Capítulo 2

Limites e Continuidade

2.1 Limites

Definição 2.1.1 (Limite). Seja¹ $f: \mathbb{R}^k \supset D \to \mathbb{R}$ uma função com domínio D. Seja $a \in \overline{D}$ um elemento da fechadura de D. Dizemos que o **limite** de f quando a variável u tende a a (existe e) é igual a $L \in \mathbb{R}$, em símbolos

$$\lim_{u \to a} f(u) = L,$$

se e somente se

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall u \in D: \ |u - a| < \delta \Rightarrow |f(u) - L| < \varepsilon.$$
 (2.1.1)

Caso o limite L existir, então L é independente do caminho C ao longo do que os pontos u aproximam-se a a:

Lema 2.1.2 (Critério). Suponha que o limite de f quando os pontos u tendem a a ao longo de um caminho C_1 é L_1 e ao longo de um caminho C_2 é L_2 com $L_1 \neq L_2$. Então $\lim_{u \to a} f(u)$ não existe.

Demonstração. Escolha
$$\varepsilon := (L_2 - L_1)/2$$
.

Exemplo 2.1.3 (Limites não existem). As funções são definidas em todo ponto menos da origem.

a) Seja $f: \mathbb{R} \to \mathbb{R}$ igual -1 para x < 0, igual 1 para x > 0.

$$\lim_{\substack{x\to 0\\x<0}} \underbrace{f(x)}_{\equiv -1} = -1 \neq 1 = \lim_{\substack{x\to 0\\x>0}} \underbrace{f(x)}_{\equiv 1}.$$

b)
$$\lim_{\substack{(x,y)\to(0,0)\\ \text{ao longo eixo-}x}} \underbrace{\frac{x^2-y^2}{x^2+y^2}}_{\equiv 1} = 1 \neq -1 = \lim_{\substack{(x,y)\to(0,0)\\ \text{ao longo eixo-}y}} \underbrace{\frac{x^2-y^2}{x^2+y^2}}_{\equiv -1}.$$

 $^{^{1}\}mathrm{Cap.}$ 2 de MA211 2024-1, autor Joa Weber: 6 de março de 2024

c)
$$\lim_{\substack{(x,y)\to(0,0)\\\text{an longo}\\\text{diagonal }y=x}} \frac{xy}{x^2+y^2} = \frac{1}{2} \neq -\frac{1}{2} = \lim_{\substack{(x,y)\to(0,0)\\\text{an longo}\\\text{anti-diagonal }y=-x}} \frac{xy}{x^2+y^2}. \quad (2.1.2)$$

Os limites ao longo do eixo-x, e ao longo do eixo-y, são ambos nulos.

d) Seja $m \in \mathbb{R}$ a inclinação da reta y = mx.

$$\lim_{(x,y)\to(0,0)\atop \text{reta }y=mx}\frac{xy^2}{x^2+y^4}=\lim_{x\to0}\frac{xm^2}{1+m^4x^2}=0\neq\frac{1}{2}=\lim_{(x,y)\to(0,0)\atop \text{paribola }x=y^2}\frac{xy^2}{x^2+y^4}.$$

O limite ao longo da parábola $x=-y^2$ é $-\frac{1}{2}.$

Exemplo 2.1.4 (Limite existe). O limite $\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2} = 0$ é nulo. $Demonstração\ 1\ (Definição\ 2.1.1)$. Escolha $\varepsilon > 0$ e defina $\delta := \varepsilon/3$. Seja $\sqrt{x^2+y^2} = |(x,y)-(0,0)| < \delta = \varepsilon/3$. Então

$$\left| \frac{3x^2y}{x^2 + y^2} - 0 \right| = 3|y| \cdot \frac{x^2}{x^2 + y^2} \le 3|y| = 3\sqrt{y^2} \le 3\sqrt{x^2 + y^2} \le 3\frac{\varepsilon}{3} = \varepsilon.$$

Demonstração 2 (Coordenadas polares 1.1.2). De $x = r \cos \theta$ e $y = r \sin \theta$ segue

$$\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2} = \lim_{r\to 0} \frac{3r^3\cos^2\theta\sin\theta}{r^2(\cos^2\theta+\sin^2\theta)} = 3\lim_{r\to 0} r\cos^2\theta\sin\theta = 0.$$

Seqüências em \mathbb{R}^k

As propriedades do limite de uma seqüência $(u^{\ell}) = (u^{\ell})_{\ell=1}^{\infty}$ em \mathbb{R}^k , onde cada um membro $u^{\ell} = (u_1^{\ell}, \dots, u_k^{\ell}) \in \mathbb{R}^k$ é uma lista ordenada de k números, são análogo a seqüências em \mathbb{R} . Dizemos que o limite definido por

$$\lim_{\ell \to \infty} u^{\ell} := \left(\lim_{\ell \to \infty} u_1^{\ell}, \dots, \lim_{\ell \to \infty} u_k^{\ell} \right)$$

existe, se os k limites à direita existem.

Lema 2.1.5. Dado seqüências $(u^{\ell}), (v^{\ell}) \subset \mathbb{R}^k$ com limites $a \in b$, respectivamente. Então vale o sequinte

- (i) $\lim_{\ell \to \infty} (u^{\ell} + v^{\ell}) = a + b;$
- (ii) $\lim_{\ell \to \infty} (u^{\ell} \cdot v^{\ell}) = a \cdot b$.

Lema 2.1.6 (Teorema do sanduíche). Dado três seqüências $(u^{\ell}) \leq (v^{\ell}) \leq (w^{\ell})^2$ em \mathbb{R}^k tal que $\lim_{\ell \to \infty} u^{\ell} = a = \lim_{\ell \to \infty} w^{\ell}$. Então $\lim_{\ell \to \infty} v^{\ell} = a$.

 $[\]begin{array}{c} 2 \ (u^{\ell}) \leq (v^{\ell}) \leq (w^{\ell}) \ :\Leftrightarrow \ \forall \ell \in \mathbb{N} \colon \text{ membros correspondentes de } u^{\ell}, \ v^{\ell}, \ \text{e} \ W^{\ell} \ \text{satisfazem} \\ u^{\ell}_1 \leq v^{\ell}_1 \leq w^{\ell}_1 \ , \quad u^{\ell}_2 \leq v^{\ell}_2 \leq w^{\ell}_2 \ , \quad \dots \ , \quad u^{\ell}_k \leq v^{\ell}_k \leq w^{\ell}_k \end{array}$

2.2 Continuidade

Definição 2.2.1. Seja $f: \mathbb{R}^k \supset D \to \mathbb{R}$ uma função com domínio D.

a) A função f é dita **contínua num ponto** $a \in D$ **do seu domínio** se 1) o limite $\lim_{u\to a} f(u)$ existe e 2) é igual ao valor f(a). Em símbolos

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall u \in D: \ |u - a| < \delta \implies |f(u) - f(a)| < \varepsilon.$$

b) A função f é **contínua** se é contínua em todo ponto do seu domínio. Neste caso dizemos que f é de **classe** C^0 . Denotamos de $C^0(D)$ o conjunto de todas as funções contínuas com domínio D.

Teorema 2.2.2 (Adição e multiplicação). Sejam as funções f e g contínuas nos seus domínios. Então são contínuas as funções f+g, f-g, e fg no seu domínio dom $f \cap$ dom g e a função f/g no seu domínio dom $f \cap$ dom $g \cap \{g \neq 0\}$.

Corolário 2.2.3. a) Polinômios $p = p(x_1, ..., x_k)$ são contínuas em \mathbb{R}^k . b) Funções racionais, ou seja h = p/q onde p e q são polinômios, são contínuas em $\mathbb{R}^k \setminus \{q = 0\}$.

Demonstração. Sabemos do calculo I que polinômios de uma variável são contínuas em \mathbb{R}^k . Polinômios de varias variáveis $p(x_1, \ldots, x_k)$ são somas finitas de termos da forma $a_{j_1...j_k}x_1^{j_1}\ldots x_k^{j_k}$ onde $a_{j_1...j_k}\in\mathbb{R}$ e $j_1\ldots,j_k\in\mathbb{N}_0$. Aplique Teorema 2.2.2.

Exercício 2.2.4. Determine o maior domínio $D\subset\mathbb{R}^2$ no qual a função $f(x,y):=\frac{x^2-y^2}{x^2+y^2}$ é contínua.

SOLUÇÃO. Como função racional f é contínua em $\mathbb{R}^2 \setminus \{x^2 + y^2 = 0\} = \mathbb{R}^2 \setminus \{(0,0)\}$. Segundo Exemplo 2.1.3 b) o limite de f quando $(x,y) \to (0,0)$ não existe. Assim $D = \mathbb{R}^2 \setminus \{(0,0)\}$.

Comentário 2.2.5. A função $g: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$g(x,y) := \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} &, (x,y) \neq (0,0), \\ 0 &, (x,y) = (0,0), \end{cases}$$

é descontínua no ponto (0,0); veja Exemplo 2.1.3 b).

Exercício 2.2.6. Mostre que a função $h: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$h(x,y) := \begin{cases} \frac{3x^2y}{x^2+y^2} &, (x,y) \neq (0,0), \\ 0 &, (x,y) = (0,0), \end{cases}$$

é contínua.

SOLUÇÃO. A função $\frac{3x^2y}{x^2+y^2}$ é racional assim contínua em $\mathbb{R}^2\setminus\{x^2+y^2=0\}=\mathbb{R}^2\setminus\{(0,0)\}$. Resta checar se o limite de h quando $(x,y)\to(0,0)$ existe e é igual a h(0,0): Isso é verdadeiro segundo Exemplo 2.1.4.

Teorema 2.2.7 (Composição). Se as funções $f(x_1, \ldots, x_k)$ e g(y) são contínuas e o domínio de g é contido na imagem de f, a **função composta**

$$h := g \circ f \colon \mathbb{R}^k \supset \operatorname{dom} f \to \mathbb{R}, \quad (x_1, \dots, x_k) \mapsto g(f(x_1, \dots, x_k))$$

 \acute{e} contínua.

Exercício 2.2.8. Determine o maior domínio D tal que a função $h(x,y) := \arctan(\frac{y}{x})$ é contínua.

RESULTADO. Como dom (arctan) = $\mathbb{R} = \text{im } f$ onde $f(x,y) := \frac{y}{x}$, obtemos $D = \text{dom } f = \mathbb{R}^2 \setminus \{x = 0\}$.