Capítulo 10

A adjunta

Neste¹ Capítulo 10 consideramos exclusivamente espaços vetoriais de dimensão finita com produtos internos

$$E = (E, \langle \cdot, \cdot \rangle_E), \qquad F = (F, \langle \cdot, \cdot \rangle_F),$$

e dimensões $n := \dim E$ e $m := \dim F$. Dévido aos produtos internos o corpo sempre será $\mathbb{K} = \mathbb{R}$. Em vez de $\langle \cdot, \cdot \rangle_E$ ou $\langle \cdot, \cdot \rangle_F$ escrevemos simplesmente $\langle \cdot, \cdot \rangle$, o contexto indica do qual produto interno trata-se, aquele de E ou F.

10.1 Definição e propriedades

Deixa repetir o Teorema 9.1.14. Dimensão finita é essencial.²

Teorema 10.1.1. \acute{E} um isomorfismo a transformação linear definida assim

$$D = D_E = D_{\langle \cdot, \cdot \rangle_E} \colon E \to E^* := \mathcal{L}(E, \mathbb{R})$$
$$v \mapsto \langle v, \cdot \rangle$$
(10.1.1)

onde $\langle v, \cdot \rangle \colon E \to \mathbb{R}$ é a transformação linear $u \mapsto \langle v, u \rangle$.

Demonstração. Linear: Para $\alpha, \beta \in \mathbb{R}$ e $u, v \in E$ axioma (BL) da

$$D(\alpha u + \beta v) = \langle \alpha u + \beta v, \cdot \rangle = \alpha \langle u, \cdot \rangle + \beta \langle v, \cdot \rangle = \alpha Du + \alpha Dv.$$

Bijetivo: Segundo Corolário 5.2.8 as dimensões são iguais

$$\dim E^* = \dim \mathcal{L}(E, \mathbb{R}) = \dim E \cdot \dim \mathbb{R} = \dim E < \infty.$$

Segundo Corolário 6.5.2 é suficiente mostrar injetivo: Suponha $Dv = \mathcal{O} \in E^*$. Obtemos $\forall u \in E \colon \langle v, u \rangle = (Dv)u = \mathcal{O}v = 0$. Então axioma (ND)' em Lema 9.1.2 diz que $v = \mathcal{O} \in E$. Isso mostra que D é injetivo, assim bijetivo.

 $^{^{1}}$ Cap. 10 de MA327 2021-2, autor Joa Weber, atualizado: 3 de junho de 2024

 $^{^2}$ Na dimensão infinita usa-se o espaço dual contínuo $\tilde{E}^*,$ composto dos funcionais lineares contínuas. O famoso **teorema de Riesz** diz que $E \to \tilde{E}^*, \, v \mapsto \langle v, \cdot \rangle$ é um isomorfismo.

Definição 10.1.2 (Adjunta). A adjunta de uma transformação linear $A \colon E \to F$ entre espaços vetoriais com produtos internos é num ponto w a composição

$$A^* : F \to E$$

$$w \mapsto (D_E)^{-1} \langle w, A \cdot \rangle_F$$

das transformações lineares $[v \mapsto \langle w, Av \rangle_F] \in E^* \in (D_E)^{-1} : E^* \to E$.

Proposição 10.1.3 (Critério para adjunta). Sejam $y \in E$ e $w \in F$, então

$$y = A^* w \Leftrightarrow \langle y, v \rangle = \langle w, Av \rangle \ \forall v \in E.$$

Demonstração. Dado $y \in E$ e $w \in F$, são equivalente

$$y = A^*w := (D_E)^{-1} \langle w, A \cdot \rangle_F \quad \Leftrightarrow \quad \langle w, A \cdot \rangle_F = D_E y := \langle y, \cdot \rangle_E.$$

Corolário 10.1.4. Seja $A \in \mathcal{L}(E, F)$, então

$$\langle A^* w, v \rangle = \langle w, Av \rangle \tag{10.1.2}$$

para cada um $w \in F$ e $v \in E$.

Demonstração. Proposição 10.1.3 "⇒".

Teorema 10.1.5 (Regras básicas para a adjunta).

- (i) $I = I^*$
- (ii) $(A+B)^* = A^* + B^*$
- (iii) $(\alpha A)^* = \alpha A^*$
- (iv) $(BA)^* = A^*B^*$
- $(v) (A^*)^* = A$

Demonstração. Para cada um de (i-v) aplique (10.1.2) junto com Lema 9.1.3. Ilustramos o principio provando (iv) deixando os outros itens para o leitor. Vale $\langle (BA)^*w, v \rangle = \langle w, BAv \rangle = \langle B^*w, Av \rangle = \langle A^*B^*w, v \rangle$.

Teorema 10.1.6 (Injetividade e sobrejetivade de $A \in A^*$).

- (i) A injetivo $\Leftrightarrow A^*$ sobrejetivo
- (ii) $A \ sobrejetivo \Leftrightarrow A^* \ injetivo$
- (iii) $A \ isomorfismo \Leftrightarrow A^* \ isomorfismo$

Demonstração. (i) São equivalente

Ainjetivo $\stackrel{(1)}{\Leftrightarrow}$ existe inversa à esquerda B de $A\colon\ BA=I_E\ \stackrel{*}{\Leftrightarrow}\ A^*B^*=I_E$

- $\overset{(2)}{\Leftrightarrow}$ existe inversa à direita $C \; (=B^*)$ de $A^* \colon \; A^*C = I_E$
- $\overset{(3)}{\Leftrightarrow} A^* \text{ sobrejetivo}$

conforme (1) Teorema 6.3.6, (2) Teorema 10.1.5 (i,iv), e (3) Teorema 6.2.3.

- (ii) Parte (i) diz que $B := A^*$ injetivo \Leftrightarrow sobrejetividade de $B^* = (A^*)^* = A$.
- (iii) Isomorfismo é linear e bijetivo (injetivo e sobrejetivo). Aplique (i) e (ii). \qed

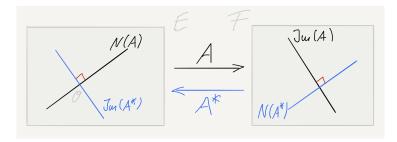


Figura 10.1: Operador A e sua adjunta A^* tem subespaços ortogonais

10.1.1 Adjunta e ortogonalidade

Teorema 10.1.7. Seja $A^*: F \to E$ a adjunta de $A: E \to F$. Os dois subspaços naturais de E são complementos ortogonais, igualmente para F, ou seja

$$N(A) = Im(A^*)^{\perp}, \qquad Im(A) = N(A^*)^{\perp}.$$
 (10.1.3)

Demonstração. $v \in N(A) \Leftrightarrow Av = \mathcal{O} \Leftrightarrow \forall w \in F : 0 = \langle w, Av \rangle = \langle A^*w, v \rangle \Leftrightarrow 0 = \langle u, v \rangle \ \forall u \in Im(A^*) \Leftrightarrow v \in Im(A^*)^{\perp}$. Analogamente para afirmação dois.

Corolário 10.1.8. a) Para $A \in \mathcal{L}(E, F)$ vale igualdade posto $(A) = \text{posto}(A^*)$. b) Para $A \in \mathcal{L}(E)$ ainda os núcleos são da mesma dimensão $N(A) = N(A^*)$.

Demonstração. a) Segundo Teorema 10.1.7 e Proposição 9.6.4 (ii) vale

$$\dim \operatorname{Im}(A^*) = \dim \operatorname{N}(A)^{\perp} = \dim E - \dim \operatorname{N}(A) = \dim \operatorname{Im}(A)$$
 (10.1.4)

onde o ultimo passo é o Teorema 6.5.1 de núcleo e imagem. b) Teorema 6.5.1 diz que $\dim N(A) + \operatorname{posto}(A) = \dim E = \dim N(A^*) + \operatorname{posto}(A^*)$, aplique a). \square

Proposição 10.1.9. Seja $A \in \mathcal{L}(E)$ e seja $F \subset E$ um subespaço, então

F subspaço invariante por $A \Leftrightarrow F^{\perp}$ subspaço invariante por A^* .

Demonstração."⇒" Dado $g\in F^\perp,$ a mostrar: $A^*g\in F^\perp.$ Seja $f\in F,$ então

$$\langle f, A^*g \rangle = \langle \underbrace{Af}_{\in F}, \underbrace{g}_{\in F^{\perp}} \rangle = 0.$$

Como $f \in F$ foi arbitrário, segue que $A^*g \in F^{\perp}$. " \Leftarrow " Aplique a parte já provada " \Rightarrow " para $G := F^{\perp}$ e $B := A^*$ usando que vale

$$G^{\perp} = (F^{\perp})^{\perp} = F, \qquad B^* = (A^*)^* = A,$$

segundo, respectivamente, Proposição 9.6.4 (iv) e Teorema 10.1.5 (v).

Lema 10.1.10. Dado $A, B \in \mathcal{L}(E)$, então

$$B^*A = \mathcal{O} \qquad \Rightarrow \qquad \forall v \in E \colon Av \perp Bv.$$

Particularmente $A^*A = \mathcal{O} \Rightarrow A = \mathcal{O}$.

 \mathcal{O} é a transformação nula $\mathcal{O}_{\mathcal{L}(E)}$

Demonstração. Seja $v \in E$. Vale $\langle Av, Bv \rangle = \langle B^*Av, v \rangle = \langle \mathcal{O}v, v \rangle = \langle \mathcal{O}, v \rangle = 0$ (onde $\langle \mathcal{O}, v \rangle = \langle \mathcal{O}_E, v \rangle$). Particularmente vale $\langle Av, Av \rangle = 0$. Assim $Av = \mathcal{O}$ segundo axioma (POS). Como $v \in E$ foi arbitrário o operador $A = \mathcal{O}$ é nulo. \square

10.1.2 Matriz da adjunta

Teorema 10.1.11 (A matriz da adjunta é a matriz transposta). Seja $\mathbf{a} = (a_{ij}) := [A]_{\mathcal{X},\mathcal{Y}}$ a matriz de uma transformação linear $A : E \to F$ em respeito a bases ordenadas ortenormais $\mathcal{X} = \{\xi_1, \dots, \xi_n\}$ e $\mathcal{Y} = \{\eta_1, \dots, \eta_m\}$. Então

(i)
$$\mathbf{a} = [A]_{\mathcal{X},\mathcal{Y}} \Leftrightarrow \mathbf{a}^t = [A^*]_{\mathcal{Y},\mathcal{X}}$$

(ii)
$$a_{ij} = \langle \eta_i, A\xi_j \rangle$$

Demonstração. (i) Seja $\mathbf{a} := [A]_{\mathcal{X},\mathcal{Y}}$ e $\mathbf{b} := [A^*]_{\mathcal{Y},\mathcal{X}}$. Segundo da definição das matrizes temos $A\xi_j = \sum_{\ell=1}^m \eta_\ell a_{\ell j}$ para $j=1,\ldots,n$ e $A^*\eta_i = \sum_{r=1}^n \xi_r b_{ri}$ para $i=1,\ldots,m$. Usando isso e axiomas (BL,SIM) obtemos

$$b_{ji} = \sum_{r=1}^{n} b_{ri} \underbrace{\frac{\delta_{jr}}{\langle \xi_{j}, \xi_{r} \rangle}}_{\langle \xi_{j}, \xi_{r} \rangle} = \left\langle \xi_{j}, \sum_{r=1}^{n} \xi_{r} b_{ri} \right\rangle = \left\langle A^{*} \eta_{i}, \xi_{j} \right\rangle$$

$$\stackrel{4}{=} \langle \eta_i, \underbrace{A\xi_j}_{\sum_{\ell} \eta_{\ell} a_{\ell j}} \rangle = \sum_{\ell=1}^m a_{\ell j} \underbrace{\langle \eta_i, \eta_{\ell} \rangle}_{=\delta_{ij}} = a_{ij}$$

onde passo 4 é Proposição 10.1.3. Bases ON são essenciais. Já provamos (ii). \Box

O próximo resultado re-confirma o Teorema 4.2.2 dizendo que o posto de uma matriz é igual ao posto da matriz transposta.

Corolário 10.1.12. Consideramos uma matriz real $\mathbf{a} \in \mathrm{M}(m \times n)$ como transformação linear $\mathbb{R}^n \to \mathbb{R}^m$ entre espaços cada um munido do produto euclidiano e da base canónica. Então a adjunta \mathbf{a}^* da matriz \mathbf{a} é a matriz transposta, em símbolos $\mathbf{a}^* = \mathbf{a}^t$. Assim posto(\mathbf{a}) = posto(\mathbf{a}^t).

Demonstração. Teorema 10.1.11 (ii).

Comentário 10.1.13. As regras básicas do Teorema 10.1.5 tomam para matrizes (visto como transformações lineares e usando $\mathbf{a}^* = \mathbf{a}^t$) a forma seguinte

$$\mathbb{1}^t = \mathbb{1}, \quad (\mathbf{a} + \mathbf{b})^t = \mathbf{a}^t + \mathbf{b}^t, \quad (\alpha \mathbf{a})^t = \alpha \mathbf{a}^t, \quad (\mathbf{b} \mathbf{a})^t = \mathbf{a}^t \mathbf{b}^t, \quad (\mathbf{a}^t)^t = \mathbf{a}.$$

Sim, estas regras prova-se mais rápido diretamente, exceto tal-vez $(\mathbf{ba})^t = \mathbf{a}^t \mathbf{b}^t$.

Comentário 10.1.14 (Injetividade e sobrejetivade de \mathbf{a} e \mathbf{a}^t). As afirmações do Teorema 10.1.6 tomam a forma seguinte para matrizes $\mathbf{a} \in \mathrm{M}(m \times n)$ – visto como transformações lineares e usando $\mathbf{a}^* = \mathbf{a}^t$.

- (i) \mathbf{a} injetivo $\Leftrightarrow \mathbf{a}^t$ sobrejetivo
- (ii) **a** sobrejetivo \Leftrightarrow **a**^t injetivo
- (iii) \mathbf{a} isomorfismo $\Leftrightarrow \mathbf{a}^t$ isomorfismo

Corolário 10.1.15. Seja $\mathbf{a} \in M(m \times n)$ e $b \in \mathbb{R}^m$, então

$$\mathbf{a}x = b \ possui \ uma \ solução \qquad \Leftrightarrow \qquad b \perp \mathbf{N}(\mathbf{a}^t).$$

Demonstração. Segundo Exemplo 6.0.21 são equivalente $\mathbf{a}x = b \Leftrightarrow b \in \operatorname{Im}(\mathbf{a})$, mas $\operatorname{Im}(\mathbf{a}) = \operatorname{N}(\mathbf{a}^t)^{\perp}$ segundo Teorema 10.1.7.

10.2 Fórmula para inversa à direita/esquerda

Proposição 10.2.1 (Inversas à direita e esquerda). Seja $A \in \mathcal{L}(E, F)$.

- a) A sobrejetivo $\Rightarrow AA^* \in \mathcal{L}(F)$ é invertível e $AA^*(AA^*)^{-1} = I_F$.
- b) A injetivo $\Rightarrow A^*A \in \mathcal{L}(E)$ é invertível e $(A^*A)^{-1}A^*A = I_E$.

Demonstração. a) Segundo Teorema 10.1.6 sobrejetividade de A significa injetividade de A^* . Isso implica³ que AA^* : $F \to F$ é injetivo, assim segundo Corolário 6.5.2 (dimensão igual) bijetivo, então um isomorfismo.

b) Aplique a) para
$$B := A^*$$
, use $(A^*)^* = A$, segue $BB^* = A^*A$ invertivel. \square

De fato, também valem as implicações opostas ' \Leftarrow ' como vamos ver no Corolário 11.4.9. O posto de AA^* e de A^*A é igual ao posto de A (Teorema 11.4.8).

Lema 10.2.2. Dado $A \in \mathcal{L}(E, F)$, as restrições

$$A \mid : \operatorname{Im}(A^*) \xrightarrow{\simeq} \operatorname{Im}(A), \quad A^* \mid : \operatorname{Im}(A) \xrightarrow{\simeq} \operatorname{Im}(A^*),$$

são isomorfismos (ainda que geralmente não são inversas um do outro).

Demonstração. É bem definido e injetivo como $\operatorname{Im}(A^*) = \operatorname{N}(A)^{\perp}$, então bijetivo como $\operatorname{dim} \operatorname{Im}(A) = \operatorname{dim} \operatorname{Im}(A^*)$ segundo (10.1.4). Analogamente para A^* .

Exemplo 10.2.3 (Não são inversas um do outro).

$$A:=\begin{bmatrix}1&1\\0&1\end{bmatrix}\in\mathcal{L}(\mathbb{R}^2),\qquad A^*=\begin{bmatrix}1&0\\1&1\end{bmatrix}\in\mathcal{L}(\mathbb{R}^2).$$

São invertíveis como o determinante é não-nulo, assim sobrejetivo, ou seja ${\rm Im}(A)={\rm Im}(A^*)=\mathbb{R}^2,$ mas

$$A^*A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \neq \mathbb{1}$$

então $A^* \neq A^{-1}$.

³ Suponha $v \in N(AA^*)$, ou seja $AA^*v = \mathcal{O}$, então $Im(A^*) \ni A^*v \in N(A) = Im(A^*)^{\perp}$. Consequentemente $A^*v = \mathcal{O}$, então $v = \mathcal{O}$ como A^* é injetivo.

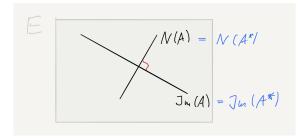


Figura 10.2: Operador normal $A \iff A^*$ normal)

10.3 Traço – produto interno em $\mathcal{L}(E, F)$

Exercício 10.3.1.

Considere o produto interno no espaço vetorial $M(n \times n)$ definido por

$$\langle \mathbf{a}, \mathbf{b} \rangle := \operatorname{tr} \left(\mathbf{a}^t \mathbf{b} \right) = \sum_{i,j} a_{ij} b_{ij}.$$

Mostre que o subespaço \mathcal{A} das matrizes anti-simétricas é o complemento ortogonal em $M(n \times n)$ do subespaço \mathcal{S} das matrizes simétricas:

$$\mathcal{A} = \mathcal{S}^{\perp}$$
 e assim $\mathcal{S} \oplus \mathcal{A} = M(n \times n)$.

10.4 Operadores normais

Definição 10.4.1. Consideramos operadores lineares A em E as quais comutam com sua adjunta $AA^* = A^*A$. Tal A é chamado de **operador normal**.

Exemplo 10.4.2. São normais operadores $A \in \mathcal{L}(E)$ tais que

a)
$$A^* = A$$
; operadores auto-adjuntos
b) $A^* = A^{-1}$. operadores ortogonais

Um operador A é normal se e somente sua adjunta A^* é normal, e neste caso cada um imagem Av e A^*v tem a mesma norma. Operadores normais tem a propriedade que A e a adjunta A^* tem os mesmos autovalores e autovetores associadas, o mesmo núcleo e a mesma imagem as quais, além disso, são complementos ortogonais um do outro como ilustrado na Figura 10.2.

Exercício 10.4.3. Seja $A \in \mathcal{L}(E)$ normal. Prove que

- a) a adjunta A^* é normal também;
- b) $|Av| = |A^*v|$ para todos os vetores v de E;
- c) v autovetor de A com autovalor $\lambda \Leftrightarrow v$ autovetor de A* com autovalor λ ;
- d) $N(A) = N(A^*)$ e $Im(A) = Im(A^*)$. Agora lembre que $N(A^*) = (Im(A))^{\perp}$.

[Dicas: b) Calcule o quadrado com produto interno. c) $0 = |(A - \lambda I)v|^2 = \dots$ d) Para núcleo use b) e para imagem use complementos ortogonais (10.1.3).]

139

10.5 Exercícios

Para todos os exercícios seja E um espaço vetorial de dimensão $n<\infty,$ munido de um produto interno.

1. Determine uma inversa à direita para

$$A: \mathbb{R}^3 \to \mathbb{R}^2$$
, $(x, y, z) \mapsto (x + 2y + 3z, 2x - y - z)$,

e uma inversa à esquerda para

$$B: \mathbb{R}^2 \to \mathbb{R}^4$$
, $(x,y) \mapsto (x+2y, 2x-y, x+3y, 4x+y)$.

2. Dado

$$\mathbf{a} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix},$$

calcule \mathbf{aa}^t e, a partir daí, encontre uma matriz $\mathbf{b} \in M(3 \times 2)$ tal que $\mathbf{ab} = \mathbb{1}_2$.

- 3. Seja P uma projeção em E $(P \in \mathcal{L}(E) \in P^2 = P)$. Prove que a adjunta P^* também é uma projeção em E. Dê um exemplo em que $P^* \neq P$.
- 4. Uma matriz quadrada **a** chama-se diagonalizável quando é semelhante a uma matriz $\mathbf{d} = (d_{ij})$ do tipo diagonal $(d_{ij} = 0 \text{ se } i \neq j)$, ou seja, quando existe **p** invertível tal que $\mathbf{p}^{-1}\mathbf{ap} = \mathbf{d}$. Prove que:
 - (a) **a** diagonalizável \Rightarrow **a**^t diagonalizável.
 - (b) Se a matriz do operador $A \in \mathcal{L}(E)$ relativamente a uma base de E é diagonalizável, então o é em relação a qualquer outra base.
- 5. Seja $A \in \mathcal{L}(E)$.
 - (a) Seja $E = F_1 \oplus \cdots \oplus F_k$ e cada F_i é um subespaço invariante por A. Tome uma base ordenada \mathcal{V} de E que seja uma união de bases das F_i . Determine a forma da matriz de A na base \mathcal{V} .
 - (b) Se E possui uma base formada por autovetores de A, prove que existe também uma base de E formada por autovetores de $A^*:E\to E$. [Dica: (a).]