Joa Weber

Álgebra Linear

MA327 – Turma P

Lista 2b – Soma direta e projeção

Definição 1. A soma de dois subespaços F_1 e F_2 de um espaço vetorial E é o subespaço $F_1 + F_2 := \{u + v \mid u \in F_1, v \in F_2\} \subset E$. No caso $F_1 \cap F_2 = \{0\}$ a soma é chamada soma direta e escreve-se $F_1 \oplus F_2$ em vez de $F_1 + F_2$.

Definição 2. Um operador linear $P \in \mathcal{L}(E)$ é chamado uma *projeção* de E se ele é idempotente: $P^2 = P$.

Exercícios.

- a) No plano \mathbb{R}^2 , considere as retas F_1 e F_2 , definidas respectivamente pelas equações y = ax e y = bx, onde $a \neq b$ são números reais.
 - i) Exprima $v = (x, y) \in \mathbb{R}^2$ como soma de um vetor de F_1 e um de F_2 .
 - ii) Seja $P = P_{F_1,F_2} \in \mathcal{L}(\mathbb{R}^2)$ a projeção sobre F_1 paralelamente a F_2 . Obtenha a matriz [P] de P.*
 - iii) Encontre a matriz [S] da reflexão $S = S_{F_2,F_1} : \mathbb{R}^2 \to \mathbb{R}^2$, em torno da reta F_2 , paralelamente a F_1 .[†]
- b) Exprima $v=(x,y,z)\in\mathbb{R}^3$ como soma de um vetor do plano F_1 , cuja equação é x+y-z=0, com um vetor da reta F_2 , gerada pelo vetor (1,2,1). Conclua que $\mathbb{R}^3=F_1\oplus F_2$. Determine a matriz [P] da projeção $P:\mathbb{R}^3\to\mathbb{R}^3$ que tem imagem F_1 e núcleo F_2 .
- c) Dado $P \in \mathcal{L}(E)$, prove ou desprove:
 - i) $E = N(P) \oplus Im(P) \Rightarrow P$ é projeção de E.
 - ii) $E = N(P) + Im(P) \Rightarrow P$ é projeção de E.
 - iii) P é projeção \Leftrightarrow I P é projeção.
 - iv) P é projeção \Leftrightarrow N(P) = Im(I P) (\Leftrightarrow N(I P) = Im(P)).
- d) Sejam $F_1, F_2 \subset E$ subespaços com dim $F_1 + \dim F_2 = \dim E < \infty$. Prove que $E = F_1 \oplus F_2 \iff F_1 \cap F_2 = \{0\}.$
- e) Sejam $P_1, \ldots, P_n : E \to E$ operadores lineares tais que

$$P_1 + \cdots + P_n = I$$
 e $\forall i \neq j : P_i P_j = 0.$

Prove que estes operadores são projeções.

^{*}Lembre-se que $[P]:=[P]_{\mathcal{E},\mathcal{E}}$ denota a matriz de P em relação à base canônica $\mathcal{E}.$

[†]Suponha $E=F_1\oplus F_2$. Então cada um $w\in E$ é da forma w=u+v para únicos elementos $u\in F_1$ e $v\in F_2$. Na aula mostramos $P_{F_1,F_2}w=u$. (Fato: $S_{F_1,F_2}=P_{F_1,F_2}-P_{F_2,F_1}$.) Portanto $S_{F_1,F_2}w=u-v$.

- f) Sejam $P,Q\in\mathcal{L}(E)$ projeções, prove que as seguintes afirmações são equivalentes:
 - i) P + Q é uma projeção;
 - ii) PQ + QP = 0;
 - iii) PQ = QP = 0.

[Para provar que ii) \Rightarrow iii), multiplique à esquerda, e depois à direita, por P.]

- g) Seja $E=F_1\oplus F_2$. O gráfico de uma transformação linear $B:F_1\to F_2$ é o subconjunto graph $B:=\{v+Bv\mid v\in F_1\}$ de E. Prove que
 - i) graph B é um subespaço de E.
 - ii) a projeção $P=P_{F_1,F_2}:E\to E,$ restrita a graph B, define um isomorfismo entre graph B e $F_1.$