
j=1

(
xj∂xj + yj∂yj

)
. (4.1.4)

The flow θ = θY0 = {θY0
t } generated by Y0 is the Liouville flow.

Exercise 4.1.10. Show that Y0 is a Liouville vector field, i.e.
LY0

ω0 = ω0.

Definition 4.1.11. A closed hypersurface Σ in (R2n \ {0}, ω0) is
called star-shaped (with respect to the origin) if it is transverse to
Y0, see Figure 4.2, or equivalently if the projection R2n\{0} → S2n−1,
z 7→ z/‖z‖, restricts to a diffeomorphism Σ→ S2n−1.

8 in general, in any symplectic manifold (M,ω).

Figure 4.2: Hypersurface Σ t Y0 not meeting 0 is called star-shaped



i
i

“CBM31-ENG˙weber” — 2017/6/15 — 2:12 — page 161 — #169 i
i

i
i

i
i

[SEC. 4.1: ENERGY SURFACES IN (R2n, ω0) 161

Remark 4.1.12 (Contact type energy surfaces Σ ⊂ (R2n, ω0)).

(i) Existence of the Liouville vector field Y0 has strong geometric
and dynamical consequences: Transversality of Y0 along an en-
ergy surface Σ induces on some neighborhood the structure of
a foliation whose leaves are energy surfaces Σε := θεΣ, i.e. Li-
ouville flow copies of Σ. The apriori slightly obscure condition
that Y0 is a symplectic dilation, that is LY0

ω0 = ω0, causes
that the copies Σε are even dynamical copies in the sense that
the linearized diffeomorphisms dθε : TΣ → TΣε identify the
characteristic foliations LΣ := kerω0|Σ and LΣε isomorphically;
cf. (4.4.8) and Figure 4.4.

(ii) Conclusion: Given an energy surface Σ ⊂ (R2n, ω0), the two key
structures are, firstly, existence near Σ of a Liouville vector
field Y , that is having the dilation property LY ω0 = ω0, which
is, secondly, transverse to Σ. Such pair (Σ, Y ) is called an
energy surface of contact type.

(iii) Alternative definition: One can show, see Section 4.4, that ex-
istence of Y in (ii) is equivalent to existence of a 1-form α
on Σ itself such that, firstly, the restriction ω0|Σ is dα (thus
ker dα is the characteristic line bundle LΣ in (4.1.3)), and such
that, secondly, the 1-form α is non-vanishing on LΣ (evaluation
αx(LΣ)x = R is non-trivial ∀x ∈ Σ,9 see Figure 4.3).

(iv) Given data (Σ, α) as in item (iii), the two conditions

Rα ∈ Ldα := ker dα, α(Rα) = 1,

uniquely determine a vector field Rα on the contact type energy
surface Σ, called the Reeb vector field associated to α.

Exercise 4.1.13 (For contact type energy surfaces Hamiltonian and
Reeb dynamics coincide up to reparametrization). Given the data
(Σ, α) and Rα in the previous item (iv) where Σ = F−1(0) for some
F : R2n → R. Show that Rα = f XF for some non-vanishing function
f on Σ. [Hint: LF = LΣ = Ldα.]

9 Thus the rank of the vector bundle ξ := kerα→ Σ is 2n−2 and consequently
TΣ = LΣ ⊕ kerα = LΣ ⊕ ξ, in particular LΣ t ξ in TΣ.
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Figure 4.3: Contact structure ξ = kerα, contact type hypersurface Σ

Example 4.1.14 (Non-contact type). An energy surface S ⊂
(R2n, ω0) diffeomorphic to the sphere, but not of contact type is
shown in [HZ11, §4.3 Fig. 4.8].

4.2 Contact manifolds

Exercise 4.1.13 shows that the dynamics on a contact type hypersur-
face Σ is determined, up to reparametrization, by the 1-form α on Σ
itself, independent of the ambient symplectic manifold.

Definition 4.2.1. A contact form on a (2n− 1)-dimensional man-
ifold W is a 1-form α on W such that dα is at any point x a non-
degenerate skew-symmetric bilinear form on the subspace

ξx := kerαx ⊂ TxΣ

of the tangent space. The hyperplane distribution ξ is called a con-
tact structure of the contact manifold (W, ξ).

The Gray stability theorem, see e.g. [Gei08, Thm. 2.2.2], tells
that for any given smooth family {ξt}t∈[0,1] of contact structures there
is a smooth family {ϕt}t∈[0,1] of diffeomorphisms of W such that
(ϕt)∗ξ0 = ξt. But there is no such result for contact forms. This
indicates that contact forms are objects less geometrical than contact
structures.
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Exercise 4.2.2 (α contact ⇔ α ∧ (dα)n−1 6= 0). Given a contact
form α, show:

(a) At every x ∈ W the co-vector αx is non-zero, thus the vector
space ξx is necessarily of dimension 2n − 2, in other words a
hyperplane.

(b) The defining condition of a contact structure ξ = kerα, namely
dα being non-degenerate on ξ, is equivalent to α∧(dα)n−1 being
a volume form on W , i.e. this (2n− 1)-form is at no point x
of M the zero-form.

(c) The kernel Ldα := ker dα is a line bundle over W and Ldα ⊕
kerα = TS. There is a unique ’unit’ section Rα of the line
bundle Ldα determined by α(Rα) = 1 and called the Reeb
vector field associated to α. The (local) flow generated by Rα
on W is called Reeb flow associated to α and denoted by
ϑ = ϑRα = {ϑRαt }.10

(d) The distribution ξ = kerα is nowhere integrable.11

(e) The distribution ξ = kerα is co-oriented.

Exercise 4.2.3 (Contact manifolds are orientable). Suppose (W, ξ =
kerα) is a contact manifold of dimension 2n−1. Show that α induces
an orientation of W . If n is even, then this orientation only depends
on the hyperplane distribution ξ, but not on the choice of contact
form whose kernel is ξ. [Hint: Pick −α.]

Exercise 4.2.4 (Reeb flow preserves contact structure). Show that
the Reeb flow preserves the contact form α, so the contact structure ξ.
[Hint: Check that LRαα = 0.]

Exercise 4.2.5 (Standard contact structure on R3). Consider R3

with coordinates (x, y, z) and set α := dz − ydx and ξ := kerα.
Check that α is a contact form on R3 and ξ is spanned by the vector
fields ∂y and ∂x + y∂z whose commutator is Rα = ∂z /∈ ξ.

10 The dynamical behavior of Reeb vector fields of two contact forms repre-
senting the same contact structure ξ = kerα = kerα′ is in general very different.

11 Hint: Frobenius; see e.g. [Lan01, Ch. VI], [Ste83, Sec. II.5], or [War83, Ch. 1].
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4.3 Energy surfaces S in (M,ω)

Throughout (M,ω) denotes a symplectic manifold of dimension 2n.
This section parallels Section 4.1 on energy surfaces F−1(0) in R2n.
We don’t repeat proofs. Consider the characteristic line bundle

LS := kerω|S → S

of a closed hypersurface S ⊂ M . Whereas any connected closed
hypersurface in R2n is a regular level set of some Hamiltonian F :
R2n → R, the situation is slightly different in a manifold.

Exercise 4.3.1. Let N be a simply-connected manifold. Then any
connected closed hypersurface S ⊂ N is a regular level set S = S0 :=
F−1(0) for some function F : B → R. [Hint: Cf. Lemma. 4.1.2.]

Exercise 4.3.2. For a closed hypersurface S ⊂ (M,ω) are equivalent:

(i) S is orientable.

(ii) S is co-orientable.

(iii) LS is orientable.

(iv) S = F−1(0) is a regular level set for some F : U(S)→ R defined
on some neighborhood of S.

(v) There exists a parametrized family of hypersurfaces mod-
eled on S, that is a diffeomorphism

Φ : (−δ, δ)×S → U ⊂M, (ε, x) 7→ Φ(ε, x) =: Φε(x), (4.3.5)

onto a neighborhood U of S of compact closure and with Φ0 =
idS . We write Sε := ΦεS and sometimes we denote Φ by (Sε).

Remark 4.3.3. An energy surface in a symplectic manifold
is a closed regular level set S of the form S = Sc := F−1(c) where
F : M → R is a function and c is a regular value. We may assume
that S is of the form F−1(0); otherwise, add a constant to F . Note
that an energy surface S is a closed co-/orientable hypersurface that
may consist of finitely many components. As earlier in Section 4.1,
a non-vanishing section of LS is provided by the Hamiltonian vector
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field XF of any Hamiltonian having S as regular level set. A closed
characteristic on an energy surface S is an embedded circle
C ⊂ S, likewise denoted by the letter P , such that TC = LS |C .
Recall from (2.3.22) that C(S) = C(S;ω) denotes the set of closed
characteristics on the energy surface S.

4.3.1 Stable hypersurfaces

Definition 4.3.4. A closed hypersurface S ⊂ (M,ω) is called stable
if there is a parametrized family (Sε) modeled on S such that for each
ε the linearization

dΦε : LS → LSε
is a bundle isomorphism.

4.4 Contact type hypersurfaces in (M,ω)

Weinstein [Wei79] introduced the following notion; cf. Conj. 4.1.9.

Definition 4.4.1. A closed hypersurface ι : Σ ↪→ (M,ω) in a sym-
plectic manifold is said to be of contact type if Σ is co-orientable12

and there is a 1-form α on Σ such that

(i) dα = ι∗ω, that is the restriction ω|Σ := ι∗ω to Σ is exact.

(ii) α is non-vanishing on the characteristic line bundle (except zero
section)

LΣ := kerω|Σ = ker dα.

More precisely, condition (ii) means that evaluation αx(LΣ)x = R
is non-trivial at any point x ∈ Σ, likewise (cf. Figure 4.3)

LΣ ⊕ kerα = TΣ.

Exercise 4.4.2 (Contact type hypersurfaces are contact manifolds).
To see that a contact type hypersurface (Σ, α) in a symplectic man-
ifold (M,ω) is a contact manifold with contact structure ξ = kerα
show the following:

12 Co-orientability enables extensions from Σ to neighborhoods; cf. Exc. 4.3.2.
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a) The linear functional αx ∈ T ∗xΣ is non-zero at any x ∈ Σ. So

ξ := kerα

is a (2n− 2)-plane distribution in the tangent bundle TΣ.

b) dα restricts to a non-degenerate two-form dα|ξ on ξ.

c) α ∧ (dα)∧(n−1) is a volume form on Σ. (Thus α orients Σ.)

[Hint: b) LΣ = ker dα. c) ker dα⊕ kerα = TΣ. Exercise 4.2.2 (b).]

Remark 4.4.3 (Reeb flow on contact type hypersurface). The char-
acteristic line bundle of a contact type hypersurface (Σ, α) admits
by co-orientability a natural non-vanishing section, namely the Reeb
vector field Rα normalized by α(Rα) ≡ 1.

There is a second definition of contact type which reveals more of
the interaction of contact type with the ambient symplectic manifold.
The key element is a vector field Y transverse to Σ – a useful property
to generate copies Σε of Σ – which dilates the symplectic form:

Definition 4.4.4. A vector field Y on a symplectic manifold (M,ω)
is a Liouville vector field, or an Euler vector field, if LY ω = ω.

Exercise 4.4.5. If Y is Liouville on an open subset U ⊂M , then so
is Y +Xh for any function h : U → R.

Definition 4.4.6. A closed13 hypersurface Σ ⊂ (M,ω) is said to be
of contact type if some neighborhood U of Σ admits a Liouville
vector field Y transverse to Σ, in symbols Y t Σ. In case of global
existence, namely U = M , the hypersurface Σ is said to be of re-
stricted contact type. The Liouville flow is the flow θ = θY of
Y on U . It satisfies θ∗tω = etω wherever it is defined.14

13 Assuming closed, that is compact and without boundary, makes several
things so much simpler: Firstly, transversality is much easier to handle and,
secondly, flows on Σ are complete.

14 So a closed symplectic manifold cannot admit a global Liouville vector field.
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Both definitions of contact type are equivalent

Y 7→ αY : Given a Liouville vector field Y on U , define

λY := iY ω, αY := ι∗λY , (4.4.6)

to get the desired 1-form αY on Σ. Abbreviate λ = λY and α =
αY . Then dλ = diY ω = LY ω = ω and for non-zero v ∈ (LΣ)x :=
(kerω|Σ)x ⊂ TxΣ, together with Y (x) /∈ TxΣ as Y t Σ, we have that

0 6= ω(Y (x), v) = λx(v) = αx(v). (4.4.7)

α 7→ Yα : This way is harder as it involves in the first step to extend
the 1-form α from Σ to a 1-form λ = λα on some neighborhood U
of Σ such that dλ = ω|U ; see [HZ11, §4.3 Le. 3]. Once one has the
extension, the identity λα = ω(Y, ·) determines Y = Yα. On U one
has LY ω = diY ω = dλ = ω. To show Y t Σ observe that now
in (4.4.7) the right hand side is non-zero, thus Y (x) cannot be in
TxΣ, as v already is.

Geometrical and dynamical consequences of contact type

Let Σ ⊂ (M,ω) be a closed hypersurface of contact type. Let Y = Yλ
and λ = λY be the two associated structures, one corresponding to
the other one (see right above), on some neighborhood U of Σ.

The contact type property has powerful geometrical and dynam-
ical consequences illustrated by Figure 4.4: Transversality Y t Σ
leads to a foliation of a neighborhood of Σ by copies of Σ under the
Liouville flow θ = θY , that is by the hypersurfaces defined by

Σr := θrΣ, r > 0 small.

These copies are even dynamical copies in the sense that the lineariza-
tion of the diffeomorphism θr : Σ → Σr identifies the characteristic
foliations LΣ and LΣr isomorphically.
To see this consider the parametrized family of hypersurfaces modeled
on Σ provided by the Liouville flow, namely

Φ : (−δ, δ)× Σ→ U ⊂M, (r, x) 7→ θrx. (4.4.8)
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Figure 4.4: Contact type induces foliation (Σr) with LΣ
∼= LΣr

Here δ > 0 is a sufficiently small constant whose existence is guaran-
teed by compactness of Σ; choose for U the image of Φ. Use LY ω = ω
in (2.3.20) and θ0 = id to obtain the identity

(θr)
∗ω = erω.

Given some non-zero vector v ∈ (LΣ)x = ker(ω|Σ)x, then

0 = ω (v, w)

= erω (v, w)

= (θr)
∗ω (v, w)

= ω
(
dθr(x)v, dθr(x)w︸ ︷︷ ︸

∈TθrxΣr

) (4.4.9)

for every w ∈ TxΣ. So the non-zero vector dθr(x)v lies in the vector
space ker(ω|Σr )θrx. Thus

dθr : LΣ → LΣr (4.4.10)

is an isomorphism of line bundles proving that contact type implies
stable. Hence θr induces a bijection C(Σ) ∼= C(Σr), P 7→ θrP . This
motivates Definition 4.3.4.

Exercise 4.4.7 (Stable, but not of contact type). Show that the
hypersurface Σ := S2 × S1 in the symplectic manifold (M,Ω) :=
(S2 × R2, ω ⊕ ω0) is stable, but not of contact type. Here ω is any
symplectic form on S2; cf. Exercise 2.0.10.
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4.4.1 Energy surfaces of contact type

Proposition 4.4.8. Suppose a closed hypersurface Σ in a symplectic
manifold (M,ω) is both, firstly, of contact type with respect to some
Liouville vector field Y on some neighborhood U of Σ and, secondly,15

a regular level set Σ = F−1(c) of some function F : U → R. In
this case the Reeb vector field and the Hamiltonian vector field are
pointwise co-linear along Σ. In symbols, along Σ it holds that

RαY = f XF (4.4.11)

for some non-vanishing function f on Σ. In other words, on Σ the
Reeb flow and the Hamiltonian flow coincide up to reparametrization.

Proof. Set α := αY , cf. (4.4.6), so ker dα = kerω|Σ =: LΣ = LF−1(c).
But Rα is a section of ker dα by definition and XF is one of LF−1(c)

by Remark 4.3.3.

Exercise 4.4.9 (Reeb flows on level sets are Hamiltonian near16 the
level set). Suppose the regular value c of F : U → R in Propo-
sition 4.4.8 is zero; otherwise replace F by F − c. Firstly, extend
the non-vanishing function f in (4.4.11) from Σ = F−1(0) to a non-
vanishing function on some open neighborhood, still denoted by U
and f , constant outside a compact neighborhood D ⊂ U of Σ. [Hint:
Co-orientability of Σ, tubular neighborhoods D.] Secondly, show that

• zero is a regular value of the product function fF : U → R;

• the pre-image (fF )−1(0) is still Σ;

• along Σ there are the identities RαY = f XF = XfF .

[Hint: Given the identity XfF = fXF + FXf , it helps that Σ =
F−1(0) is the pre-image of zero.]

15 Assumption void if Σ is bounding: One constructs F even globally on M .
16 Reeb flows on bounding contact type hypersurfaces are Hamiltonian for some

F : M → R.
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4.5 Restricted contact type
– exact symplectic

Exercise 4.5.1. Let Σ ⊂ (M,ω) be a closed hypersurface.

a) If Σ is of restricted contact type, see Definition 4.4.6, with re-
spect to a Liouville vector field Y on M , then ω is an exact
symplectic form with primitive λY := iY ω := ω(Y, ·). In par-
ticular, the manifold M cannot be closed.

b) If ω = dλ is exact, then every simply-connected closed hyper-
surface of contact type is of restricted contact type.

Definition 4.5.2. An exact symplectic manifold (V, λ) is a man-
ifold V with a 1-form λ such that ω := dλ is a symplectic form.

Exercise 4.5.3. Show the following. An exact symplectic manifold
(V, λ) is necessarily non-compact. The boundary ∂M of a compact
exact symplectic manifold-with-boundary (M,λ) is necessarily non-
empy. In either case, the associated vector field Yλ determined by
the identity iYλdλ = λ is Liouville.

Exercise 4.5.4 (Liouville vector fields are outward pointing). Sup-
pose (M,ω = dλ) is a compact exact symplectic manifold-with-
boundary and consider the associated Liouville vector field Yλ defined
by ω(Yλ, ·) = λ on U = M . Suppose that Yλ t ∂M . (In other words,
suppose that the boundary ∂M is of (restricted) contact type with
respect to Yλ.) Let ι : ∂M ↪→M be inclusion and set α := ι∗λ.

(i) Use the fact that λ(Yλ) = 0 to prove the relation

iYλω
n = λ ∧ (dλ)n−1

between the natural volume form ωn on M and its primitive.
Recall that the restriction ι∗

(
λ ∧ (dλ)n−1

)
= α ∧ (dα)n−1 is a

volume form on ∂M .

(ii) Let M be equipped with the orientation provided by the volume
form ωn and let the boundary ∂M be equipped with the induced
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orientation according to the ’put outward normal first’ rule;
cf. [GP74, Ch. 3 §2]. Verify that

0 <

∫
M

ωn

=

∫
∂M

ι∗
(
λ ∧ (dλ)n−1

)
=

∫
∂M

ι∗iYλω
n

where the first identity is Stoke’s theorem; see [GP74, Ch. 4 §7].
Let ν be an outward pointing vector field along ∂M . Then ver-
ify that the integral

∫
M
ωn is a positive multiple of

∫
∂M

ι∗iνω
n

due to the ’put outward normal first’ rule. So Yλ points in the
same half-space as ν, that is the outer one. Hence Yλ generates
a complete backward flow.

4.5.1 Bounding hypersurfaces

An exact symplectic manifold (V, λ) already comes equipped with the
globally defined associated Liouville vector field Yλ determined
by the identity

dλ(Yλ, ·) = λ.

Proposition 4.5.5 (Defining Hamiltonians). Suppose Σ is a bound-
ing hypersurface in an exact symplectic manifold (V, λ) transverse to
the associated Liouville vector field Yλ on V . (Thus Σ is of restricted
contact type with α := αYλ := λ|Σ.) Denote the closure of the inside
of Σ by M . Then there is a global Hamiltonian F : V → R with
regular level set F−1(0) = Σ such that F is negative17 inside Σ, equal
to a positive constant outside some compact neighborhood of M , and
such that the Hamiltonian vector field

XF = Rα (4.5.12)

coincides along Σ with the Reeb vector field. Such F is called a defin-
ing Hamiltonian for Σ; see Figure 5.1. The space of defining
Hamiltonians, denoted by F(Σ) = F(Σ, V, λ), is convex.

17 If one does not prescribe the same sign for all F ’s inside Σ and the opposite
sign outside, then one looses convexity of the space of such, since F + (−F ) = 0.
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Proof. Use a tubular neighborhood of Σ to define F near Σ and then,
using that Σ bounds, extend that function, say by −1/ + 1, to the
remaining parts of the inside/outside of Σ. Then Rα = fXF along Σ
for some non-vanishing f on Σ by (4.4.11). Use again that Σ bounds
to extend f to a non-vanishing function on V . Then the product
function fF : V → R has the desired properties; cf. Exercise 4.4.9.
Convexity essentially follows from the identity XF+G = XF + XG

and the fact that one has chosen zero as regular value.

Definition 4.5.6. A Hamiltonian F as in Proposition 4.5.5, see Fig-
ure 5.1, is a defining Hamiltonian for the bounding hypersurface
Σ of restricted contact type in an exact symplectic manifold (V, λ).

4.5.2 Convexity

To get a natural ambience of Rabinowitz-Floer homology replace

bounding hypersurfaces of restricted contact type

in exact symplectic manifolds

by
convex exact hypersurfaces Σ

in convex exact symplectic manifolds (V, λ).

What is the difference? Whereas the restriction λ|Σ to Σ needs
to become contact only after adding some exact 1-form on Σ, non-
compactness of exact symplectic manifolds is tamed and made ’con-
trolable’ outside compact parts by requiring what is called the
manifold being convex, or cylindrical, near infinity; see [EGH00]
and [BEH+03]. From now on Σ and V are connected manifolds.

Definition 4.5.7. A convex exact symplectic manifold (V, λ)
consists of a connected manifold V of dimension 2n equipped with a
1-form λ such that

(i) ω := dλ is a symplectic form on V and

(ii) the exact symplectic manifold (V, λ) is convex at infinity,
that is there is an exhaustion V = ∪kMk of V by compact
manifolds-with-boundary Mk ⊂ Mk+1 such that αk := λ|∂Mk

is a contact form on ∂Mk for every k.
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Remark 4.5.8. Suppose (V, λ) is a convex exact symplectic man-
ifold. Given any compactly supported (smooth) function f on V ,
then (V, λ + df) is also a convex exact symplectic manifold: Indeed
the 1-forms λ and λ + df , called equivalent 1-forms, generate the
same symplectic form ω on V . One obtains a suitable exhaustion by
forgetting the first Mk’s, use only those on which df = 0.

By Exercise 4.5.4 the associated Liouville vector field Yλ points
out of Mk along ∂Mk. So the Liouville flow is automatically back-
ward complete. A convex exact symplectic manifold (V, λ) is called
complete if the vector field Yλ generates a complete flow on V . If
Yλ 6= 0 outside some compact set one says that (V, λ) has bounded
topology.18 Call a subset A ⊂ V displaceable if

A ∩ ψH1 A = ∅

for some compactly supported Hamiltonian H : [0, 1]× V → R.

Exercise 4.5.9. a) If (V, λ) is a convex exact symplectic manifold,
then so is its stabilization (V × C, λ⊕ λC). The 1-form λC on C is
given by 1

2 (x dy − y dx). b) In (V ×C, λ⊕ λC) every compact subset
is displaceable.

Main examples of convex exact symplectic manifolds are

• Euclidean space R2n equipped with the 1-form λ0 given
by (1.0.8). Indeed the radial Liouville vector field Y0(z) = z
in (4.1.4) is transverse to the boundary of each ball Mk about
the origin of radius k.

• cotangent bundles T ∗Q equipped with the Liouville form λcan

and the canonical fiberwise radial Liouville vector field Ycan,
see (4.5.13). These are complete and of bounded topology
whenever the base manifold is closed. More generally,

• Stein manifolds, see [Eli90,EG91] or [CE12, Thm. 1.5].

18 To understand this choice of terminology recall that Morse theory describes
the change of topology of sublevel sets {f ≤ c} when c crosses a critical level.
But critical points of f are the zeroes of the gradient vector field ∇f , whatever
Riemannian metric one picks.
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Cylindrical ends

Symplectic manifolds with cylindrical ends have been introduced to
construct symplectic field theory (SFT) in [EGH00].

Exercise 4.5.10. Show that a convex exact symplectic manifold
(V, λ) is complete and of bounded topology iff there exists an em-
bedding φ : N × R+ → V , for some closed, not necessarily con-
nected, manifold N , such that φ∗λ = erαN with contact form
αN := φ∗λ|N×{0} and such that V \ φ(N × R+) is compact.
[Hint: Apply the Liouville flow to N := ∂Mk for some large k; cf.
Figure 4.5.]

Each connected component Nj ×R+ of N ×R+ is called a cylin-
drical end of (V, λ) and comes equipped with the symplectic form
φ∗dλ = d(erαNj ).

Definition 4.5.11. A dλ-compatible almost complex structure J on
(V, λ), i.e. J ∈ J (V, dλ), is called cylindrical if it is cylindrical
on the cylindrical ends: Namely, the corresponding almost complex
structure φ∗J on N × R+

• couples Liouville and Reeb vector field: J∂r = RαN along N ;

• leaves kerαN invariant;

• is invariant under the semi-flow (x, 0) 7→ (x, r), (x, r) ∈ N×R+.

Concerning existence of cylindrical almost complex structures
see [BEH+03, §2 §3] or [Abb14, §2.1].

Convex exact hypersurfaces

Definition 4.5.12. A convex exact hypersurface in a convex
exact symplectic manifold (V, λ) is a connected closed hypersurface
Σ ⊂ V such that

(i) there is a contact 1-form α on Σ such that α−λ|Σ is exact and

(ii) the hypersurface Σ is bounding,19 say M . (So V \ Σ has two
connected components, only one of compact closure.)

19 Assuming that Σ bounds, in particular being connected and closed, together
with being of codimension 1 in a symplectic manifold, is sufficient that Σ admits
a defining Hamiltonian – thereby relating Reeb and Hamiltonian dynamics.
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Figure 4.5: Convex exact symplectic manifold with 3 cylindrical ends

Remark 4.5.13. The next Exercise 4.5.14 shows that a convex exact
hypersurface Σ in a convex exact symplectic manifold (V, λ) and with
associated contact form α is of restricted contact type with respect
to an equivalent 1-form

µ := λ+ dh

which restricts to the same contact form α = µ|Σ. Moreover, the
new Liouville vector field, given by Yµ = Yλ −Xω

h where ω = dλ =
dµ, is still transverse to Σ = ∂M and still outward pointing; see
Exercise 4.5.4.

Exercise 4.5.14. Consider a convex exact hypersurface Σ in (V, λ)
with associated contact form α. Show the following.

(a) There is a compactly supported function h : V → R such that
the 1-form µ := λ+ dh on V restricts to α = µ|Σ.

(b) The new Liouville vector field is given by Yµ = Yλ −Xω
h and it

is transverse to Σ whenever Yλ is.

[Hint: (a) Consult [CF09, p. 253 Rmk. (2)] if you get stuck.]

For a list of further useful consequences see [CF09, p. 253]. For
instance, a closed hypersurface bounds whenever H2n−1(V ;Z) = 0.
This holds, whenever V is Stein of dimension > 2 or a stabilization.
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4.5.3 Cotangent bundles

Given a closed manifold Q of dimension n, consider the cotangent
bundle (T ∗Q,ωcan = dλcan) with its canonical exact symplectic form.

Exercise 4.5.15. Show that Ycan determined by ωcan(Ycan, ·) = λcan

takes in natural local coordinates the form of a fiberwise radial vector
field, namely

Ycan = 2

n∑
i=1

pi∂pi = 2Yrad. (4.5.13)

It is called the canonical or fiberwise radial Liouville vector
field. The fiberwise radial vector field Yrad : T ∗Q → TT ∗Q is
given by the derivative

Ycan(η) = 2Yrad(η) := 2
d

dτ

∣∣∣∣
τ=1

τη (4.5.14)

of the curve τη in the manifold T ∗Q at time 1. Note that Yrad exists
on any co/tangent bundle; cf. wiki/Tangent bundle.

Definition 4.5.16. A hypersurface Σ ⊂ T ∗Q is called fiberwise
star-shaped (with respect to the zero section) if Σ is bounding,
disjoint from the zero section, and transverse Σ t Ycan to the fiberwise
radial vector field.20

Exercise 4.5.17. The intersection of a fiberwise star-shaped hyper-
surface Σ ⊂ T ∗Q with each fiber T ∗qQ is diffeomorphic to a sphere of
dimension n− 1.

Exercise 4.5.18. Pick a Riemannian metric g and a smooth function
V on Q, consider the Hamiltonian F (q, p) = 1

2gq(p, p) + V (q). Show
that if c > maxQ V , then Σc := F−1(c) is a fiberwise star-shaped
hypersurface; cf. [HZ11, (4.11)].

Example 4.5.19 (Canonical contact structure on S∗Q). The unit
sphere cotangent bundle S∗Q of (Q, g) is fiberwise star-shaped and
of restricted contact type in (T ∗Q,ωcan = dλcan). In other words,
the boundary of the unit disk cotangent bundle D∗Q of the closed
Riemannian manifold (Q, g) is fiberwise star-shaped and of restricted
contact type.

20 Why is fiberwise radial fine, whereas in R2n one uses the fully radial vector
field (4.1.4)?

https://en.wikipedia.org/wiki/Tangent_bundle
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4.6 Techniques to find closed orbits

For convenience of the reader we enlist and summarize, follow-
ing [HZ11], some standard techniques to find closed flow lines of
(autonomous) Hamiltonian systems.

4.6.1 Via finite capacity neighborhoods

Based on the Hofer-Zehnder capacity function c0 established
in [HZ11, Ch. 3] one derives the following existence results for closed
Hamiltonian flow lines.

• Nearby existence [HZ11, Thm. 4.1, p.106]. Given a closed
regular level set S = S1 := F−1(1) ⊂ (M,ω) that admits a
(bounded) neighborhood U of finite capacity c0(U, ω) < ∞,
then the set of closed characteristics C(Srj ;ω) 6= ∅ is non-empty
for some sequence rj → 1. (There is even a dense subset of
(1− ε, 1 + ε) of such r’s.)

Idea of proof: Use freedom in choosing the Hamiltonian repre-
senting S to pick a certain ’radial’ one H = H(r).

• Existence on S itself. If the periods Tj of the canonically
parametrized21 closed characteristics Pj on Srj = F−1(rj) are
bounded, then S itself admits a periodic trajectory, too.

Idea of proof: Apply the Arzelà-Ascoli Theorem 3.2.10.

• One-parameter families [HZ11, Prop. 4.2, p.110]. Consider
a Hamiltonian loop z∗ : R→ F−1(E∗) ⊂ (M,ω), said of energy
E∗, of period T ∗ which admits precisely two Floquet multi-
pliers22 equal to 1. Application of the Poincaré continuation
method shows that z∗ belongs to a unique smooth family of
periodic trajectories zE parametrized by their energy E and
whose periods TE converge to T ∗, as E → E∗.

Idea of proof: Construct a Poincaré section map for z∗, investi-
gate how the eigenvalues of its linearization along z∗ are related
to the Floquet multipliers of z∗, implicit function theorem.

21 For each p ∈ Pj the solution z : R → F−1(rj) to ż(t) = XF ◦ z(t) with
z(0) = p traces out Pj and comes back to itself at some first time Tj > 0.

22 the eigenvalues of the linear map dφT∗ (p) : TpM → TpM
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4.6.2 Via characteristic line bundles

Consider the characteristic line bundle LS , see (4.1.3), over a closed
co-orientable hypersurface S in a symplectic manifold (M,ω). Such
S = F−1(0) is an energy surface of some Hamiltonian F defined near
S; see Exercise 4.3.2. While the set of closed characteristics C(S)
is empty in certain situations, e.g. for the Zehnder tori [Zeh87],
cf. [HZ11, §4.5], for large classes of closed co-orientable hypersurfaces
existence of closed characteristics is guaranteed.

They key concept is that of a parametrized family (Sε) of hyper-
surfaces modeled on a closed hypersurface S; defined in (4.3.5).

Nearby existence listed above fits into this framework whenever
U is of finite c0 capacity (construct the diffeomorphism Φ using the
normalized gradient flow of F , say with respect to an ω-compatible
Riemannian metric on M).

Two classes of hypersurfaces which do admit periodic trajectories
are the following.

• Bounding hypersurfaces. Suppose S ⊂ (M,ω) bounds a
compact manifold-with-boundary B and (Sε) is a parametrized
family modeled on S. Then each Sε = ΦεS is the boundary
of the symplectic manifold-with-boundary Bε = ΦεB. A key
property is monotonicity23 of the function C(ε) := c0(Bε, ω)
which holds by the (monotonicity) axiom of the Hofer-
Zehnder capacity c0. For details see [HZ11, Thm. 4.3, p.116].

• Stable hypersurfaces. A closed hypersurface S ⊂ (M,ω)
is called a stable hypersurface if it admits a rather nice
parametrized family (Sε) modeled on S, namely one for which
each linearization dΦε : TS → TSε restricts to a line bundle
isomorphism LS → LSε .
Advantage. It suffices to detect a closed characteristic on any
member Sε of the family in order to obtain a closed character-
istic of the original dynamical system (S = F−1(0), XF ) itself.
For instance, if in the nearby existence result mentioned above

23 By Lebesgue’s last theorem monotonicity of a function implies differentiabil-
ity, thus Lipschitz continuity, almost everywhere in the sense of measure theory;
for a proof see e.g. [Pug02].
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S was stable, e.g. of contact type, then C(S) 6= ∅. Since a closed
hypersurface in (R2n, ω0) admits a bounded neighborhood U of
finite24 c0 capacity, this confirms the Weinstein conjecture for
contact type hypersurfaces in (R2n, ω0); cf. Figure 4.1.

As we saw earlier in (4.4.10), a hypersurface S of contact type
is stable with respect to the parametrized family (Sε) produced
by the Liouville flow Φε := θYε . The linearized flow dθYε : LS →
LSε is a bundle isomorphism between the characteristic line
bundles of S and Sε = θYε S.

For an example of a stable hypersurface which is not of contact
type see [HZ11, p.122].

24 To see that c0(U) < ∞, pick a ball around U ⊂ R2n and apply the axioms
(monotonicity) and (non-triviality) of a symplectic capacity in [HZ11, §1.2].
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Chapter 5

Fixed energy –
Rabinowitz-Floer
homology

In 2007 Cieliebak and Frauenfelder considered a version of the sym-
plectic action functional that involves an additional real variable τ (a
Lagrange multiplier that leads to detection of periodic trajectories
of all periods) the Rabinowitz action functional1

AF : LV × R, (z, τ) 7→
∫
S1
z∗λ− τ

∫ 1

0

F (z(t)) dt

associated to autonomous Hamiltonians F : V → R on certain ex-
act2 symplectic connected manifolds (V, λ). The extra parameter τ ,
together with time independence of F , causes that a critical point
(z, τ) of AF corresponds to

• either a τ -periodic Hamiltonian loop on the level set F−1(0);

• or a constant (period τ = 0) loop sitting at q = z(0) ∈ F−1(0).

1 For an exposition of the classical free period action functional see [Abb13].
2 Exactness of a symplectic manifold implies non-compactness, an inconvenient

property which one tames by imposing additional conditions such as convexity.

183



i
i

“CBM31-ENG˙weber” — 2017/6/15 — 2:12 — page 184 — #192 i
i

i
i

i
i

184 [CAP. 5: FIXED ENERGY – RABINOWITZ-FLOER

A negative period τ < 0 tells that the Hamiltonian loop follows −XF .
Now one can exploit this fixed energy property to study dynam-

ical properties of connected closed hypersurfaces Σ in V which can
be represented as the regular level-zero set of an autonomous Hamil-
tonian F on V with compactly supported differential dF , called a
general defining Hamiltonian for Σ. A sufficient condition that Σ is
of the form F−1(0) is that Σ = ∂M bounds a compact manifold-with-
boundary M . However, not all connected bounding energy surfaces
admit closed orbits, as we saw in (4.1.2). The tool to prove existence
of periodic solutions is a version of Floer homology for the Rabinowitz
functionalAF on the extended domain LV×R. Recall from Chapter 3
that the analytic key to set up Floer homology is compactness, up to
broken trajectories, of the spaces of connecting trajectories. The ex-
tra parameter τ causes non-compactness in certain cases – giving way
to non-existence (4.1.2). A sufficient condition to fix this is to require
the bounding hypersurface Σ to be of restricted contact type, i.e.
with contact form α = λ|Σ. Consequently by (4.5.12) there is a con-
vex set F(Σ) 6= ∅ of defining Hamiltonians F whose Hamiltonian
vector field is simply equal, along Σ, to one and the same Reeb vector
field Rα – but Σ is compact. The identity XF = Rα is furthermore
extremely beneficial in the sense that it allows to utilize the analysis
carried out in Chapter 3 in the Hamiltonian setting. In fact, one
can allow slightly more general hypersurfaces; cf. Definitions 4.5.7
and 4.5.12 and Remark 4.5.13.

Assumption 5.0.1. In Chapter 5 we assume that

• (V, λ) is a convex exact symplectic manifold of bounded topol-
ogy whose associated Liouville vector field Y = Yλ generates a
complete flow on V ;3

• Σ
ι
↪→ V is a convex exact hypersurface. Let α denote the con-

tact form on Σ and M the compact manifold-with-boundary
bounded by Σ = ∂M ;

unless mentioned otherwise. According to our conventions both V
and Σ are connected. By Exercise 4.5.4 the Liouville vector field Y

3 By [CF09, Le. 1.4] bounded topology and complete flow can be achieved for
any convex exact symplectic manifold (V, λ) by modifications outside of Σ.
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is outward pointing along the boundary Σ of M . By Remark 4.5.13
we may assume whenever convenient that α = λ|Σ := ι∗λ is the
restriction of the primitive λ of the symplectic form ω := dλ = dµ.4

Differences to Chapter 3. Now the closed orbits cannot lie any-
where in the symplectic manifold (V, ω), they are constrained to a
fixed regular energy surface Σ = F−1(0) required to be a contact
manifold with respect to the restriction λ|Σ =: α; after changing
the primitive λ of ω, if necessary. (Equivalently the Liouville vector
field Y determined by dλ(Y, ·) = λ is transverse to Σ.) In exchange,
now the periods τ are free – no restriction to period 1 any more. Fur-
thermore, whatever defining Hamiltonian one picks, the non-constant
Hamiltonian loops are simultaneously Reeb loops of the contact man-
ifold (Σ, α) and their images are called closed characteristics. So
what one is really counting are geometric objects associated to the
contact manifold (Σ, α) and, as α = λ|Σ, the way it sits in the exact
symplectic manifold (V, λ). Last, not least, as defining Hamiltoni-
ans are autonomous, non-constant periodic solutions come at least in
S1-families. So the functional AF is at best Morse-Bott, not Morse.

Under Assumption 5.0.1, appropriately taking account of the, at
best, Morse-Bott nature of the Rabinowitz action functional AF ,
Cieliebak and Frauenfelder proved the following

Theorem 5.0.2 (Existence and continuation, [CF09]). Under As-
sumption 5.0.1 Floer homology for the Rabinowitz action functional
and with Z2 coefficients

HF(AF ) = HF(AF ;Z2)

is defined. If {Fs}s∈[0,1] is a smooth family of defining Hamiltonians
of convex exact hypersurfaces Σs, then HF(AF0) and HF(AF1) are
canonically isomorphic.

In particular, as the space of defining Hamiltonians is convex,
see (4.5.12), Floer homology HF(AF ) does not depend on the defining
Hamiltonian, but on the pair (Σ, V ), at most. In fact, in [CFO10,
Prop. 3.1] it is shown independence on the unbounded component of

4 If not, replace λ by µ := λ+dh where (V, µ) inherits the properties of (V, λ).
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V \Σ, that is only Σ = ∂M and its inside, the compact manifold-with-
boundary M , are relevant for HF(AF ). This justifies the following
notation where RFH(Σ) just serves to abbreviate RFH(∂M,M).

Definition 5.0.3. The Rabinowitz-Floer homology of a convex
exact hypersurface Σ ⊂ V bounding M , see Assumption 5.0.1, is the
Z2 vector space5

RFH(Σ) = RFH(∂M,M) := HF(AF ) (5.0.1)

where F ∈ F(Σ) is a defining Hamiltonian for Σ = F−1(0).

By Theorem 5.0.2 Rabinowitz-Floer homology does not change
under homotopies of convex exact hypersurfaces. An integer grading
µ of RFH exists, see (5.3.30), if Σ is simply connected and c1(V )
vanishes over π2(V ). The following deep result has major conse-
quences, e.g. it reconfirms the Weinstein conjecture for displaceable
Σ; see [CF09, Cor. 1.5] and Section 5.4.2.

Theorem 5.0.4 (Vanishing theorem, [CF09]). If Σ is displaceable,
then Rabinowitz-Floer homology RFH(Σ) = 0 vanishes.

The idea of proof is to decompose life [0, 1] into two parts [0, 1
2 ]

and [1
2 , 1], identifying S1 and [0, 1]/{0, 1}. Then push the Hamiltonian

flow of F into the first part of life using a young (support in [0, 1
2 ])

cutoff function χ and, in the second part of life, allow for elderly
(support in [ 1

2 , 1]) but time-experienced Hamiltonian perturbations

H ∈ H†. This way one gets to the perturbed Rabinowitz action AFχH
in (5.4.33) and proving Theorem 5.0.4 reduces to a smart homotopy
argument; cf. (5.4.41).

Albers and Frauenfelder [AF10a] realized that the critical points
ofAFχH are Moser’s [Mos78] leaf-wise intersection points (LIPs). They
obtained existence results for LIPs by associating (Rabinowitz) Floer
homology groups HF(AFχH ) to the perturbed action; see Section 5.4.3.

Outline. In Sections 5.1–5.3 we indicate the proof of The-
orem 5.0.2 following closely the original, excellently written, pa-
per [CF09]. We also recommend the survey [AF12b]. Section 5.4.3
is on the perturbed action functional and LIPs. In Section 5.5 very
briefly we state the relation to loop spaces.

5 To define RFH with integer coefficients is an open problem.



i
i

“CBM31-ENG˙weber” — 2017/6/15 — 2:12 — page 187 — #195 i
i

i
i

i
i

[SEC. 5.1: RABINOWITZ ACTION FUNCTIONAL AF – FREE PERIOD 187

Notation 5.0.5. Cf. Notation 4.0.3 and Notation 1.0.5. The ele-
ments of LΣ×R, in particular, the critical points of AF , are denoted
by (z, τ). Critical points (z, τ) correspond to the points of Σ via con-
stant loops zq ≡ q ∈ Σ whenever τ = 0, otherwise to τ -periodic Reeb
loops r = (rz)τ : R/τZ =: S1

τ → Σ; see (5.1.4).6 The notation is
meant to indicate that for negative τ the loop t 7→ z(t), equivalently
r, follows −XF = −Rα. Connecting trajectories are pairs “upsilon”
υ = (u, η) where u : R× S1 → V and η : R→ R.

5.1 Rabinowitz action AF – free period

Throughout let Σ
ι
↪→ V be a convex exact hypersurface in a convex

exact symplectic manifold with symplectic structure ω = dλ; see
Assumption 5.0.1. Recall from Section 4.5 that Σ = ∂M bounds
a compact manifold-with-boundary M and comes with the contact
form α = λ|Σ := ι∗λ, whereas V carries the Liouville vector field
Y t Σ determined by the identity iY ω = λ and pointing out of M .
Let us recall from Proposition 4.5.5 defining Hamiltonian for Σ.

Definition 5.1.1. A defining Hamiltonian for Σ is an au-

tonomous Hamiltonian F : V → R, negative on the inside
◦
M of

the hypersurface Σ, zero on Σ, positive outside Σ, constant outside
some compact set, and with XF = Rα along Σ, i.e. the Hamiltonian
vector field extends the Reeb vector field; cf. (4.5.12) and Figure 5.1.
Let F(Σ) be the space of Hamiltonians defining Σ.

The space of defining Hamiltonians F(Σ) 6= ∅ is non-empty and
convex by Proposition 4.5.5.

Remark 5.1.2. As the Reeb vector field Rα is non-vanishing, zero
is automatically a regular value of F ∈ F(Σ). Furthermore, the
manifold V and the compact manifold-with-boundary M bounded
by Σ are oriented by the volume form ωn. The orientation of

Σ = F−1(0) = ∂M

as boundary of M by the put-outward-normal-first convention coin-
cides with the orientation provided by the volume form α∧(dα)n−1 on

6 Reeb loops are non-constant: Reeb vector fields non-vanish by α(Rα) = 1.
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Figure 5.1: Defining Hamiltonian F for Σ = F−1(0) bounding M

Σ; see Exercise 4.5.4 which also shows that the Liouville vector field
Y points outward along Σ = ∂M . The gradient of F with respect to
any Riemannian metric points also outward.

Definition 5.1.3. For a defining Hamiltonian F ∈ F(Σ) the (un-
perturbed) Rabinowitz action functional is defined by

AF : LV × R, (z, τ) 7→
∫
S1
z∗λ− τ

∫ 1

0

F (z(t)) dt, (5.1.2)

where LV := C∞(S1, V ) is the free loop space of V .

Bringing in the real numbers τ causes that critical points (z, τ)
of AF not only correspond to integral loops of XF , as was the case
in (3.2.11), but constrains7 them to lie on energy level zero and allows
for periods τ other than 1.

Exercise 5.1.4 (Critical points are Reeb loops and points in Σ).
Show that the critical points (z, τ) of AF are the solutions τ ∈ R and
z : R→ V with z(1) = z(0) of the ODE and the constraint given by{

ż(t) = τ XF (z(t)) , t ∈ S1,

z(t) ∈ F−1(0) , t ∈ S1,

7 To find critical points of a function f = f(x, y), say on R2 for illustration,
whose domain is cut out by a constraint, say g(x, y) = c, one introduces a dummy
variable λ ∈ R called Lagrange multiplier and determines the critical points of
the function Λ(x, y, λ) = f + λ(g− c); cf. Wikipedia. In our case τ plays the role
of the Lagrange multiplier and c is zero.

https://en.wikipedia.org/wiki/Lagrange_multiplier
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or, equivalently, of {
ż(t) = τ Rα(z(t)) , t ∈ S1,

P := z(S1) ⊂ Σ .
(5.1.3)

[Hint: Show
∫ 1

0
F (z(t)) dt = 0. But z(t) = φtz(0) where φ = φF

preserves F .]

Thus a critical point (z, τ) ofAF corresponds either, in case τ > 0,
to a τ -periodic8 Reeb loop z(·/τ) on the contact manifold (Σ, α), or
in case τ < 0 to one that runs backwards following −Rα, or in case
τ = 0 to a constant loop zp ≡ p = z(0) sitting at any point p of Σ.9 A
critical point of the form (z, 0) is called a constant critical point.
By (5.1.3) the critical points of AF do not depend on the defining
Hamiltonian. In the notation (2.3.12) there is a bijection

CritAF → P±(Σ) ∪ Σ, (z, τ) 7→ (rz)τ :=


z(·/|τ |) , τ > 0,

z(0) , τ = 0,

z(·/− |τ |) , τ < 0,

(5.1.4)
onto the set P±(Σ) ∪ Σ given by (then identified with a set of pairs)

{rτ : R/τZ→ Σ | ṙτ = Rα(rτ ), τ 6= 0} ∪ Σ

' {(r, τ) ∈ C∞(R,Σ)× R | ṙ = sign (τ)Rα(r), τ ∈ Per(r)} .
(5.1.5)

Here P±(Σ) is the set of signed Reeb loops, that is the set of
(closed) forward or backward10 Reeb loops on Σ. To see that the map
' given by rτ 7→ (r, τ) is a bijection use the convention sign (0) := 0
and recall from (2.3.12) that rτ stands for a map r : R/τZ → Σ
subject to direction reversal in case τ < 0.

8 Here τ is a period, not nec. the prime period τr of the Reeb loop r = z(·/τ).
9 The appearance of constant loops in addition to Reeb loops – at first glance

seemingly an annoying irregularity – is actually the power plant of the whole
theory; cf. Remark 5.3.7 (ii).

10 Allowing also for periodic solutions of ṙ = −Rα(r) simplifies things, e.g. the
above map (5.1.4) is simply a “bijection” instead of a “2 : 1 map on non-constant
critical points”.
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Definition 5.1.5 (Simple critical points and their covers). Pick a
non-constant critical point (z, τ) of AF and consider the (embedded)
image circle P := z(S1). Suppose τ > 0, otherwise take (ẑ, τ̂). Ob-
serve that 1 ∈ Per(z : R → Σ) = τzZ where τz > 0 is the prime
period; see (2.3.10). Thus 1 = `τz for some integer ` = `(z) ≥ 1.
Rescale z and τ by

zP := zτz = z(τz·), σP := ττz, τ = `σP . (5.1.6)

The prime period of zP : R→ Σ is 1 and

cP := (zP , σP ) ∈ CritAF , zP : S1 ↪→ Σ, zP (S1) = P.

As zP : S1 ↪→ Σ is a simple loop, we call cP a simple critical point
of AF .11 The other ones with image P are obtained by subjecting
zP to time shifts leading to an S1-family denoted by S1 ∗ cP or ScP .
As σP divides the speed factor τ of z, we call it the prime speed of
the critical points with image P .

The k-fold covers of a simple critical point cP defined by

ckP :=
(
zkP , kσP

)
, zkP := zP (k·) k ∈ Z, (5.1.7)

are critical points of AF as well and, up to the S1-action by time
shift, there are no other critical points whose image is P . Observe
that z0

P ≡ zP (0) is constant.

Exercise 5.1.6. Check the assertions in Definition 5.1.5. Show that
σP , modulo time shift also zP , is independent of (z, τ) ∈ CritAF as
long as z(0) ∈ P .
[Hints: Let (y, χ) also be a critical point with χ > 0 and y(S1) = P .
Check that both paths z1/τ and y1/χ are Reeb solutions and their
prime periods are ττz and χτy, respectively. Hence ττz = χτy =: σP .
But now the paths zτz and yτχ satisfy the same ODE ẋ = σPRα(x),
so they are equal up to time shift.]

Exercise 5.1.7 (Simple Reeb loop associated to (z, τ) via time of
first return). Show the assertions of Exercise 5.1.6 as follows. Pick

11 Let us call ĉP := (zP (−·),−σP ) the corresponding backward simple
critical point.
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(z, τ) ∈ CritAF with τ 6= 0 and set P := z(S1). Now set p := z(0) ∈
P and apply the Reeb flow ϑt to get the Reeb path r(t) := ϑtp for
t ∈ R whose image is P . (Hence the images P = z(S1) of non-
constant critical points (z, τ) are closed characteristics.) Let TP > 0
be the time of first return. Check that it does not depend on the
initial point in P , thereby justifying the notation TP , as opposed to
Tp. Since ϑ is a one-parameter group TP is a period of r and as it is
the smallest positive one TP = τr is the prime period of r. Thus to
(z, τ) belongs the simple Reeb loop

rP : R/TPZ→ Σ, t 7→ ϑtp, p = z(0), (5.1.8)

with diffeomorphic image P = z(S1). Show the following

a) τ = kTP for some integer k 6= 0.

b) TP = σP is the prime speed, so (rTPP , TP ) = (zP , σP ) =: cP .

[Hints: a) Show that r = z1/τ : R → Σ and observe that τ ∈
Per(z1/τ ). b) The pair (rTPP , TP ) is a critical point and rTPP : S1 ↪→ Σ
is an embedding with image P . Hence TP = `σP for some ` ∈ N
and zP := rTPP (·/`) is, in particular, of period 1. But zP (1) = zP (0),

equivalently rTPP (1/`) = rTPP (0), implies ` = 1.]

Exercise 5.1.8 (Action spectrum). Show that the action value

AF (ckP ) = AF (zkP , kσP ) = kσP , AF (z, 0) = 0, (5.1.9)

of the k-fold cover, k 6= 0, of a simple critical point cP is given
by k times the prime speed σP . So by Exercise 5.1.7 the action
spectrum S(AF ), i.e. the set of critical values of AF , consists of all
integer multiples of the prime periods of the Reeb loops, in symbols
S(AF ) = ZS(Σ). The set S(Σ) of periods of the simple Reeb loops
is the prime period spectrum of the contact manifold Σ.

Remark 5.1.9 (Critical towers). By (5.1.7) any simple critical point
of AF , that is a pair of the form cP = (zP , σP ), gives rise to a whole
critical point tower cZP :=

(
zkP , kσP

)
k∈Z. The circle acts on the k-fold

cover ckP of cP by time shifts

T ∗ ckP :=
(
T ∗ zkP , kσP

)
:=
(
zkP (T + ·), kσP

)
, T ∈ S1 = R/Z.
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Figure 5.2: µ <∞ critical circle towers: CritAF ∼= Σ ∪ SZ
1 ∪ . . . SZ

µ

Thus point towers come, at least, as critical circle towers denoted by
CZ
P :=

(
CkP
)
k∈Z where

CkP := SkP × {kσP }, SkP := S1 ∗ zkP :=
{
T ∗ zkP

}
T∈S1 .

Set

SZ
P :=

(
SkP
)
k∈Z .

So the action functional AF can be Morse-Bott, at best, but not
Morse. The set of simple critical points cP = (zP , σP ) corresponds
to the set C(Σ) of closed characteristics P with distinguished point
p ∈ P : a) Associate to zP the embedded circle P := zP (S1) with
distinguished point p := zP (0). Indeed P is a Reeb orbit, thus a
closed characteristic, by Exercise 5.1.7. b) Vice versa, given P and
p ∈ P , consider the Reeb path r(t) := ϑtp. Its prime period is denoted
by τr. Then (zP , σP ) := (rτr , τr) is a simple critical point ofAF which
gets mapped back to P and p by a). That the map in a) followed
by the one in b) is the identity as well holds by Exercise 5.1.7 b).
Observe that, in general, the simple critical points can appear in
families larger than circles.
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5.1.1 Transverse non-degeneracy

Recall that a function f is called a Morse-Bott function if, firstly,
its critical set C := Critf is a submanifold (whose components might
be of different dimensions) and, secondly, the tangent space TpC at
every point p of C is precisely the kernel of the Hessian Hesspf of
f at p. In view of invariance of the functional AF under the time
shift circle action, non-degeneracy is achievable at most in directions
transverse to the circles in LV generated by the S1-action.

Theorem 5.1.10 (Transverse non-degeneracy, [CF09]). There is a
residual 12 subset Freg of the complete metric space F := C∞0′ (V )
of smooth functions on V with compactly supported differential such
that the following is true. For every f ∈ Freg the Rabinowitz action
functional Af is Morse-Bott and its critical set consists of f−1(0)
together with a disjoint union of circles.

Proof. See [CF09, Thm. B.1, p.298]. One uses Thom-Smale transver-
sality, see Section 3.3.4, with the additional difficulty that the univer-
sal section cannot be surjective due to the unavoidable critical circles
arising by time shifting non-constant critical points.

Definition 5.1.11. A contact type hypersurface is called non-
degenerate if all Reeb loops r are transverse non-degenerate in
the sense that the linearized Reeb flow dϑT (p) : ξp → ξp at p = r(0),
where ξp := kerα(p) and T > 0 is the prime period of r, does not
have 1 amongst its eigenvalues.

Consider from now on the situation of Assumption 5.0.1, in par-
ticular, suppose the bounding hypersurface Σ ⊂ (V, λ) is of restricted
contact type. Fix a defining Hamiltonian F ∈ F(Σ).

Exercise 5.1.12. Check that F ∈ Freg iff Σ is non-degenerate.
[Hint: Cf. Exercise 3.2.13.]

Exercise 5.1.13. a) Show there is a convex closed neighborhood UF
of F in F = C∞0′ (V ) such that the zero set f−1(0) of any f ∈ UF is a
convex exact hypersurface of (V, λ). In fact, it is of restricted contact
type, if Σ is. b) Check UFreg := UF ∩ Freg is residual in UF .

12 cf. Section 3.2.4
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[Hint: a) Given the by dλ(Y, ·) = λ globally determined Liouville
vector field Y , contact type of Σ is equivalent to transversality Y t Σ.
But transversality Y t Σ̃ survives, where Σ̃ := f−1(0), whenever f
is sufficiently close to F in F . Define α̃ := ι̃∗λ; see (4.4.6).]

Remark 5.1.14. Given regular Hamiltonians F0, F1 ∈ UFreg near the
defining Hamiltonian F of Σ, by Exercise 5.1.13 a) convex combina-
tion provides a family

Σs := Fs
−1(0), Fs := (1− s)F0 + sF1, s ∈ [0, 1], (5.1.10)

of bounding restricted contact type hypersurfaces of (V, λ). While
the endpoints of the family are non-degenerate, there is no reason
that all members Σs be.

Remark 5.1.15 (CritAF consists of µ <∞ circle towers and Σ). If
Σ is non-degenerate, i.e. F ∈ Freg, then C(Σ) consists of finitely many
closed characteristics P1, . . . , Pµ since Σ is compact. The embedded
circles Pi ↪→ Σ correspond, up to fixing a point pi ∈ Pi, likewise
modulo time shifts, to simple Reeb loops

ri := rPi = ϑ·pi : R/TiZ→ Σ, Ti := TPi ,

see (5.1.8), so by Exercise 5.1.7 b) to simple critical points

ci := (zi, τi) := (rTii , Ti) = (zPi , σPi) ∈ CritAF , i = 1, . . . , µ.
(5.1.11)

Observe that τi := Ti = σPi is the prime period (time of first return)
of the Reeb loop ri and simultaneously the prime speed of the simple
critical point zi = rTii . Time shifting ri and zi moves the initial
point pi = ri(0) = zi(0) around the circle Pi. Let cki be the k-fold
cover (5.1.7) of ci. Let Ski := SkPi = S1 ∗ zki , so

Cki := CkPi = Ski × {kτi}, k ∈ Z∗ := Z \ {0}, (5.1.12)

are the corresponding circles in LΣ×R arising by time shift; cf. Re-
mark 5.1.9. The components of the critical set C := CritAF are the
circles Cki along which the action is constantly kτi and the compo-
nent C0 = Σ × {0} of constant loops in Σ where the action is zero;
cf. (5.3.18). Note that each critical component is compact and that by
non-degeneracy only finitely many of them lie on action levels inside
any given compact interval [a, b]. This is illustrated by Figure 5.2.
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5.2 Upward gradient flow

Pick a defining Hamiltonian F ∈ F(Σ). So F is constant, i.e. XF = 0,
outside a compact subset K of V . In order to turn the differential
dAF of the Rabinowitz action functional into a gradient, we need
to choose a metric on LV × R. The fact that V is non-compact, as
opposed to the symplectic manifold in Section 3.4.1 on fixed-period
Floer homology, causes serious difficulties when it comes to prove
compactness of moduli spaces of connecting trajectories υ = (u, η),
due to the lack of an apriori C0 bound; cf. Theorem 5.3.6. The
key idea to obtain nevertheless uniform C0 bounds for connecting
trajectories is to choose a family J = (Jt)t∈S1 of ω-compatible almost
complex structures Jt which are cylindrical, see Definition 4.5.11,
along the cylindrical ends N × R+ of (V, λ).

Remark 5.2.1 (XF = 0 on cylindrical ends – causes uniform C0

bound for u’s). Recall from Exercise 4.5.10 that N = ∂Mk is chosen
as boundary of one of the members of the exhaustion of V = ∪kMk.
Choose k larger, if necessary, such that Mk contains K. This guar-
antees that XF vanishes on the cylindrical ends.

For (ξi, τi) ∈ T(z,τ)(LV × R) an L2 metric on LV × R is defined
by

〈(ξ1, τ1), (ξ2, τ2)〉J :=

∫ 1

0

ω (ξ1(t), Jt(z(t))ξ2(t)) dt+ τ1τ2. (5.2.13)

Exercise 5.2.2. The gradient of AF with respect to the L2 metric is

gradAF (z, τ) =

(
−Jt(z) (∂tz − τXF (z))

−
∫ 1

0
F (z) dt

)
. (5.2.14)

So for the norm-square of the gradient one gets∥∥gradAF (z, τ)
∥∥2

=
〈
(gradAF (z, τ), gradAF (z, τ)

〉
J

= ‖∂tz − τXF (z)‖22 + mean2(F ◦ z)

≤
(
‖∂tz − τXF (z)‖2 + |mean(F ◦ z)|

)2

(5.2.15)
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where13 we used that Jt is compatible with ω and where

mean(F ◦ z) :=

∫ 1

0

F (z(t)) dt.

The upward gradient trajectories of gradAF are the solutions
denoted by the letter “upsilon”

υ = (u, η) ∈ C∞(R× S1, V )× C∞(R,R)

of the elliptic PDE given by

∂sυ = gradAF (υ), υ = (u, η), (5.2.16)

or, equivalently, the zeroes of a section, cf. (3.3.34), namely

FF (u, η) :=

(
∂su+ Jt(u) (∂tu− ηXF (u))

∂sη +
∫ 1

0
F (u) dt

)
= 0. (5.2.17)

Remark 5.2.3 (Homology – upward vs. downward gradient flow).
The advantage of using the upward gradient equation is that on cylin-
drical ends, where XF = 0, component one of (5.2.17) becomes the
well known J-holomorphic curve equation14 in which case to obtain
an apriori C0 bound for u one can simply refer to the literature;
see [CF09, p.268, pf. of Thm. 3.1]. In order to define neverthe-
less homology, as opposed to cohomology, one must ensure that the
action decreases along the boundary operator ∂. This leads to the
non-standard order in the coefficients n(c−, c+)c− of ∂c+ in (5.3.23)
below. In other words, to define an action decreasing boundary op-
erator ∂c+, one can either

(standard) count downward flow lines emanating from c+ at time −∞ or

(present) count upward flow lines that end at c+ at time +∞.

Figure 5.3 illustrates15 the downward count of upward flows.

13 Here ‖ξ‖22 :=
∫ 1
0 ω (ξ(t), Jt(z(t))ξ(t)) dt for smooth vector fields ξ along z.

14 The downward gradient leads to the anti J-holomorphic curve equation ∂su−
J(u)∂tu = 0.

15 Be aware that ∂c+ will not count connecting flow lines u/R := ũ of gradAF ,
but connecting cascade flow lines Γ =

(
γ0
−, υ̃

1, γ1, . . . , υ̃`, γ`+
)
; cf. Figure 5.4. The

cascades are unparametrized curves υj/R := υ̃j = (ũj , τ̃ j), the γj
(±)

are (semi-

)finite time, thus parametrized, Morse gradient trajectories along components of
the Morse-Bott manifold C := CritAF .
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Figure 5.3: Downward count of upward flows Γ meeting at c+

5.3 Rabinowitz-Floer chain complex

Consider a convex exact hypersurface Σ ⊂ (V, λ), say of restricted
contact type, in a convex exact symplectic manifold, as in Assump-
tion 5.0.1. Fix a family J = (Jt)t∈S1 of almost complex structures
Jt compatible with the symplectic structure ω := dλ on V and cylin-
drical along the cylindrical ends; see Definition 4.5.11. Choose the
associated L2 inner product on LV × R given by (5.2.13).

There are two goals in Section 5.3. Firstly, to associate to a defin-
ing Hamiltonian F ∈ F(Σ) of Σ Floer homology groups HF(AF ) with
Z2 coefficients. Secondly, to show that these are independent, up to
natural isomorphism, not only on the choice of defining Hamiltonian
F , but also under convex exact homotopies of the hypersurface Σ
itself. Cieliebak and Frauenfelder [CF09] defined

RFH(Σ, V ) := HF(AF )

called Rabinowitz-Floer homology of the convex exact hypersur-
face Σ = ∂M which, by assumption, bounds a compact manifold-
with-boundary, say M .

To construct Floer homology one usually slightly perturbs rele-
vant quantities in a first step, see Section 3.3.4, in order to get to a
Morse situation, so one can use the then discrete critical points them-
selves as generators of the Floer chain groups. Here this is impossible:
Since F , being defining for Σ, is necessarily time-independent the Ra-
binowitz action functional (z, τ) 7→ AF (z, τ) will always be invariant
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under the S1-action on LV ×R given by time shifting the loop com-
ponent z. While AF is therefore never Morse, it is of the simplest
Morse-Bott type for generic, called regular, defining Hamiltonian F
by Theorem 5.1.10. For F ∈ Freg the critical set is the union of
C0
∼= Σ and µ critical point towers

C := CritAF = C0 ∪̇
⋃̇
k∈Z∗

Ck1 . . . ∪̇
⋃̇
k∈Z∗

Ckµ

⊂ LΣ× R
(5.3.18)

as illustrated by Figure 5.2. The floors are compact connected man-
ifolds, namely the ground floor C0

∼= Σ together with the upper
(k > 0) and lower (k < 0) circle floors Cki

∼= S1 given by (5.1.12).
Throughout it is convenient to identify constant loops in Σ (period
and action zero) with the points of the compact hypersurface Σ itself.
Remark 5.1.15 describes how each closed characteristic together with
a chosen point pi ∈ Pi ⊂ Σ corresponds to a simple critical point
zi of AF with zi(0) = pi whose prime speed σi is the prime period
τi := τri of the Reeb loop ri that parametrizes Pi and is determined
by the initial condition ri(0) = pi; see also Remark 5.1.15.

Remark 5.3.1 (Critical set). The restrictions AF |Cki ≡ kτi and

AF |C0 ≡ 0 of the functional to components are constant by Exer-
cise 5.1.8. So it makes sense to speak of the action value of a critical
component. As i = 1, . . . , µ only runs through a finite set, caused
by compactness and transverse non-degeneracy of Σ, there can only
be finitely many critical components with actions in a given bounded
interval [a, b]; see Figure 5.2. In other words, the set of critical points

C [a,b] := Crit[a,b]AF := {a ≤ AF ≤ b} ∩ CritAF

whose actions lie in an interval [a, b] form a closed submanifold
C [a,b] ⊂ LΣ × R diffeomorphic to a finite union of embedded cir-
cles whenever 0 /∈ [a, b]; otherwise, there is in addition one connected
component diffeomorphic to Σ.

Perturbing F amounts to perturbing Σ = F−1(0), of course. How-
ever, by Exercise 5.1.13 a), small perturbations will not leave the class
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of convex exact hypersurfaces and even the restricted contact type
property of Σ will be preserved.16 So from now on

• we assume that Σ in Assumption 5.0.1 is non-degenerate17

• with defining Hamiltonian F ∈ F(Σ)∩Freg; cf. Exc. 5.1.13 b).

Given such Σ = F−1(0), the goal is to find suitable auxiliary data
(h, g) that allows to define Floer homology18 and has the property
that different choices lead to naturally isomorphic homology groups.
A suitable candidate is [Fra04], namely

Frauenfelder’s implementation of Morse-Bott theory by cascades

which requires to fix a Morse-Smale pair (h, g) consisting of

• a Morse function h : C → R and

• a Riemannian metric g on the critical manifold C = CritAF .

The critical set Crith ⊂ CritAF of h is not necessarily finite, but

Crit[a,b]h := C [a,b] ∩ Crith = Crith|C[a,b] (5.3.19)

is finite: The manifold C [a,b] is closed, cf. Rmk. 5.3.1, and h is Morse.

Chain groups

For F ∈ F(Σ) ∩ Freg the Floer chain group CF(AF , h) is defined as
the vector space over Z2 that consists of all formal sums

x =
∑

c∈Crith

xcc

of critical points of h such that the Z2-coefficients xc = xc(x) in such
a formal sum x satisfy the upward finiteness condition∣∣∣{c ∈ Crith | xc(x) 6= 0 and AF (c) ≥ κ

}∣∣∣ <∞, ∀κ ∈ R. (5.3.20)

16 The contact condition is open; cf. Exercise 4.2.2 (b).
17 Assuming non-degeneracy is justified by invariance of RFH under smooth

variations of Σ up to natural isomorphism; see Section 5.3.2 and Remark 5.1.14.
18 meaning that the chain groups should be generated by some discrete critical

set and the boundary should count isolated flow lines connecting critical points
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Figure 5.4: Cascade flow Γ =
(
γ0
−, υ̃

1, γ1, υ̃2, γ2
+

)
∈Mc−c+

In words, given a formal sum x, one requires finiteness of the number
of non-zero coefficients xc(x) above any given action value κ.

Definition 5.3.2. The Floer chain group CF(AF , h) is the Z2-vector
space generated by upward finite formal sums x of critical points
of the Morse function h on the critical set C of the Rabinowitz action
functional AF .

Connecting cascade trajectories – upward flows

Given F ∈ F(Σ)∩Freg, on the critical manifold C := CritAF (whose
components are circles and one component is given by the closed hy-
persurface Σ according to Theorem 5.1.10) consider the Morse gradi-
ent flow generated by the Morse function h : C → R and the Rieman-
nian metric g on C through the ODE γ̇ = ∇gh(γ) for smooth maps
γ : R → C. Given two critical points c± = (z±, τ±) ∈ Crith ⊂ C,
a connecting upward trajectory with cascades, also called an
upward connecting cascade trajectory, is a tuple of the form

Γ =
(
γ0
−, υ̃

1, γ1, . . . , υ̃`−1, γ`−1, υ̃`, γ`+
)

where where ` ∈ N0 is the number of cascades υ̃j and

γ̇j = ∇h(γj), ∂sυ
j = gradAF (υj), υ̃j = [υj : R→ LV × R].
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The notation υ̃ = [v] = ”{υ}/R” indicates unparametrized flow lines
or, equivalently, flow trajectories that only differ by shifting the s
variable are considered equivalent. See Figure 5.4 for a connecting
trajectory with ` = 2 cascades. Actually each intermediate Morse
trajectory comes with a finite time T j ≥ 0 and is defined on a finite
time interval, namely

γj : [0, T j ]→ C.

In contrast, the two ends γ0
− : (−∞, 0]→ C and γ`+ : [0,∞)→ C are

semi-infinite Morse trajectories. Neither of the Morse trajectories
γj(±) is invariant under the time-s shift R action.

More precisely, the tuple Γ starts with a semi-infinite Morse tra-
jectory γ0

− backward asymptotic to the given critical point c− ∈ Crith
and whose position at time zero, namely γ0

−(0), is the backward
asymptote υ1

− of some gradAF flow trajectory υ1 ∈ υ̃1 = [υ1] de-
fined on the whole real line, see (5.2.17), where

υj∓ = lim
s→∓∞

υj(s) ∈ C, υj ∈ [υj ], υj = (uj , ηj) : R→ LV × R.
(5.3.21)

The other, positive, asymptote υ1
+ ∈ C provides the initial point

γ1(0) of a finite time Morse trajectory γ1 : [0, T 1] → C whose end-
point γ1(T 1) is a backward asymptote υ2

−. Continuing this way one
reaches the final piece, namely, the semi-infinite Morse trajectory
γ`+ : [0,∞) → C that starts at the previous backward asymptote
point υ`+ at time 0 and is itself forward asymptotic to the second
given critical point c+. The unparametrized Morse-Bott flows υ̃j are
called cascades.

The moduli space of connecting cascade trajectories

Mc−c+ =Mc−c+(AF , h, J, g) (5.3.22)

consists of all cascade trajectories Γ connecting c− and c+. The
following are non-trivial – even in finite dimension – although well
known: See [Fra04, App. A] and [CF09, App. A]. Firstly, for generic
J and g these moduli spaces are smooth manifolds. Secondly, it is
a consequence of the Compactness Theorem 5.3.6 below that the 0-
dimensional part M0

c−c+ of Mc−c+ is compact, so a finite set.
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Boundary operator and Floer homology

Pick F ∈ F(Σ)∩Freg. As for generic J and g, the 0-dimensional part
M0

c−c+ of the space of connecting trajectories Mc−c+(AF , h, J, g) is
compact, hence a finite set, the number of elements modulo two

n(c−, c+) := #2M0
c−c+

is well defined. Then the Floer boundary operator

∂ : CF(AF , h)→ CF(AF , h)

is defined as the linear extension of

∂c+ :=
∑

c−∈Crith

n(c−, c+)c− (5.3.23)

for c+ ∈ Crith, as illustrated by Figure 5.3; cf. also Remark 5.2.3.

Exercise 5.3.3. The formal sum in the definition of ∂ satisfies
the finiteness condition (5.3.20). [Hint: The action non-decreases
along cascade trajectories, (5.3.19), Exercise 5.1.8, Arzelà-Ascoli The-
orem 3.2.10.]

The boundary operator property ∂2 = 0 follows by standard glu-
ing and compactness arguments, compare Proposition 3.4.3, once one
has the Compactness Theorem 5.3.6 for the 1-dimensional part of
moduli space, together with finiteness of the number |Crit[a,b]h| =
|Crith|C[a,b] | of critical points of the Morse function h in any finite
action interval [a, b] or, equivalently, on the closed manifold C [a,b]. By
definition Floer homology of the Rabinowitz action functional
AF is the homology of this chain complex, namely

HF(AF ) :=
ker ∂

im ∂
, F ∈ F(Σ) ∩ Freg. (5.3.24)

We already dropped (h, J, g) from the notation since HF(AF ) does
not depend on that choice, up to canonical isomorphism, as follows
by the standard continuation techniques detailled in Section 3.4.3.
Via continuation one also shows independence of the regular defining
Hamiltonian F ∈ F(Σ) ∩ Freg.
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Rabinowitz-Floer homology of a convex exact hypersurface

Remark 5.3.4. Given Σ as in Assumption 5.0.1, observe the fol-
lowing: There is no regular defining Hamiltonian F ∈ F(Σ) iff Σ
itself is already degenerate; see Exercise 5.1.12. Hence fixing non-
regularity of F is equivalent to perturbing Σ. In practice pick F0

in the dense subset UFreg := UF ∩ Freg of the small open neighbor-

hood UF of F in F provided by Exercise 5.1.13 b). In particular, the
zero set Σ0 := F−1

0 (0) is a non-degenerate convex exact hypersurface
nearby Σ. The Floer homology of AF0 is then defined by (5.3.24). For
any two such choices F0 and F1 there is the standard continuation
isomorphism on homology.

Rabinowitz-Floer homology of a convex exact hypersurface
Σ ⊂ (V, λ) with defining Hamiltonian F ∈ F(Σ) is defined by

RFH(Σ) := HF(AF0), F0 ∈ UFreg. (5.3.25)

By continuation RFH(Σ) does not depend on the choice of F0; cf.
Remark 5.1.14. Observe that F0 lies in Freg and in F(Σ0): It is defin-
ing for the non-degenerate convex exact hypersurface Σ0 := F−1

1 (0)
nearby Σ. For S1-equivariant Rabinowitz-Floer homology see [FS16].

5.3.1 Compactness of moduli spaces

Definition and property ∂2 = 0 of the boundary operator ∂ both
hinge on compactness properties of the moduli spaces of connecting
trajectories with cascades. Recall that a connecting cascade trajec-
tory consists of (semi-)finite Morse gradient trajectories19 γj along
the critical set C of AF and the cascades υ̃j themselves. Cascades
are, modulo s-shift, connecting trajectories υ = (u, η) of the gradient
gradAF in LV × R between two critical sets.20 While compactness
up to broken trajectories for Morse trajectories can even be handled
within finite dimensional dynamical systems, see e.g. [Web], in the
case of cascades compactness of the loop space component u is also

19 in general not connecting ones: Morse trajectories have finite life time, except
the initial and ending one which are semi-infinite, also called semi-connecting.

20 Connecting trajectories necessarily live on the infinite domain (R× S1)× R
and their moduli spaces are subject to division by the free s-shift R-action.
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standard, but this is not so for the Lagrange multiplier component
η. Let us detail this: To prove compactness up to broken trajectories
of the set of gradAF trajectories υ = (u, η) that are subject to a
uniform action bound

a ≤ AF (υ(s)) ≤ b (5.3.26)

the following apriori bounds are sufficient: Namely,

(i) a uniform C0 bound on u;

(ii) a uniform C0 bound on η;

(iii) a uniform C0 bound on ∂su (thus on ∂tu).

(i) is fine due to our choice of cylindrical almost complex structures;
see Remark 5.2.3. (ii) was new and required new techniques when
established in [CF09, §3.1]. We shall outline their argument below.
(iii) follows from the exactness assumption of the symplectic form ω =
dλ via standard bubbling-off analysis as indicated in Section 3.4.1.

Exercise 5.3.5. Doesn’t one need a uniform C0 bound on the deriva-
tive η′ as well? And why is the C0 bound requirement (iii) for the
derivative ∂su not listed directly after condition (i) for u itself?

Let us state the compactness theorem in a rather general form
that will serve simultaneously

• the continuation problem (s-dependent Hamiltonians appear);

• the proof of the Vanishing Theorem 5.0.4 (rescalings χ enter).

The following compactness theorem for families requires three C0

bounds as in (i–iii) which are also uniform in the family parameters.

Theorem 5.3.6 (Cascade compactness). Suppose that F : [0, 1] ×
V → R is a smooth function such that each Hamiltonian Fσ := F (σ, ·)
defines a convex exact hypersurface Σσ and χ : [0, 1]×S1 → [0,∞) is
a smooth function such that each χσ := χ(σ, ·) integrates to one. Let
ε > 0 and c < ∞ be constants as provided by [CF09, Prop. 3.4],21

21 [CF09, Prop. 3.4] generalizes Proposition 5.3.8 to families (Fσ ,Σσ , χσ).
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and suppose that the following inequality holds(
c+
‖F‖∞
ε2

)
· (‖∂σF‖∞ + ‖∂σχ‖∞ · ‖F‖∞) ≤ 1

8
. (5.3.27)

Then the following is true. Assume that υν = (uν , ην) ∈ C∞(R ×
S1, V ) × C∞(R,R) is a sequence of trajectories of the s-dependent
gradient gradAχsFs and there are bounds a, b ∈ R such that

a ≤ lim
s→−∞

AχsFs(υν(s))

and
lim
s→∞

AχsFs(υν(s)) ≤ b.

Then there is a subsequence, still denoted υν , and a trajectory υ of
gradAχsFs such that the subsequence υν = (uν , ην) converges to the
trajectory υ = (u, η) in the C∞loc-topology.

Proof. [CF09, Thm. 3.6].

Uniform bounds for multiplier paths η – contact type enters

For simplicity we only consider the case of trajectories of the s-
independent gradient gradAF . Moreover, we only sketch proofs; for
details see [CF09, §3.1].

Remark 5.3.7 (Contact type of Σ enters). (i) So far the geometric
condition on Σ to be not just any bounding hypersurface in (V, λ),
but a convex exact one,22 has not been used. That will change now
in order to obtain a uniform C0 bound for the Lagrange multiplier
components η of all trajectories υ = (u, η) subject to the same action
bounds a and b as in (5.3.26).

(ii) Some condition on the energy surface Σ is indeed necessary,
given that there are energy surface counterexamples Σ′ in R2n to the
Hamiltonian Seifert conjecture; cf. (4.1.2). But even in the absence of
closed characteristics the constant loops corresponding to the points
of Σ are still critical points of AF thereby giving rise to nontriviality
RFH(Σ′) ' H(Σ;Z2) 6= 0; cf. Exercise 5.3.17 and [CF09, Pf. of
Cor. 1.5]. But this contradicts the Vanishing Theorem 5.0.4 since in
R2n any compact subset is displaceable.

22 We assume contact type for Σ, if not, add an exact form to λ; cf. Exc. 4.5.14.
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Proposition 5.3.8. Let F ∈ F(Σ) be a defining Hamiltonian. Then
there are constants ε > 0 and c < ∞ such that for pairs (z, τ) ∈
LV × R it holds∥∥gradAF (z, τ)

∥∥ ≤ ε ⇒ |τ | ≤ c
(
|AF (z, τ)|+ 1

)
.

The proposition tells that near critical points the multiplier part
of a pair (z, τ) ∈ LV × R is bounded in terms of the pair action. So
if (z, τ) is one element of a whole trajectory (u, η) : R → LV × R
subject to the bound (5.3.26), thus

|AF (u(s), η(s))| ≤ κ := max{|a|, |b|}, s ∈ R, (5.3.28)

then the proposition provides a uniform bound on |η(s)| for s near
±∞. So it remains to deal with |η| along compact intervals in R, one
compact interval for each trajectory of the, generally non-compact,
family under consideration.

Corollary 5.3.9 (Uniform η bound). Let υ = (u, η) ∈ C∞(R ×
S1, V )×C∞(R,R) be a trajectory of gradAF along which the action
remains in a compact interval, say in [a, b]; cf. (5.3.26). Then the
L∞-norm of η is bounded uniformly in terms of a constant c that
depends on a, b, but not on υ.

Sketch of proof of Proposition 5.3.8. (For details see [CF09,
Prop. 3.2].) The key input, due to Σ being both an energy
surface F−1(0) and of contact type with respect to α, is the coupling
XF = Rα of Hamiltonian and Reeb dynamics along Σ; see (4.5.12).
To illustrate the effect of the coupling note that for a critical point
(z, τ) of AF

AF (z, τ) =

∫ 1

0

(
λ|z(ż)︸ ︷︷ ︸

α(τRα)≡τ

−τ F ◦ z︸ ︷︷ ︸
0

)
dt = τ. (5.3.29)

This actually solves Exercise 5.1.8. Let’s see how much of this identity
survives for a general pair (u, η) whose only restriction is that the loop
part u must stay in a small neighborhood Uδ of Σ.

I. There are constants δ > 0 and cδ < ∞ with the following signif-
icance. For every pair (z, τ) ∈ LV × R whose loop part z remains
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δ-near to Σ in the sense that z(S1) ⊂ Uδ := F−1(−δ, δ) the Lagrange
multiplier satisfies the estimate

|τ | ≤ 2
∣∣AF (z, τ)

∣∣+ cδ
∥∥gradAF (z, τ)

∥∥ .
The key step is to obtain the two constants. By compactness of

Σ = F−1(0) and zero being a regular value of F the closure of Uδ is
compact for sufficiently small δ > 0. Now choose δ > 0 smaller, if
necessary, such that

λp (XF (p)) ≥ 1
2 + δ, p ∈ Uδ.

Such δ exists since λ(XF ) = α(Rα) ≡ 1 along Σ = F−1(0): To
see this use contact type, see (4.5.12), and the definition of Rα, see
Exercise 4.2.2 (c). The constant cδ := 2‖λ|Uδ‖∞ is finite since Uδ is of
compact closure. The desired estimate is a rather mild generalization
of (5.3.29), see [CF09, p.264].

II. For each δ > 0 there is a constant ε = ε(δ) > 0 such that if (z, τ)
satisfies ‖gradAF (z, τ)‖ ≤ ε, then the loop part z remains in Uδ.

To show II one first analyses z in two cases, in each case forgetting
one of the two components of ‖gradAF (z, τ)‖; see (5.2.15). Excluding
both cases yields II.

Case 1: There are times t0, t1 ∈ S1 with |F (z(t0))| ≥ δ and
|F (z(t1))| ≤ δ/2. In this case by periodicity of z and continuity
of F there are two points, again denoted by t0, t1 ∈ S1, with t0 < t1
and |F ◦ z(t)| ∈ [ δ2 , δ] on [t0, t1]. Set µ := maxx∈Uδ,t∈S1 |∇

JtF (x)|gJt
and forget component two in (5.2.15) to get23∥∥gradAF (z, τ)

∥∥ ≥ ‖ż − τXF (z)‖2

≥
∫ t1

t0

|ż − τXF (z)| dt

≥ . . .

≥ δ

2µ
.

For the omitted steps, using e.g. dF (XF ) = 0, see [CF09, p.265].

23 By Cauchy-Schwarz ‖f‖2 = ‖f‖2‖1‖1 ≥ 〈f, 1〉L2 = ‖f‖1 for f ∈ C∞(S1,R).
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Case 2: The loop z lives outside Uδ/2. In this case forget component
one in (5.2.15) to obtain the estimate24

∥∥gradAF (z, τ)
∥∥ ≥ ∣∣∣∫ 1

0

F (z(t)) dt
∣∣∣ =

∫ 1

0

|F (z(t))|︸ ︷︷ ︸
≥δ/2

dt ≥ δ

2
.

To prove Step II pick any δ > 0, set

ε :=
δ

4 max{1, µ}
< min{δ

2
,
δ

2µ
},

and assume (z, τ) ∈ LV × R satisfies ‖gradAF (z, τ)‖ ≤ ε. Neither
case 1 nor 2 applies to z. So z hits Uδ/2 (¬ case 2), but then it cannot
leave Uδ (¬ case 1).

III. We prove the proposition.

Choose the constants δ and ε = ε(δ) of Steps I and II, respectively,
and set c := max{2, cδε}. Suppose ‖gradAF (z, τ)‖ ≤ ε. Then by
Step II the loop part z remains in Uδ, hence Step I applies and yields

|τ | ≤ 2
∣∣AF (z, τ)

∣∣+ cδ
∥∥gradAF (z, τ)

∥∥
≤ c

∣∣AF (z, τ)
∣∣+ cδε.

This concludes the outline of the proof of Proposition 5.3.8.

Proof of Corollary 5.3.9 (Trajectories). Pick ε > 0 as in Proposi-
tion 5.3.8.25 Set us := u(s, ·) and ηs := η(s). The key tool is the
quantity given for σ ∈ R by

Tσ := inf{s ≥ 0 | ‖gradAF ((u, η)σ+s)‖ < ε}, (u, η)s := (us, ηs).

This quantity helps twice. Firstly, given a trajectory (u, η) and a
time σ element (u, η)σ of gradient norm ≥ ε (otherwise Tσ = 0), the
function Tσ measures for how long the gradient norm will remain ≥ ε,
so for how long the trajectory will not get too close to a critical point.

24 The identity holds, as F (z(t)) is non-zero, so will not change sign; cf. (5.4.43).
25 By Step II above ε = ε(δ) given any sufficiently small constant δ > 0.



i
i

“CBM31-ENG˙weber” — 2017/6/15 — 2:12 — page 209 — #217 i
i

i
i

i
i

[SEC. 5.3: RABINOWITZ-FLOER CHAIN COMPLEX 209

By assumption (5.3.26) we get the estimate

b− a ≥ lim
s→∞

AF ((u, η)s)− lim
s→−∞

AF ((u, η)s)

=

∫ ∞
−∞
‖gradAF (u, η)‖2 ds

≥
∫ σ+Tσ

σ

‖gradAF (u, η)‖2︸ ︷︷ ︸
≥ ε2 on (σ, σ + Tσ)

ds

≥ Tσε2

which holds true for every σ ∈ R and, by the way, also shows finiteness

Tσ <∞.

Secondly, for any σ ∈ R the gradient norm of the trajectory element
(u, η)σ+Tσ at time σ+Tσ is ≤ ε. Hence the pair (u, η)σ+Tσ satisfies the
assumption of Proposition 5.3.8, so together with the action bound
κ in (5.3.28) we get that

|η(σ + Tσ)| ≤ c
(
|AF ((u, η))σ+Tσ |+ 1

)
≤ c(κ+ 1) =: cκ

for every σ ∈ R. Put things together to obtain the desired estimate

|η(σ)| =
∣∣∣η(σ + Tσ)−

∫ σ+Tσ

σ

∂sη(s) ds
∣∣∣

≤ |η(σ + Tσ)|+
∫ σ+Tσ

σ

|∂sη(s)|︸ ︷︷ ︸
≤‖F‖∞

∫ 1
0
dt

ds

≤ cκ + Tσ ‖F‖∞

≤ cκ +
‖F‖∞(b− a)

ε2

for every σ ∈ R; use that ∂sη satisfies the gradient flow equa-
tion (5.2.17).
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5.3.2 Continuation

To prove invariance of Floer homology HF(AF ) defined by (5.3.24)
for a convex exact hypersurface Σ with regular defining Hamiltonian
F , not only under change of the regular defining Hamiltonian, but
even under convex exact deformations of Σ itself, see Theorem 5.0.2,
suppose {Fs}s∈[0,1] is a smooth family of defining Hamiltonians of
convex exact hypersurfaces Σs in (V, λ). The construction of nat-
ural continuation maps follows precisely the same steps as in Sec-
tion 3.4.3, see [CF09, §3.2] for details,26 once appropriate compact-
ness properties of the spaces of connecting cascade trajectories for
the s-dependent gradient gradAFs have been established.
The only problem is that condition (5.3.27) on smallness of the prod-
uct ‖F‖∞‖∂sF‖∞ might not be satisfied in general. A common tech-
nique is to carry out the homotopy {Fs}s∈[0,1] in N steps, namely
sucessively via the homotopies

F js := F j−1+s
N

, s ∈ [0, 1], j = 1, . . . , N,

and show that the continuation map provided by each of them is an
isomorphism. Since∥∥∂sF js ∥∥∞ =

1

N

∥∥∥∂sF j−1+σ
N

∥∥∥
∞
≤ 1

N
‖∂sF‖∞

condition (5.3.27) is satisfied indeed for each homotopy Fj whenever
N is chosen sufficiently large. But the composition of the continua-
tion isomorphisms provided by each individual F j is the continuation
map, hence isomorphism, provided by F ; cf. (3.4.49).

To show that RFH(Σ) is well defined by (5.3.25) requires to pick
F0, F1 ∈ UFreg as in Remark 5.3.4 and show that HF(AF0) ' HF(AF1)
by continuation. For this it is sufficient, as mentioned above, to have
a smooth family {Fs}s∈[0,1] of defining Hamiltonians of convex exact
hypersurfaces Σs in (V, λ) interpolating F0 and F1. Note that such
family is obtained simply by convex combination of F0 and F1; see
Remark 5.1.14.

26 The r-homotopy of s-homotopies H
χ̄,r
s in [CF09, p. 276] should be H

χ1−s
r(1−s),

not H
χ1−s
1−rs , in order that for each r the initial point (at s = 0) coincides with the

endpoint (at s = 1) of the s-homotopy Hχ,r
s := Hχs

rs and so the two homotopies
can be concatenated.
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In [CFO10, Prop. 3.1] it is even shown independence on the un-
bounded component of V \Σ, that is only Σ = ∂M and its inside, the
compact manifold-with-boundary M , are relevant for HF(AF ). This
leads to the notation RFH(∂M,M) for HF(AF ), often abbreviated
by RFH(Σ); see Definition 5.0.3.

5.3.3 Grading

Suppose Σ is a convex exact hypersurface, say of restricted contact
type, and F ∈ F(Σ) is defining. Throughout Section 5.3.3 suppose

(i) the contact manifold (Σ, α) is simply-connected, i.e. π1(Σ) = 0;

(ii) AF : LV × R→ R is Morse-Bott;

(iii) (V, dλ) has trivial first Chern class over π2(V ), i.e. Ic1 = 0;

(iv) h : C → R is Morse on the critical set C := CritAF ⊂ LΣ×R.

Under these conditions there exists an integer grading µ = µRS
ξ +indσh

taking values in 1
2Z, see (5.3.30), of the Rabinowitz-Floer complex

in terms of the sum of the transverse Robbin-Salamon index of
(rescaled) Reeb loops and the signature index of a critical point of
the Morse function h. For non-degenerate Σ the transverse Robbin-
Salamon index reduces to the transverse Conley-Zehnder index µCZ

ξ

and µ will be half-integer valued.

Transverse Robbin-Salamon index

Pick a critical point (z, τ) of AF , i.e. z : S1 → Σ satisfies ż = τRα(z)
by (5.1.3). In words, the loop z : R/Z → Σ integrates the rescaled
Reeb vector field τRα.27 Recall that ξ := kerα→ Σ defines a – with
respect to dα symplectic – vector bundle of rank 2n − 2 and that
TΣ = ξ ⊕ RRα. By (i) pick a smooth extension z : D → Σ of the
loop z and choose a unitary trivialization of the symplectic vector
bundle (z∗ξ, z∗dα). Then the linearization of the flow generated by
τRα, informally called the linearized rescaled Reeb flow, provides
along the trajectory z : [0, 1] → Σ by (ii) a path in the symplectic

27 Alternatively consider the corresponding τ -periodic Reeb path r(t) = ϑtp
with p = z(0) on the τ -dependent interval [0, τ ]; see Exercise 5.1.7.
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linear group Sp(2n − 2) with initial point 1l and Robbin-Salamon
index denoted by

µRS
ξ (z, τ) ∈ 1

2Z.
It is called the transverse Robbin-Salamon index of the critical
point (z, τ) or, alternatively, the 1-periodic solution z of the rescaled
Reeb vector field τRα.

Exercise 5.3.10. Show that the definition of µRS
ξ is independent of

the choice of, firstly, the extending disk by (iii) and, secondly, of the
unitary trivialization.

Exercise 5.3.11. Calculate µRS
ξ (z, 0) for constant critical points.

Transverse Conley-Zehnder index

Suppose a critical point (z, τ) of AF is transverse non-degenerate;28

cf. Definition 5.1.11 and Exercise 5.1.12. So the image z(S1) is an iso-
lated closed characteristic P ∼= S1 of Σ. Moreover, the corresponding
path in Sp(2n− 2) ends away from the Maslov cycle, i.e. the path is
an element of SP∗(2n − 2), so the Robbin-Salamon index is nothing
but the Conley-Zehnder index of this path. In order to implicitly
signalling the assumption of transverse non-degeneracy, as opposed
to just general Morse-Bott, we use the notation

µCZ
ξ (z, τ) ∈ 1

2 + Z

for transverse non-degenerate critical points and call this index the
transverse Conley-Zehnder index.

Exercise 5.3.12 (Half-integers). Show µCZ
ξ is half-integer valued.

Signature index and Morse index

Let f : N → R be a Morse-Bott function on a finite dimensional man-
ifold N . Given a critical point x of f , recall that the Morse index
indf (x) is the number of negative eigenvalues, with multiplicities, of
the Hessian of f at x. Define the signature index of x ∈ Critf by

indσf (x) := −1

2
sign Hessxf.

28 Call a critical point (z, τ) transverse non-degenerate iff τ 6= 0 and the
corresponding Reeb loop is transverse non-degenerate.
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Exercise 5.3.13 (Morse-Bott). If f : N → R is Morse-Bott, then29

indσf (Ci) = indf (Ci)− 1
2 (dimN − dimCi)

for every connected component Ci of the critical manifold C = Critf .

Exercise 5.3.14 (Morse). Let x ∈ Critf be non-degenerate. Show

indσf (x) = indf (x)− 1
2 dimN ∈

{
Z , dimN even,
1
2 + Z , dimN odd.

Morse-Bott grading of the Rabinowitz-Floer complex

Definition 5.3.15 (Grading). For c ∈ Crith ⊂ C = CritAF , define

µ(c) := µRS
ξ (c) + indσh(c) ∈ 1

2Z. (5.3.30)

Exercise 5.3.16 (Σ non-degenerate ⇒ half-integers). For non-
degenerate Σ, show that µ(c) ∈ 1

2 +Z is half-integer valued for every
c ∈ Crith. Is this also true if c = (z, 0) is a constant critical point?

Given c−, c+ ∈ Crith, consider a connecting cascade trajec-
tory Γ, an element of the moduli space Mc−c+(AF , h, J, g) defined
by (5.3.22). For generic J and g this space is a smooth manifold
whose local dimension30 at Γ is given by

dimΓMc−c+ = µRS
ξ (c+) + indσh(c+)−

(
µRS
ξ (c−) + indσh(c−)

)
− 1

= µ(c+)− µ(c−)− 1.

The first step is non-obvious even for the Morse-Bott cascade complex
in finite dimensions; see [CF09, (65)]. One crucial ingredient to obtain
the first step, cf. [CF09, (64)], is the following even less trivial formula.
LetM be the moduli space of finite energy trajectories υ of gradAF .
By Morse-Bott, firstly, the asymptotic limits υ∓ in (5.3.21) exist, let
C∓ be their components of C, and secondly the linearization DFF (υ)
of the gradient equation (5.2.17) at a flow trajectory υ, cf. (3.3.34),
is Fredholm between suitable spaces. By [CF09, Prop. 4.1]

dimυM = indexDFF (υ) + dimC+ + dimC−

= µRS
ξ (υ+)− µRS

ξ (υ−) + dimC++dimC−
2 .

29 Set indf (Ci) := indf (x) and indσf (Ci) := indσf (x) for some, so any, x ∈ Ci.
30 the dimension of the component that contains Γ
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For further details concerning index computations see [CF09]
and [MP11].

5.3.4 Relation to homology of Σ

Exercise 5.3.17. If Σ carries no Reeb loops that are contractible in
V , then there is a grading preserving isomorphism

RFH∗(Σ) ' H∗(Σ;Z2)

where
RFH∗(Σ) := HF∗(AF )

for any defining Hamiltonian F ∈ F(Σ); see (5.0.1). Why should
there be a grading without assuming triviality of π1(Σ) and Ic1?

5.3.5 Example: Unit cotangent bundle of spheres

Consider the unit cotangent bundle

Σ := S∗Sn

of the unit sphere Q := Sn ⊂ Rn+1 in euclidean space equipped with
the induced Riemannian metric. Observe that Σ is a hypersurface of
restricted contact type of the convex exact symplectic manifold

(V, λ) = (T ∗Sn, λcan);

see Example 4.5.19. In particular, the restriction α = λcan|Σ is a con-
tact form on the hypersurface Σ = S∗Sn that bounds the (compact)
unit disk cotangent bundle M = D∗Sn.

Theorem 5.3.18 (Unit cotangent bundle of unit sphere, [CF09]).
For n ≥ 4

RFHk(S∗Sn) =

{
Z2 , k ∈

{
−n+ 1

2 ,−
1
2 ,

1
2 , n−

1
2

}
+ Z · (2n− 2),

0 , else.

Idea of proof (Lacunary principle). One exploits the facts that
for the round metric on Sn, suitably normalized, all geodesics are
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Figure 5.5: Indices • • • ∈ Z + 1
2 for which RFH•••(S

∗Sn) = Z2

periodic with prime period 1, that the functional AF is Morse-Bott,31

and that the critical manifold

C = CritAF ∼= S∗Sn × Z

corresponds to Z copies of S∗Sn where Z labels the periods of the
geodesics. Now one picks a Morse function h0 on S∗Sn with precisely
four critical points of Morse indices 0, n − 1, n, 2n − 1 and defines h
to be the Morse function on the critical manifold C which coincides
with h0 on each component. Then

Crith ∼= Crith0 × Z.

Now one pits action knowledge (5.1.9) in terms of the prime period
and positivity of the action difference of two critical points c− and
c+ sitting on the two ends of a non-constant connecting trajectory
against the facts that the boundary operator decreases the grading
µRS
ξ precisely by 1 and that µRS

ξ can be related via the Morse index
theorem for geodesics to the particular Morse indices 0, n−1, n, 2n−1
encountered among the critical points of h as mentioned above. In
the end, for n ≥ 4, one gets to the conclusion that there cannot be a
connecting trajectory between critical points of µRS

ξ -index difference
one. For details see [CF09, p. 293].

31 Do not confuse with the stronger notion “transverse non-degenerate” in
Theorem 5.1.10.
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5.4 Perturbed Rabinowitz action AFH
To prove the Vanishing Theorem 5.0.4 motivates to allow for more
general Hamiltonians in the action functional; cf. [CF09, §3.3]. Pick
a defining, thus autonomous, Hamiltonian F ∈ F(Σ) and a young
cutoff function32

χ : S1 → [0,∞), suppχ ⊂ (0, 1
2 ),

∫ 1

0

χ(t) dt = 1. (5.4.31)

The assumption χ≥ 0 is used in (5.4.43). Let us call the Hamiltonian

Fχ := χF : S1 × V → R (5.4.32)

a young Hamiltonian, as its flow is active only in the first half
[0, 1

2 ] of life. Suppose H ∈ C∞(S1×V ) is a possibly non-autonomous
1-periodic Hamiltonian. The perturbed Rabinowitz action func-
tional on LV × R is defined by

AF
χ

H (z, τ) := AF
χ

(z, τ)−
∫ 1

0

Ht(z(t)) dt. (5.4.33)

In the notation of (5.2.17) and taking the same choices, such as
a cylindrical almost complex structure J with induced L2 metric gJ
on LV × R, the upward gradient trajectories of gradAFχH are the
solutions υ = (u, η) of the PDE

∂sυ−gradAF
χ

H (υ) =

(
∂su
∂sη

)
+

(
Jt(u) (∂tu− ηχXF (u)−XH(u))∫ 1

0
χF (u) dt

)
= 0.

(5.4.34)
Compactness in Section 5.3.1, thus the definition of Floer homology
in Section 5.3, goes through for AFχ with only minor modifications;
see [CF09, §3.1].

5.4.1 Proof of Vanishing Theorem

The Vanishing Theorem 5.0.4 asserts triviality RFH(Σ) = 0 of
Rabinowitz-Floer homology whenever Σ is displaceable.

32 The support of χ, notation suppχ, is the closure of its non-vanishing locus.
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Proof of Vanishing Theorem 5.0.4 – v1

The first version of the proof is short and rather illustrative, hence
well suited to communicate the main ideas. But – it has the disadvan-
tage that it involves a class of Hamiltonians for which we haven’t in-
troduced Floer homology HF(AFχHρ); however, this is done in [AF10a].
In other words, in proof v1 the required technical work is moved else-
where, so we are just left with the nice bits.

The idea is to find Hamiltonians such that there are no critical
points

CritAF
χ

Hρ = ∅. (5.4.35)

In this case there are no generators of the corresponding Floer com-
plex. Consequently

0 = HF(AF
χ

Hρ) ' HF(AF
χ

) ' HF(AF ) =: RFH(Σ) (5.4.36)

where the isomorphisms are by continuation. Section 5.3 establishes
HF(AF ) only, but the same construction goes through for Fχ replac-
ing F , including the construction of the second continuation isomor-
phism. The first continuation isomorphism and HF(AFχHρ) itself are
constructed in [AF10a, §2.3]; see Section 5.4.3.

In preparation of the proof of (5.4.35) we take the following
choices, given a compactly supported Hamiltonian H : [0, 1]×V → R
that displaces Σ. By compactness of Σ the map ψH1 not only dis-
places Σ from itself, but also a small neighborhood U of Σ. Observe
that Σ is contained in suppXF for any of its defining Hamiltonians
F , since 0 is a regular value of F . Change or modify F , if necessary,
such that suppXF ⊂ U . Hence this support also gets displaced:

suppXF ∩ ψH1 (suppXF ) = ∅. (5.4.37)

Now pick an elderly cutoff function

ρ : [0, 1]→ [0, 1], ρ|[0,1/2] ≡ 0, ρ ≡ 1 near t = 1, (5.4.38)

as illustrated by Figure 5.6 and consider the elderly Hamiltonian

Hρ = Hρ
t := ρ̇(t)Hρ(t) ∈ C∞(V ), t ∈ S1. (5.4.39)

Elderly means that the flow of Hρ is active only in the second half
[ 1
2 , 1] of life.
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Figure 5.6: Young and elderly cutoff functions and Hamiltonians

Exercise 5.4.1. Show a) ψH
ρ

t = ψHρ(t) for t ∈ R and b) ψτF
χ

1 = ψFτ
for τ ∈ R. [Hint: a) Footnote.33 b) Note that τFχ = F τχ = ρ̇F with

ρ(t) := τ
∫ t

0
χ(σ) dσ.]

The critical points of AFχHρ are the solutions (z, τ) ∈ LV × R of
the equations{

ż(t) = τχ(t)XF (z(t)) + ρ̇(t)XHρ(t)(z(t)) , t ∈ S1,∫ 1

0
χ(t)F (z(t)) dt = 0 .

(5.4.40)

It remains to prove emptyness (5.4.35). By contradiction suppose
that (z, τ) is a solution of (5.4.40). There are two cases.

I. z(0) /∈ suppXF . On [0, 1
2 ] the first equation in (5.4.40) describes

a reparametrization of the Hamiltonian flow of F , so F is preserved.
Therefore

F ◦ z|
[0,

1
2 ]
≡ F (z(0)) =: c 6= 0

is non-zero since by assumption z(0) /∈ suppXF ⊃ Σ = F−1(0). Thus∫ 1

0

χF (z) dt =

∫ 1
2

0

χF (z) dt = c

∫ 1
2

1

χdt = c 6= 0,

because suppχ lies in [0, 1
2 ] where F ◦ z ≡ c. But this contradicts

equation two in (5.4.40).

33 d
dt
ψH
ρ(t)

=
dψHρ(t)
d ρ(t)

ρ̇(t) = XHρ ◦ ψHρ(t)



i
i

“CBM31-ENG˙weber” — 2017/6/15 — 2:12 — page 219 — #227 i
i

i
i

i
i

[SEC. 5.4: PERTURBED RABINOWITZ ACTION AFH 219

II. z(0) ∈ suppXF . As XFχ is young and XHρ is elderly, these two
vector fields are supported in disjoint time intervals. Thus the flow
of their sum is the composition of their individual flows. Together
with Exercise 5.4.1 we get that

hypothesis︷ ︸︸ ︷
suppXF 3 z(0) = z(1)

= ψH
ρ

1 ◦ ψτF
χ

1 z(0)

= ψH1 ◦ ψFτ z(0)︸ ︷︷ ︸
hyp.⇒∈suppXF

.

But this is impossible as ψH1 displaces suppXF by (5.4.37).

Proof of Vanishing Theorem 5.0.4 – v2

This version of proof gets away with Floer homology as introduced in
Section 5.3 and is based on continuation and the following stronger
version of the absence (5.4.35) of critical points of the perturbed
action AFχHρ associated to the young Hamiltonians Fχ in (5.4.32) and
the elderly ones Hρ in (5.4.39).

Lemma 5.4.2 (No critical points). There is a constant γ = γ(J) > 0
such that ∥∥gradAF

χ

Hρ(z, τ)
∥∥ ≥ γ

for every (z, τ) ∈ LV × R.34

Fix a smooth monotone cutoff function β : R → [0, 1] with
β(s) = 1 for s ≥ 1 and β(s) = 0 for s ≤ −1 in order to define a
homotopy H·, and its reverse H ·, between the zero Hamiltonian 0
and the Hamiltonian Hρ = Hρ

t , namely

Hs := β(s)Hρ, Hs := (1− β(s))Hρ, s ∈ R.

For each real parameter value R ≥ 1 consider the homotopy H·#RH·
from the zero Hamiltonian 0 back to itself which is defined by the
concatenation

R 3 s 7→ Hs#RHs :=

{
Hs+R , s ≤ 0,

Hs−R , s ≥ 0,

34 Both grad and ‖·‖ depend on J ; see Exercise 5.2.2.
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Figure 5.7: Homotopy s 7→ H̄s#RHs from 0 over Hρ back to 0

of H· followed by H· as illustrated by Figure 5.7.
Consider the homotopy, in r ∈ [0, 1], of homotopies of Hamiltoni-

ans s 7→ Fχ + rHs#RrHs and their corresponding action functionals

Ar,s := AF
χ

rHs#RrHs
.

Figure 5.8: Homotopy in r of homotopies s 7→ As,r from AFχ to AFχ

The homotopies at r = 0 and r = 1 have special properties. The
one at r = 0 is constant, given by s 7→ AFχ , and the one at r = 1
has – as a consequence of the no-critical-points Lemma 5.4.2 – no
connecting flow lines:

Lemma 5.4.3 (No finite energy trajectories). There is a constant
R0 depending only on Fχ, ‖Hρ‖∞, and the action values AFχ(υ±)
of two fixed critical points such that the following is true. For each
real R ≥ R0 there are no trajectories of the s-dependent gradient
gradA1,s converging asymptotically to υ±.
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Lemma 5.4.4 (Uniform C0 bound). Pick R ≥ 1 and assume that
υ(s) = (u(s), η(s)) is a trajectory of gradAr,s, for some r ∈ [0, 1],
converging asymptotically to υ± = (u±, η±) ∈ CritAFχ . Then η(s)
is uniformly bounded by a constant that depends only on Fχ, ‖Hρ‖∞,
R, and the action values of υ±.

Lemma 5.4.4 implies compactness of the relevant components of
the moduli spaces appearing in the definition (3.4.48) of the contin-
uation homomorphisms

Ψr = [ψ(H·#RH·)] : HF(AF
χ

)→ HF(AF
χ

), r ∈ [0, 1].

But the Ψr are all equal, as the homotopies of any two are homotopic,
cf. Exercise 3.4.17, and Ψ0 = 1l, because it is induced by the constant
homotopy, cf. Exercise 3.4.15. But Ψ1 = 0 since by Lemma 5.4.3
there are just no connecting trajectories of gradAFχ

Hs#RHs
whenever

R ≥ R0. Thus we arrive at the conclusion

1l = Ψ0 = Ψ1 = 0 : HF(AF
χ

)→ HF(AF
χ

). (5.4.41)

But this is only possible if the domain HF(AFχ) = 0 is trivial which
is what is claimed by the Vanishing Theorem 5.0.4. Full details are
given in [CF09, §3.3].

Let us look at the ideas, at least, how to prove the three lemmas.
For details see [CF09, p. 281-284].

No critical points. The proof of Lemma 5.4.2 takes three steps
and uses compactness of Σ, that H displaces Σ and that Fχ and Hρ

are young and elderly, respectively. Furthermore, it is crucial that
gradA has two components, see (5.2.14), whose norms can be played
out, one against the other one.

Step 1: There is a constant ε1(J) such that if (z, τ) ∈ LV × R
satisfies the smallness condition∥∥∂tz − τχXF (z)− ρ̇XHρ(z)

∥∥
2
≤ ε1 (5.4.42)

then (
z(0), z( 1

2 )
)
/∈ suppXF × suppXF .

In words, for such loops z not both, birth and midlife crisis, can
happen under F -action, at least one of them requires a rest from the
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defining Hamiltonian F . The proof of this uses that Σ is compact
and is displaced by Hρ only at the end of life t = 1 where the young
Fχ is not supported.

Step 2: There are ε2, δ > 0 such that if (z, τ) satisfies the smallness
condition (5.4.42) for ε2, then

|F ◦ z| ≥ δ

2
, on [0, 1

2 ].

That is F stays away from zero during the first part of life of any
such loop z. The proof exploits that Hρ is elderly and uses Step 1.

Step 3: Pick (z, τ) ∈ LV × R. To prove that
∥∥gradAFχHρ(z, τ)

∥∥ ≥
γ =: min{ε2, δ/2} involves two cases in each of which one simply
forgets one of the two gradient components, cf. (5.2.15). If

I := ‖∂tz − τχXF (z)− ρ̇XHρ(z)‖2 ≥ γ,

then we are done: Just forget component two. Otherwise, if I < γ,
Step 2 applies. Forget component one to obtain that∥∥gradAF

χ

Hρ(z, τ)
∥∥ ≥ |mean(Fχ ◦ z)|

=

∣∣∣∣∫ 1
2

0

χ︸︷︷︸
≥0

· F (z)︸︷︷︸
6=0

dt

∣∣∣∣
=

∫ 1
2

0

χ · |F (z)|︸ ︷︷ ︸
≥δ/2

dt ≥ δ

2
≥ γ.

(5.4.43)

Here we used that χ is young and integrates to one. Concerning the
second identity use the non-negativity assumption χ≥ 0 in (5.4.31)
together with the fact that by Step 2 the function F ◦z 6= 0 is non-zero
along the interval [0, 1

2 ], in fact, it is either ≥ δ
2 or ≤ − δ2 .

Exercise 5.4.5. It seems to be an open question, at least we couldn’t
localize a proof in the literature, if the conclusion of (5.4.43), namely

‖gradAF
χ

Hρ(z, τ)‖ ≥ δ

2

remains valid for real-valued cut-off functions χ : S1 → R in (5.4.31).
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No finite energy trajectories. This is essentially an integrated
version of Lemma 5.4.2. In the s-independent case the proof is trivial:
Any connecting trajectory (u, η) has finite energy

E(u, η) :=

∫ ∞
−∞
‖gradA(u, η)‖2 ds.

Namely, it is given by the action difference of the asymptotic limits.
But a positive lower gradient bound as in Lemma 5.4.2 contradicts
finiteness, so such trajectories cannot exist. The s-dependent case is
rather similar; see [CF09, p.283, Step 1].

Uniform bound. The proof is similar to the one of the uniform
bound on |η| in Section 5.3.1, again built on the quantity Tσ. That
H displaces Σ is not used.

5.4.2 Weinstein conjecture

Theorem 5.4.6. A displaceable convex exact hypersurface Σ in a
convex exact symplectic manifold (V, λ) carries a closed Reeb loop
that is contractible in V .

Proof. Vanishing Theorem 5.0.4 and Exercise 5.3.17.

The theorem was established in [Sch06] for stably displaceable hy-
persurfaces of contact type. Recall that if a closed contact type hy-
persurface Σ ⊂ (R2n, ω0) is simply-connected, then it is of restricted
contact type by Exercise 4.5.1.

Exercise 5.4.7. Consider a connected closed hypersurface Σ ⊂ in
standard symplectic vector space (R2n, ω0).

a) Show that Σ is bounding and displaceable.

b) Show that if Σ is, in addition, transverse to some global35 Li-
ouville vector field Y , then it is convex exact.

35 A locally near Σ defined Y is sufficient whenever π1(Σ) = 0; compare Exer-
cise 4.5.1 b).
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5.4.3 Leaf-wise intersections

Before giving the formal definition of “leaf-wise intersection” let us
first switch on light by looking at the circular restricted three
body problem in celestial mechanics; cf. [AM78, Ch. 10].

Motivation: Satellite perturbed by comet

Following [AF12a] consider an almost massless particle, the satel-
lite s, moving in the gravitational field of two huge massive bodies
called primaries, say earth E and moon M . By assumption the whole
system is restricted to a given fixed plane and each of the primaries
moves along a circle about their common center of mass. So the con-
figuration space of the system is rather restricted. Now suppose the
satellite, so far moving peacefully on its energy surface Σ = F−1(0)
in phase space, gets temporarily influenced by a comet passing by
during a time interval, say of length one. Suppose the previously au-
tonomously via φ = φF on Σ moving satellite receives extra kinetic
energy by gravitational attraction as the comet appears in front at
time zero and looses energy when the comet disappears behind at
time one. The comet’s presence is described by a time-dependent
Hamiltonian H with Hamiltonian flow ψ = ψH . In other words, at
time zero, say at the phase space location x ∈ Σ, the satellite gets
lifted off of Σ following ψ for one unit of time after which it gets
dropped back onto Σ at ψ1x. Let Lx := φRx ⊂ Σ, called the leaf
of x, denote the whole phase space trajectory of the satellite as it
would happen without the comet’s appearance.
One would probably not expect that the satellite will get dropped
back at ψ1x to its original trajectory Lx. However if it happens, the
unexpected penomenon

ψ1x ∈ Lx, Lx := φRx ⊂ Σ,

is called a leaf-wise intersection, see Figure 5.9, and x is called a
leaf-wise intersection point (LIP).

Surprisingly, the phenomenon indeed happens: In certain hy-
persurfaces of exact symplectic manifolds, for instance such of non-
zero Rabinowitz-Floer homology, for any comet there is by [AF10a,
Thm. C] a satellite position x which ends up on its own unperturbed
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Figure 5.9: Leaf-wise intersection ψ1x ∈ Lx:
Satellite at x deviates under sudden comete influence ψt = ψHtt ,

but ends up on its unperturbed trajectory φFRx afterwards!

trajectory afterwards. In certain cotangent bundle situations there
are, for generic comets, even infinitely many undestroyable satellite
trajectories by [AF10b]; see also [AF12a, Thm. 1] and [AF12b, §2.2].

Rabinowitz-Floer homology for perturbed action AFχ

H

Consider the Rabinowitz action functional AFχH in (5.4.33) for possi-
bly non-autonomous elderly Hamiltonians

H ∈ H† := {H ∈ C∞(S1 × V ) | Ht = 0 for t ∈ [0, 1
2 ]}

also called elderly perturbations of AFχ . The perturbed func-
tional AFχH has a number of useful properties: As time-dependence
is allowed for H, the functional AFχH is Morse for generic H ∈ H†,
as shown in [AF10a, Thm. 2.13]. Thus no Morse-Bott complex will
be needed at all. The critical points of AFχH correspond to leaf-wise
intersections.36

Proposition 5.4.8 (Critical points and LIPs, [AF10a]). If (z, τ) ∈
CritAFχH , then x := z( 1

2 ) lies in Σ = F−1(0) and ψH1 x lies on the
Reeb leaf Lx = φFRx.

36 The map Crit→ {LIPs}, (z, τ) 7→ z( 1
2

), is injective, unless Lx ∼= S1 for some
LIP x.
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The definition of Floer homology HF(AFχH ) proceeds pretty much
as in Chapter 3 with the little extra twist of an upward finiteness con-
dition, completely analogous to (5.3.20), that takes care of infinitely
many critical points. More precisely, given a defining Hamiltonian
F ∈ F(Σ), pick a young cutoff function χ as in (5.4.31) and a generic
elderly perturbation H ∈ H† such that AFχH is Morse. Let CF(AFχH )
be the Z2 vector space that consists of all formal sums

ξ =
∑

c∈CritAFχH

ξcc

such that, given ξ, for each κ ∈ R there is only a finite number
of non-zero Z2-coefficients ξc that belong to critical points c of ac-
tion ≥ κ; cf. (5.3.20). Let M(c+, c−) be the space of connecting
(upward) gradient trajectories, that is solutions υ = (u, τ) of the
PDE (5.4.34), with asymptotic boundary conditions c± ∈ CritAFχH
sitting at s = ±∞; cf. Figure 5.3. For generic S1-families of cylin-
drical almost complex structures Jt the spaceM(c+, c−) is a smooth
finite dimensional manifold that carries a free R-action by s-shift. Let

n(c−, c+) := #2(mc−c+), mc−c+ :=M(c+, c−)/R,

be the number (mod 2) of zero-dimensional components of the moduli
space of connecting flow lines; cf. (3.4.42). Define the Floer boundary
operator on the chain groups CF(AFχH ) analogous to (5.3.23) by linear
extension of

∂c+ :=
∑

c−∈CritAFχH

n(c−, c+)c−

for c+ ∈ CritAFχH ; cf. Figure 5.3 and Remark 5.2.3.
By definition Floer homology of the perturbed Rabinowitz

action functional AFχH is the homology of this chain complex

HF(AF
χ

H ) :=
ker ∂

im ∂
.

Theorem 5.4.9 (Invariance under elderly perturbations, [AF10a]).
If AFχH is Morse for an elderly perturbation H ∈ H†, then

HF(AF
χ

H ) ' HF(AF
χ

0 ) = RFH(Σ).



i
i

“CBM31-ENG˙weber” — 2017/6/15 — 2:12 — page 227 — #235 i
i

i
i

i
i

[SEC. 5.4: PERTURBED RABINOWITZ ACTION AFH 227

The theorem actually concludes the proof of version one of the
Vanishing Theorem 5.0.4; cf. (5.4.36).

Remark 5.4.10 (Rabinowitz Floer for Reeb chords and Voyager mis-
sions). Coming back to the previous space travel motivation, there is
practical interest in so-called consecutive collision orbits – of course,
in small perturbations of them. In [FZ17] consecutive collision or-
bits, interpreted as Reeb chords, are encoded as critical points of an
adequate version of the Rabinowitz action functional. Calculation of
the corresponding Rabinowitz Floer homology then leads to infinitely
many collision orbits.

The general picture: Coisotropic intersections

The previous situation of a closed codimension one submanifold Σ =
F−1(0) being foliated by flow lines, that is 1-dimensional leaves Lx,
is the rather special case r = 1 of the general leaf-wise intersection
problem described in the masterpiece [Mos78]. It is amazing to see
how important results fall off as special cases for particular values of
the codimension r of a closed coisotropic submanifold Σ of a simply-
connected exact symplectic manifold (V, λ) of dimension 2n; see the
presentation in [Mos78] of consequences 1.–4. of the main theorem
that asserts existence of leaf-wise intersections.

A codimension r submanifold Σ of a symplectic manifold of di-
mension 2n is called a coisotropic submanifold if every tangent
space of Σ is a coisotropic subspace of the corresponding tangent
space of V . This implies r ≤ n. The collection of symplectic comple-
ments (TpΣ)ω turns out to provide an integrable distribution of rank
r = dim(TpΣ)ω in the tangent bundle TΣ. Thus by Frobenius the
2n− r dimensional manifold Σ is foliated by leaves of dimension r.

For r = 0 the main theorem in [Mos78] proves existence of at least
two fixed points of a symplectic diffeomorphism of a closed simply-
connected symplectic manifold, see Remark 1.0.4; the assumption of
being simply-connected was removed in [Ban80].

For r = 1 one gets to the previously described situation of integral
curves of the characteristic line bundle of an energy surface, hence to
Reeb dynamics if Σ is of contact type.

For r = n one recovers the Lagrangian intersection problem.
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5.5 Symplectic homology and loop spaces

Running out of time and pages, let us just briefly mention that, given
a closed Riemannian manifold Q, Rabinowitz-Floer homology of the
unit sphere cotangent bundle Σ = S∗Q, bounding the unit disk cotan-
gent bundle M = D∗Q, in the cotangent bundle (V, λ) = (T ∗Q,λcan)
encodes both homology and cohomology of the free loop space.37 It
was shown in [CFO10, Thm. 1.10] that

RFH∗′(S
∗Q) '

{
H∗′(LQ) , ∗′ > 1,

H−∗
′+1(LQ) , ∗′ < 0,

(5.5.44)

and that for ∗′ = 0, 1 there are isomorphisms involving the Euler
class of the vector bundle T ∗Q → Q. Now the grading ∗′ of RFH
is different from the half-integer grading ∗ defined earlier in (5.3.30),
namely

∗′ :=

{
∗+ 1

2 , on generators c of positive action AF (c) > 0,

∗ − 1
2 , on generators c of negative action AF (c) < 0.

The isomorphism is obtained by relating via a long exact sequence
Rabinowitz-Floer homology to symplectic homology and cohomology
of D∗Q, aka Floer co/homology of the cotangent bundle, and then use
the isomorphism (3.5.58). A proof of (5.5.44) by a direct construction
is given in [AS09] and a generalization to twisted cotangent bundles
in [Mer11]; see [BF11] for an alternative method.

37 Recall that in the present text we work with Z2 coefficients; for field coeffi-
cients see the convention prior to Thm. 1.10 in [CFO10].
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Ann. Sci. Éc. Norm. Supér. (4), 43(6):957–1015, 2010.

[Fra04] Urs Frauenfelder. The Arnold-Givental conjecture and
moment Floer homology. Int. Math. Res. Not., 42:2179–
2269, 2004.

[FS16] Urs Frauenfelder and Felix Schlenk. S1-equivariant
Rabinowitz-Floer homology. Hokkaido Math. J.,
45(3):293–323, 2016.

[FZ17] U. Frauenfelder and L. Zhao. Existence of infinitely many
consecutive collision orbits in the planar circular restricted
three-body problem. ArXiv e-prints, May 2017.

[Mer11] Will J. Merry. On the Rabinowitz Floer homology of
twisted cotangent bundles. Calc. Var. Partial Differen-
tial Equations, 42(3-4):355–404, 2011.

[Mos78] J. Moser. A fixed point theorem in symplectic geometry.
Acta Math., 141(1–2):17–34, 1978.

[MP11] Will J. Merry and Gabriel P. Paternain. Index computa-
tions in Rabinowitz Floer homology. J. Fixed Point The-
ory Appl., 10(1):87–111, 2011.

[Sch06] Felix Schlenk. Applications of Hofer’s geometry to Hamil-
tonian dynamics. Comment. Math. Helv., 81(1):105–121,
2006.



i
i

“CBM31-ENG˙weber” — 2017/6/15 — 2:12 — page 231 — #239 i
i

i
i

i
i

Textbook references

[Abb14] Casim Abbas. An introduction to compactness results in
symplectic field theory. Springer, Heidelberg, 2014.

[AM78] Ralph Abraham and Jerrold E. Marsden. Foundations of
mechanics. Benjamin/Cummings Publishing Co., Inc., Ad-
vanced Book Program, Reading, Mass., 1978. Second edi-
tion, revised and enlarged, With the assistance of Tudor
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Index

(Ω0, Jg, Gg) compatible triple,
35

(R2n, ωcan, J0, 〈·, ·〉0), 12
(ω, J, gJ) compatible triple, 14
C∞loc convergence, 118
J-holomorphic planes, 122
L2 inner product, 81
Q = Qn closed manifold, 11
S = F−1(c) energy surface,

46, 156
W 1,p
u Sobolev space of vector

fields along u, 102
XH Hamiltonian vector field,

46
XH = J∇H for ω-compatbile

J , 46
Y Liouville vector field, 166
Yλ associated Liouville vector

field, 171
AF Rabinowitz action (un-

pert.), 188
AFχH perturbed Rabinowitz ac-

tion, 216
µCZ Conley-Zehnder index, 30
µCZ canonical Conley-Zehnder

index, 30
µCZ
ξ transverse Conley-

Zehnder index,
212

C(S) closed characteristics of
energy surface S ⊂
(M,ω), 50, 159

C(X) closed characteristics of
X, 50

F(Σ) = F(Σ, V, λ) space
of defining Hamilto-
nians, 171

Freg regular Rabinowitz-Floer
Hamiltonians, 193

P±(Σ) forward or backward
(closed) Reeb loops,
189

HF(AFχH ) perturbed Ra-
binowitz Floer
homology, 226

HF(AF ) (Rabinowitz-)Floer
homology, 202

H(S) defining Hamiltonians
for S, 158

H† elderly perturbations, 225
Hreg M(orse)-regular Hamilto-

nians, 92
Hreg(J) MS-regular Hamilto-

nians, 102
Iω : π2(M) → R, [v] 7→∫

S2 v
∗ω, 72

Ic1 : π2(M) → Z, [v] 7→
c1([v]), 72

235
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J0 := −J0 = −i, 12

Ycan canonical Liouville vector
field, 176

Yrad fiberwise radial vector
field, 176

θYt Liouville flow, 166

LQ := C∞(S1, Q) free loop
space, 141

L(X,Y ) bounded linear oper-
ators, 99

Mc−c+ connecting cascade
trajectories, 201

Ω0 on W ⊕W ∗, 35

Per(γ) period set of γ : R →
N , 42

P(H) 1-periodic Hamiltonian
loops, 66

P(H) 1-periodic Hamiltonian
trajectories, 51

P0(H) contractible 1-periodic
ones, 66

P(∗)
all all (non-constant) loop

trajectories, 50

RFH(Σ) RF homology of con-
vex exact hypersur-
face, 203

RFH(Σ = ∂M,M)
Rabinowitz-Floer
homology, 186

µRS
ξ transverse Robbin-

Salamon index,
212

Rα Reeb vector field, 163

R+ := [0,∞), 10

ϑRαt Reeb flow, 163

µspec(A) spectral flow, 109

SO(3) ∼= T 1S2, 24

Σ bounds M , 154
Z∗ := Z \ {0} non-zero inte-

gers, 194
α# associated periodic path,

42
β#α concatenation of finite

paths, 44
εh: C2 small Morse function,

134
γk = γ̃: loop γ k-fold covered

by γ̃, 49
γ#k
τ k-fold cover of loop, 45
γτ sign of period τ determines

direction, 43
γ̂ := γ(−·) time reversed path,

44
τ̂ := −τ , 44
inf ∅ :=∞, 11
S(AF ) action spectrum, 191
S(Σ) periods of simple Reeb

loops, 191
(C2) ω, c1(M) vanish on

π2(M), 71
TS− t Thom-Smale transver-

sality, 110
mean(F ◦ z) :=

∫
F ◦ z mean

value, 196
µcan canonical Maslov index,

30
∇ = ∇g Levi-Civita connec-

tion, 39
‖·‖1,p Sobolev W 1,p norm, 102
ω-aspherical, 72
ω-atoroidal, 80
ω0 = dx ∧ dy standard sympl.

form, 11
ωcan = dλcan = dp∧ dq canon-

ical symplectic form,
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12
R2n × R2n, 13
φF flow of auton. Ham. F , 46
ψH flow of non-auton. Ham.

H, 46
σP time-1 prime speed factor,

190
τ -periodic path, 42
υ = (u, η) is called ’upsilon’,

196
e−it distinct symplectic path,

13
mxy connecting flow lines, 117
ox, 〈x〉: oriented critical point,

73
us := u(s, ·) freeze variable, 70
u(σ) := u(σ + ·, ·) time-shift,

120
zT := z(T ·) speed change, 45
z(T ) := z(T + ·), u(σ) time-

shift, 45, 66
F := C∞0′ (V ), 193
µRS Robbin-Salamon index,

28
sign (0) := 0, 189
LIPleaf-wise intersection

point, 224
(asymp.limits), 97
(determinant), 30
(direct sum), 30
(exp.decay), 97
(finite energy), 97
(homotopy), 30
(inverse), 30
(loop), 30
(naturality), 30
(signature), 30
(normalization)can, 30

(signature)can, 15

action filtered Floer chain
groups, 137

action filtered Floer homology,
137

action functional
(unperturbed) Rabi-

nowitz –, 188
classical, 141
perturbed –, 216
Rabinowitz –, 183
symplectic, 141

action spectrum, 191
action window, 137
almost complex structure, 14,

38
ω-compatible, 14, 39
cylindrical, 174

annihilator, 111
Arnol′d conjecture, 4
aspherical, 72
associated Liouville vector

field, 171
assumption

(C2), 71
atoroidal

ω- –, 80
symplectically –, 80

autonomous Hamiltonian, 46

backward simple critical point,
190

Banach space
separable, 110

Birkhoff, 2
boundary operator

Floer –, 117
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238 INDEX

bounded topology, 173
bounding, 154
broken trajectory, 118

convergence to –, 118

Calderón-Zygmund type in-
equality, 123

canonical
1-form, 12
fiberwise radial vector

field, 12, 176
Liouville vector field, 176
symplectic form, 12

canonical basis, 116
of CM∗(f ;Z2), 77

canonical basis of CF∗(H),
138

canonical Maslov index, 30
canonical normalization

of Conley-Zehnder index,
13

canonical symplectic form, 53
Cartan’s formula, 49
cascades, 201
chain group

Floer –, 116
change of speed, 45
characteristic line bundle, 7,

158, 164
classical action, 59, 141
closed, 42
closed characteristic, 10, 158,

165
closed characteristics, 7, 185

of a vector field, 50
closed curve, 42
closed flow line, 156
closed manifold Q = Qn, 11

closed orbit, 47
closed orbits

geometrically distinct –,
49

Closing-Lemma, 157
co-orientation, 32
cohomology, 76

Floer, 138
coisotropic submanifold, 227
coisotropic subspace, 35
collision orbits, 227
compact curve, 42
compact operator, 99
compatible triple, 14
complement, 100
complemented subspace, 100
complete

flow, 173
complete flow, 47, 49, 155
complete metric space

of smooth functions, 91
complex structure, 39

integrable, 39
concatenation

of finite paths, 44
conjecture

Arnol′d, 4
Conley, 68
Seifert –, 157
Weinstein, 160

Conley conjecture, 68
Conley-Zehnder index, 29

canonical, 15
canonical normalization,

13
standard normalization,

13
connecting flow lines, 74
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connecting manifold, 74, 94
connecting trajectories

finite energy, 95
set of –, 94

connecting trajectory, 70
with cascades, 200

consecutive finite paths, 44
constant curve, 42
constant path, 42
contact form, 162
contact manifold, 162
contact structure, 162
contact type, 165, 166

restricted, 166
contact type hypersurface

non-degenerate –, 193
continuation map

monotone, 137
monotone –, 137

continuation maps, 75
Floer –, 130

convergence
in C∞loc, 118

convergence to broken trajec-
tory, 118

convex at infinity, 172
convex combination, 137
convex exact hypersurface,

174
convex exact symplectic man-

ifold, 172
critical point

backward – of AF , 190
non-degenerate, 73
non-degenerate –, 87
simple – of AF , 190
towers, 191

transverse non-
degenerate –, 212

crossing, 36
regular –, 36

crossing form, 36
spectral flow, 109

curve, 42
closed –, 42
constant –, 42
point –, 42
simple –, 42

cutoff function
elderly –, 217
young –, 216

cycle
Maslov –, 25
Robbin-Salamon –, 28

cylindrical almost complex
structure, 174

cylindrical end, 174

defining Hamiltonian, 158,
171, 172, 187

defining Hamiltonians
set of –, 158
space of –, 172

derivative, 110
Fréchet –, 105
Gâteaux –, 105

diagonal, 52
diagonal subspace, 36
differentiable manifold, 10
differential, 110
differential form

primitive of –, 11
dimension

local –, 213
direct sum internal, 100
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240 INDEX

displaceable subset, 173
distribution, 158
divisor part, 43
double point, 51
downward gradient flow, 73
dual basis, 77
dual space, 111

eigenvalue
of first/second kind, 26

eigenvalues
of symplectic matrix, 25

elderly
perturbations, 225

elderly cutoff function, 217
elderly Hamiltonian, 217
elderly Hamiltonians, 225
electric field, 56
electric scalar potential, 56
electromagnetic

Hamiltonian, 59
Lagrangian, 59

electromagnetic system, 56
embedded

loop, 44, 46
empty set

generates trivial group, 11
energy E(u) of curve, 94
energy identity

homotopy trajectories,
137

energy level, 46
energy levels, 155
energy surface, 46, 156, 158,

164
closed characteristic on –,

165
closed flow line on –, 165

equicontinuous, 85
euclidean metric, 11
Euler

vector field, 166
Euler-Lagrange equations, 59
exact convex symplectic man-

ifold
complete –, 173

exact symplectic manifold, 170

family
equicontinuous, 85
pointwise bounded, 85

fiberwise radial vector field, 12
fiberwise star-shaped, 176
finite energy

connecting trajectories,
95

finite path, 42
finiteness condition

upward, 199
first Chern class, 41
first Chern number, 39
first return, 47

time of –, 44
fixed point

of flow, 156
Floer

boundary operator, 117
cochain group, 138
complex, 117
continuation maps, 130
homology, 117

Floer chain group, 116
Floer chain groups

action filtered –, 137
Floer coboundary operator,

138
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Floer cohomology, 138, 139
Floer cylinder, 93
Floer cylinders, 70
Floer equation

homotopy –, 129
Floer homology

action filtered –, 137
of T ∗Q, 7

Floer trajectories, 70
Floer’s equation, 93
flow

complete, 47, 49
flow line, 10, 47, 117
flow trajectory, 47
formal adjoint operator, 107
formal sum

upward finite, 200
Fréchet derivative, 105
Fredholm index, 99

of Fredholm map, 101
Fredholm map, 101
Fredholm operator, 99
free loop space, 5
freezing a variable, 11

Gâteaux derivative, 105
generic, 91
geodesic

periodic, 51
perturbed 1-periodic –, 6
prime closed –, 51
twisted –, 58

geodesic flow
twisted –, 58

geodesics are self-transverse,
51

geometrically distinct, 49
geometrically equivalent, 49

gluing map, 125
gradient ∇F , 46
Gray stability theorem, 162
Gromov trick, 122

Hamilton’s equations, 12
Hamiltonian, 46, 59

autonomous, 46
defining, 172, 187
defining –, 158
elderly –, 217
electromagnetic, 59
equation, 49
loop, 47, 49
M(orse)-regular –, 92
MS-regular –, 102
path, 47
trajectory, 47
young –, 216

Hamiltonian flow, 48
Hamiltonian trajectory, 49
Hamiltonian vector field, 14,

46
heat equation, 141
Hessian operator, 86
Hofer-Lemma, 120
homologous to the identity, 4
homotopic to the identity, 3
homotopies are smooth, 10
homotopy

constant – Hα, 130
Floer equation, 129
regular, 129
trajectory, 129

homotopy between Hamiltoni-
ans, 129

homotopy trajectories
energy identity, 137
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homotopy monotone, 137
Hopf degree theorem, 2
hypersurface, 154

bounding M , 154
closed –, 154

inside
◦
M of bounding –,

154
stable, 165

immersion, 45
index

Morse –, 212
signature –, 212
transverse Conley-

Zehnder –, 212
transverse Robbin-

Salamon –, 212
inner product, 35
inside of bounding hypersur-

face, 154
integrable complex structure,

39
integral curve, 10
integral singular homology, 73
isometry, 55
isotropic subspace, 35

Jordan Brouwer separation
theorem, 155

kinetic energy, 58
Kuiper’s theorem, 79

Lagrange multiplier, 188
Lagrangian, 59, 141

electromagnetic, 59
Tonelli –, 59

Lagrangian formulation, 58

Lagrangian subspace, 35
leaf-wise intersection, 224
leaf-wise intersection point

(LIP), 224
Lefschetz fixed point theory, 2
lemma

Hofer-, 120
wonder-, 114, 120

level set
regular –, 101

LHS (left hand side), 84
Lie derivative, 49
linearization of a section, 110
Liouville

flow, 166
vector field, 166

Liouville form, 12, 53
Liouville vector field

associated, 170, 171
canonical, 176
fiberwise radial, 176
outward pointing, 170

local dimension, 213
locally constant, 99
loop, 10, 43

k-fold cover of –, 45
change of speed, 45
embedded –, 44, 46
Hamiltonian –, 47
minimal period of –, 43
prime period of –, 43
running backwards, 44
simple –, 44

loop space
L2 inner product, 81

loops
geometrically distinct –,

49
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geometrically equivalent –
, 49

Lorentz force, 56, 58

M-regular, 92
magnetic field, 56
magnetic vector potential, 56
manifold, 10

closed Q = Qn, 11
manifold-with-boundary, 10
manifolds of maps, 84
Maslov cycle, 25
Maslov index, 27

canonical –, 30
Maxwell’s equations, 56
meager subset, 89
mechanical Hamiltonian, 6
midlife crisis, 221
minimal period, 43
moduli space, 94

of connecting cascade tra-
jectories, 201

moduli spaces
parametrized, 131

monotone continuation map,
137

monotone homotopy, 137
Morse boundary operator, 74
Morse chain group, 73
Morse coboundary operators,

77
Morse cochain groups, 76
Morse cohomology, 77
Morse function, 73, 87

C2 small –, 134
Morse index, 7, 73, 110, 212

relative, 110
Morse theory

relative, 67
Morse-Bott function, 193
Morse-regular Hamiltonian,

92
Morse-Smale condition, 74,

103, 142
Morse-Smale Hamiltonian,

102
Morse-Smale pair, 74
MS-regular Hamiltonian, 102
multiply cover, 66
multiply covered loop, 49

natural isomorphism, 118
negative space, 73
Newton method, 126
non-degenerate, 87

contact type hypersur-
face, 193

critical point, 73
periodic trajectory, 51
transverse, 193

non-degenerate case, 92
non-periodic, 42
normalization

canonical, 13
standard, 13

nowhere dense, 89

open problems , 104, 186, 222
open map, 100
open mapping theorem, 100
operator

formal adjoint –, 107
operator norm, 99
orbit, 47

closed, 47
closed –, 10
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orbits
collision –, 227

orientation of a critical point,
73

oriented critical point, 73
overlap map, 40

pair of pants, 38
Palais-Smale condition, 79, 80
Palais-Smale sequence, 80
parallel transport, 86
parameter manifold in TS-t,

111
parametrized family of hy-

persurfaces modeled
on S, 164

parity, 32
partner pair property, 130
path, 42

τ -periodic –, 42
associated periodic –, 42
backward –, 44
closed –, 42
constant –, 42
non-periodic –, 42
period of –, 42
periodic –, 42

divisor part of – –, 43
prime part of – –, 44

point –, 42
simple –, 42
time reversed –, 44
trivial period of –, 42

path:Hamiltonian, 47
paths

finite –
consecutive – –, 44

period

minimal –, 43
negative, 44
of closed flow line, 156
of path, 42
prime –, 43

trajectory – –, 47
trivial –, 42

periodic
τ - –, 42
vector field, 51

periodic geodesic, 51
periodic path, 42

divisor part of –, 43
periodic point, 2
periodic trajectories

geometrically distinct –,
49

set of 1- –, 66
periodic trajectory, 10
periods

set of –, 42
perturbation

elderly, 225
perturbed 1-periodic geodesic,

6
perturbed Rabinowitz action

functional, 216
Poincaré, 2
Poincaré duality, 139
Poincaré recurrence theorem,

157
point curve, 42
pointwise bounded, 85
potential, 6

electric, 56
magnetic, 56

potential energy, 141
power plant of RFH, 189
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precompact set, 99
prime

critical point, 190
time-1 – speed factor, 190

prime part
of periodic path, 44

prime period, 43
trajectory –, 47

prime period spectrum, 191
prime speed, 190
primitive of differential form,

11
product

wedge, 12
proper map, 114
pseudo-holomorphic planes,

122
PSS isomorphism, 135
push-forward orientation, 74

Rabinowitz action functional,
183

(unperturbed) –, 188
perturbed –, 216

Rabinowitz Floer homology
for Reeb chords, 227

Rabinowitz-Floer homology,
186, 197, 203

radial vector field, 11
recurrent point, 157
Reeb

flow, 163
vector field, 163

Reeb flow
linearized rescaled –, 211

Reeb loop
signed –, 189

transverse non-
degenerate –, 193

Reeb vector field, 161
regular

homotopy, 129
M- –, 92
Morse- –, 92

regular Hamiltonian, 87
regular hypersurface, 154
regular level set, 101
regular pair, 116
regular value, 101, 156
regular value theorem, 101
relative Morse index, 110
relative Morse theory, 67
residual subsets, 89
residuals, 89
restricted contact type, 166,

184
RHS (right hand side), 84
Riemannian metric, 23
right inverse, 100
Robbin-Salamon cycle, 28
Robbin-Salamon index, 28, 36

Sard-Smale theorem, 112
second axiom of countability,

10
second category in the sense of

Baire, 89
Seifert conjecture, 157
separable Banach space, 110
set of 1-periodic Hamiltonian

loops, 51
set of all periods, 42
set of defining Hamiltonians,

158
signature, 30
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signature index, 212
simple

critical point of AF , 190
simple curve, 42
simple loop, 44
simple path, 42
Sobolev spaces, 102
space of defining Hamiltoni-

ans, 171
spanning disk, 79
spectral flow, 109

crossing form, 109
spectrum

action –, 191
prime period –, 191

speed factor, 237
spin, 143
stabilization, 173
stable hypersurface, 165, 178
standard almost complex

structure, 11
standard normalization

of Conley-Zehnder index,
13

star-shaped, 160
fiberwise, 176

submanifold
coisotropic, 227

subset
comeager, 89
meager, 89
nowhere dense, 89
of 2nd category (Baire),

89
residual, 89

subspace
coisotropic –, 35
isotropic –, 35

support, 216
symplectic

dilation, 161
origin of name, 9

symplectic action, 5, 79
no flow, 84
not bounded, 79
not well defined, 79

symplectic action functional,
141

perturbed –, 14
symplectic basis, 35
symplectic bilinear form, 23
symplectic complement, 35
symplectic field theory (SFT),

174
symplectic form, 23

canonical, 12
on S2, 24
on cotangent bundle, 53
standard, 11

symplectic gradient, 46
symplectic linear group, 24
symplectic manifold

convex at infinity, 172
convex exact –, 172
exact, 170

symplectic path
distinct –, 13
normalizing –, 13

symplectic structure
twisted, 60
twisted –, 58

symplectic vector field, 49
symplectic vector space, 34
symplectically

aspherical, 72
atoroidal, 80
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symplectomorphism, 35, 48

tautological 1-form, 53
theorem

Arzelà-Ascoli –, 85
Frobenius’ –, 163
Gray stability –, 162
Kuiper’s –, 79
Poincaré’s last geometric

–, 2
regular value –, 101
Sard-Smale –, 112
Viterbo’s –, 142

Thom-Smale transversality,
111

openness, 114
three body problem, 224
time of first return, 44
time reversed path, 44
time shift, 45
Tonelli Lagrangians, 59
topological complement, 100
towers of critical points, 191
trajectories

geometrically distinct –,
49

trajectory, 10, 47, 93
homotopy –, 129
periodic –, 10
prime period, 47

transversality
Thom-Smale –, 110

transverse Conley-Zehnder in-
dex, 212

transverse non-degenerate
critical point, 212
Reeb loop, 193

transverse Robbin-Salamon
index, 212

trivial period, 42
trivialization, 38

symplectic, 40
unitary –, 38

twist condition, 2
twisted geodesic flow, 58
twisted geodesics, 58
twisted symplectic structure,

58, 60

un/stable manifolds, 73
universal moduli space, 113
universal section, 112
upsilon, 187, 196
upward connecting cascade

trajectory, 200
upward finite formal sums, 200
upward finiteness condition,

199

variable
freeze a –, 11

vector field
periodic, 51

vector bundle
complex –, 37
Hermitian –, 37
isomorphism, 37
symplectic –, 37
trivial –, 41
underlying complex –, 37

vector field
fiberwise radial –, 176

vector spaces are real, 11

wedge product, 12
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Weinstein conjecture, 8, 160
winding interval of path, 33
winding number of eigenvalue,

34
Wonder-Lemma, 114, 120

young cutoff function, 216
young Hamiltonian, 216

Zehnder tori, 178
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