Joa Weber

Álgebra Linear

MA327 – Turma O

Lista 1a – Conjuntos, corpos, espaços vetoriais

Definição 1. Um **conjunto** X é composto de elementos os quais são dois-a-dois diferentes. O conjunto que não contem nenhum elemento é chamado **o conjunto vazio** e denotado \emptyset . Denotamos de |X| o **número de elementos de um conjunto** quando o número é finito. Um **subconjunto** de um conjunto X é um conjunto X tal que cada um elemento de X é elemento de X. Notação: X Cobserve que conforme esta definição, o conjunto vazio X é subconjunto de todos conjuntos: para todo conjunto X temos X temos X conjunto X temos X conjunto X temos X conjunto X temos X temos X conjunto X temos X temos X conjunto X temos X

Definição 2. Um conjunto $G \neq \emptyset$ munido de uma operação

$$*: G \times G \to G,$$

 $(f,g) \mapsto f * g$

é chamado um **grupo** se vale o seguinte.

- a) Associatividade: f * (g * h) = (f * g) * h para todos $f, g, h \in G$;
- b) Elemento neutro: Existe $e \in G$ tal que e * g = g e g * e = g para todo $g \in G$;
- c) Elemento inverso: Para todo $g \in G$ existe $\bar{g} \in G$ tal que $g * \bar{g} = e$ e $\bar{g} * g = e$.

Um grupo é um grupo abeliano se também valer o seguinte.

d) Comutatividade: f * g = g * f para todos $f, g \in G$.

Definição 3. Um conjunto K munido de duas operações

$$+: \mathbb{K} \times \mathbb{K} \mapsto \mathbb{K}$$
 $\cdot: \mathbb{K} \times \mathbb{K} \mapsto \mathbb{K}$

é chamado um **corpo** se vale o seguinte.

- a) $(\mathbb{K}, +)$ é um grupo abeliano; (O elemento neutro seja denotado 0 e $-\alpha$ denota o inverso de $\alpha \in \mathbb{K}$)
- b) ($\mathbb{K} \setminus \{0\}$, ·) é um grupo abeliano; (O elemento neutro seja denotado 1 e α^{-1} denota o inverso de $\alpha \in \mathbb{K} \setminus \{0\}$)
- c) Distributividade: $(\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma$ para todos $\alpha, \beta, \gamma \in \mathbb{K}$.

Definição 4. Um **espaço vetorial sobre um corpo** é um quádruplo $(E, +, \cdot, \mathbb{K})^*$ composto de um conjunto E, um corpo \mathbb{K} , e duas operações

$$+: E \times E \to E,$$
 $\cdot: \mathbb{K} \times E \to E,$ $(v, w) \mapsto v + w$ $(\alpha, v) \mapsto \alpha v$

chamado de adição e multiplicação escalar, respectivamente, tal que:

- a) (E, +) é um grupo abeliano (o elemento neutro \mathcal{O} é chamado o vetor nulo);
- b) Distributividade: $\begin{cases} (\alpha + \beta)v = \alpha v + \beta v; \\ \alpha(v + w) = \alpha v + \alpha w; \end{cases}$
- c) Compatibilidade: $\begin{cases} (\alpha\beta)v = \alpha(\beta v); \\ 1v = v; \end{cases}$

onde as identidades tem que ser validos para todos $\alpha, \beta \in \mathbb{K}$ e todos $v, w \in E$.

Exercícios.

- 1) Seja $(E,+,\cdot,\mathbb{K})$ um espaço vetorial sobre um corpo \mathbb{K} . Sabemos da primeira aula que para todos $u,v,w\in E$ temos que $w+u=w+v\Rightarrow u=v$. Dado $\alpha\in\mathbb{K}$ e $w\in E$, mostre que
 - i) $\alpha w = \mathcal{O} \iff \alpha = 0 \text{ ou } w = \mathcal{O};$
 - ii) $(-\alpha)w = -(\alpha w)$.
- 2) Seja $n \in \mathbb{N}$ e $\mathbb{Z}_n := \{0, 1, \dots, n-1\}$ tal que para todos $a, b \in \mathbb{Z}_n$ temos

$$a +_n b := a + b \pmod{n}$$
 $a \cdot_n b := ab \pmod{n}$,

onde para todo $l \in \mathbb{Z}$: $l \pmod{n} := r$ se, e somente se, l = kn + r com $0 \le r < n$ e $k \in \mathbb{Z}$.

Fato. $(\mathbb{Z}_n, +_n, \cdot_n)$ é um corpo $\iff n$ é um número primo.

Seja n = 6:

- i) Calcule a tabela da adição e da multiplicação no caso \mathbb{Z}_6 .
- ii) Identifique os elementos neutros da adição e multiplicação em \mathbb{Z}_6 . Eles sempre existem?
- iii) Para todo $a \in \mathbb{Z}_6$ identifique o elemento inverso aditivo.
- iv) Para todo $a \in \mathbb{Z}_6 \setminus \{0\}$ identifique o elemento inverso multiplicativo, se existir.
- v) Mostre que \mathbb{Z}_6 não é um corpo.

^{*}fala-se abreviando: E é um espaço vetorial sobre \mathbb{K} ou simplemente E é um espaço vetorial.

- 3) Quais dos seguintes vetores de \mathbb{R}^2 formam um conjunto X linearmente independentes (LI)? Determine o conjunto X e explique porque é ou não é LI.
 - i) Os vetores (1,1) e (-1,-1).
 - ii) Os vetores $(2, \frac{1}{2})$ e $(\frac{1}{2}, 2)$.
 - iii) Os vetores (1,1) e (1,1).
 - iv) Os vetores u, v, e (1, 1) onde $u, v \in \mathbb{R}^2$ são quaisquer vetores fixos.

Desafio para os candidatos de 9 pontos ou mais:

Motivado pelas perguntas da Turma C na 1ª aula 2016-2 vamos dar um exemplo de um corpo onde a primeira operação não está relacionado à adição de números nem a segunda à multiplicação.

4) Um corpo (P,\cdot,\circ) onde \cdot não é adição e \circ não é multiplicação:

Dado $\alpha \in \mathbb{R}$, considere a função $p_\alpha:(0,\infty)\to(0,\infty),\,x\mapsto x^\alpha.$ Seja o conjunto

$$P := \{ p_{\alpha} \mid \alpha \in \mathbb{R} \}$$

de todas tais funções munido das operações

chamado de $multiplicação^{\dagger}$ e $composição^{\ddagger}$ de funções, respectivamente. Mostre:

- i) As duas operações são bem definidos: $p_{\alpha} \cdot p_{\beta} \in P$ e $p_{\alpha} \circ p_{\beta} \in P$;
- ii) (P, \cdot) é um grupo abeliano;
- iii) $(P \setminus \{p_0\}, \circ)$ é um grupo abeliano;
- iv) Distributividade: $(p_{\alpha} \cdot p_{\beta}) \circ p_{\gamma} = (p_{\alpha} \circ p_{\gamma}) \cdot (p_{\beta} \circ p_{\gamma})$ para todos $p_{\alpha}, p_{\beta}, p_{\gamma} \in P$.