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Abstract

‘We use the heat flow on the loop space of a closed Riemannian manifold
to construct an algebraic chain complex. The chain groups are generated
by perturbed closed geodesics. The boundary operator is defined in the
spirit of Floer theory by counting, modulo time shift, heat flow trajectories
that converge asymptotically to nondegenerate closed geodesics of Morse
index difference one.
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1 Introduction

Let M be a closed Riemannian manifold and denote by V the Levi-Civita con-
nection and by LM the loop space, that is the space of free loops C°°(S*, M).
For x : S — M consider the action functional

svw = [ 1 (3100 - vit.a(0) ) .

Here and throughout we identify S' = R/Z and think of x € LM as a smooth
map z : R — M which satisfies z(t + 1) = x(t). Smooth means C°*° smooth.
The potential is a smooth function V : S x M — R and we set Vi(q) := V(t,q).
The critical points of Sy are the 1-periodic solutions of the ODE

Vi = —VV,(z), (1)

where VV; denotes the gradient and V;& denotes the covariant derivative, with
respect to the Levi-Civita connection, of the vector field & := %x along the loop
z in direction . By P = P(V) we denote the set of 1-periodic solutions of (1).
In the case V = 0 these are the closed geodesics.

From now on we assume that Sy is a Morse function on the loop space, i.e.
the 1-periodic solutions of (1) are all nondegenerate. We proved in [W02] that

this holds for a generic potential V. In this case the set
PUV):={z e P(V)|Sv(z)<a}
is finite for every real number a. Now consider the Z-module

ce=CiV):= P za
zeP*(V)

It is graded by the Morse indices of the closed geodesics. Moreover, this mod-
ule carries a boundary operator whenever Sy is Morse—Smale. To define the
boundary operator consider the (negative) L? gradient flow lines of Sy on the
loop space. These are solutions u : R x S' — M of the heat equation

Osu — ViOyu — VVi(u) =0 (2)
satisfying
. _ 4+ . _
sl}gloou(s,t) = x> (t), Sgrjrzloo Osu(s,t) =0, (3)

where 2 € P(V). The limits are uniform in ¢ together with the first partial
t-derivative, that is in C1(S1); see remark 1.4. The space of solutions of (2)
and (3) will be denoted by M(z~,z"; V). Call Sy Morse-Smale if the operator
D, obtained by linearizing (2) is onto as a linear operator between appropriate
Banach spaces (see (12) below) and this is true for all u € M(z~,27;V) and
¥ € P(V). Note that Morse-Smale implies Morse. Under the Morse-Smale
hypothesis the space M(z~,27;V) is a smooth manifold whose dimension is



equal to the difference of the Morse indices of the closed geodesics z*. In the
case of index difference one it follows that the quotient M(z~,xz%;V)/R by the
(free) time shift action is a finite set. Counting these elements with appropriate
signs defines a boundary operator on C%¢(V'). Call the homology HM{ (LM, Sy)
of this chain complex Morse homology or heat flow homology. It is naturally
isomorphic to the singular homology of the free loop space for every regular
value a of Sy:

HM®(LM, Sy) ~ H,(L°M;Z),  LOM = {z € LM | Sy (z) < a}.

It is an open question if Sy is Morse-Smale for a generic potential V;. In sec-
tion 1.1 below we introduce a class of abstract perturbations V : LM — R for
which we can establish transversality. In contrast we call the potentials V; ge-
ometric perturbations. The isomorphism above follows from the corresponding
isomorphism for abstract perturbations by approximation.

The construction of the Morse complex in finite dimensions goes back to
Thom [T49], Smale [Sm60, Sm61], and Milnor [M65]. It was rediscovered by
Witten [Wi82] and extended to infinite dimensions by Floer [F89a, F89b]. We
refer to [AMO5] for an extensive historical account.

1.1 Perturbations

We introduce a class of abstract perturbations of equation (6) for which the
analysis works. Later in section 7.1 we extract a countable subset and construct
a separable Banach space of perturbations for which transversality works. The
abstract perturbations take the form of smooth maps V : LM — R. For x € LM
let gradV(z) € Q°(S, 2*T M) denote the L2-gradient of V; it is defined by

/ laradV(u), Do) di = diwu)
0 S

for every smooth path R — LM : s — u(s,-). The covariant Hessian of V at a
loop z : S' — M is the operator

Hy(z) : QO(SY, 2" T M) — QO(S, 2* T M)

defined by

Hy (u)0su := VsgradV(u) (4)
for every smooth map R — LM : s — wu(s,-). The axiom (V1) below asserts
that this Hessian is a zeroth order operator. We impose the following conditions
on V; here |-| denotes the pointwise absolute value at (s,t) € R x S and ||-||»
denotes the LP-norm over S! at time s. Although condition (V1) and the first
part of (V2) are special cases of (V3) we state the axioms in the form below,
because some of our results don’t require all the conditions to hold.

(V0) V is continuous with respect to the C° topology on LM. Moreover, there
is a constant C' = C(V) such that

sup [V(@)| + sup [lradV(@)] g1, < C:
zeLM zeLM



(V1) There is a constant C = C(V) such that
[VagradV(u)| < C(|0sul + [|0sul| 1),
VigradV(u)| < 0(1 n |8tu|>
for every smooth map R — LM : s — u(s,-) and every (s,t) € R x S*.
(V2) There is a constant C' = C(V) such that

|Vs VsgradV(u)| < C(‘Vsasm + ”VsaSUHLl + (‘8su| + HasuHL2)2>v
|V, VigradV(u)| < C(\Vtasm + (1+ |9pul) (|05ul + ||8suHL1)),

and
[ViVigradV(u) — Hy () Vediu] < C(|0u] + 1Dl 2)°
for every smooth map R — LM : s — u(s,-) and every (s,t) € R x S1.

(V3) For any two integers & > 0 and ¢ > 0 there is a constant C' = C'(k, ¢,V)
such that

i) <0 5 [ TT[vrwia] | TT (19500 52l )
ks ts zjj>o

;%0
for every smooth map R — LM : s + u(s,-) and every (s,t) € RxS1; here
p; > 1and ZZFO 1/p; = 1; the sum runs over all partitions ki +- - -+k,, =
kand ¢y +---+ ¢, < € such that k; +¢; > 1 for all j. For k = 0 the same
inequality holds with an additional summand C on the right.

Remark 1.1. In (VO0) the L® bound for grad V is imposed, since occasionally
we need LP bounds for fixed but arbitrary p. Continuity of V with respect to
the C° topology is used to prove [SW03, lem. 10.2] and proposition 4.14.

Remark 1.2. Each geometric potential V' provides an abstract perturbation V
such that for smooth loops x and smooth vector fields ¢ along x we have

V() i= / Vie()dt,  gradV(e) = VVi(a),  Hy(0) = eVVila).

Remark 1.3. To prove transversality in section 7 we use perturbations' of the
form

V() = p (o = wolls) [ Vitato)

where p : R — [0, 1] is a smooth cutoff function and zg : S* — M is a smooth
loop. Any such perturbation satisfies (V0)-(V3). Here compactness of M is
crucial, in particular, finiteness of the diameter of M.

1Here and throughout the difference x — z¢ of two loops denotes the difference in some
ambient Euclidean space into which M is (isometrically) embedded. Note that cutting off
with respect to the L? norm — as opposed to the L™ norm — prevents us from expressing the
difference in terms of the exponential map.



1.2 Main results

There are two main purposes of this text. One is to construct the Morse chain
complex for the action functional on the loop space. The other is to provide
proofs of the results announced and used in [SWO03] to calculate the adiabatic
limit of the Floer complex of the cotangent bundle. More precisely, in [SW03]
we proved in joint work with D. Salamon that the connecting orbits of the heat
flow are the adiabatic limit of Floer connecting orbits in the cotangent bundle
with respect to the Hamiltonian given by kinetic plus potential energy. The
key idea is to appropriately rescale the metric. Both purposes are achieved
simultaneously by theorems 1.5-1.13.

We enlist the main results. From now on we replace the potential V' by an
abstract perturbation V satisfying (V0)—(V3). Then the action is given by

/| 2 dt — Vi(a) )

for smooth loops x : S — M and the heat equation has the form
Osu — ViOpu — gradV(u) =0 (6)

for smooth maps u : R x St — M, (s,t) — u(s,t). Here gradV(u) denotes the
value of gradV on the loop us : t — u(s,t). The relevant set P(V) of critical
points of Sy consists of the (smooth) loops z : S' — M that satisfy the ODE

Vit = —gradV(z). (7)

The subset P%(V) consists of all critical points x with Sy(z) < a. For two
nondegenerate critical points x* € P(V) we denote by M(z~,2%;V) the set of
all solutions u of (6) such that
: _ .t
sl}gloou(s,t) = x> (t), ngma u(s,t) =0. (8)
The limits are uniform in ¢ together with the first partial t-derivative. These
solutions are called connecting orbits. The energy of such a solution is given by

E(u) = /_OO /0 |0ul® dtds = Sy(a7) — Sy (™). 9)

Remark 1.4 (Asymptotic limits). In (3) and (8) we require convergence in
C1(S') as opposed to C°(S!) which is standard in elliptic Floer theory. We need
our stronger assumption in theorem 3.10 to establish exponential decay. Actu-
ally W12(S1) convergence already works. Compare [SW03] where the asymp-
totic C° limits of (u,v) and (9su, Viv) are required to be (z*,d;2%) and zero,
respectively. Now v corresponds to d;u in the adiabatic limit studied in [SWO03]
and we arrive at our choice of topology for the asymptotic limits.

Theorem 1.5 (Regularity). Fiz a constant p > 2 and a perturbationV : LM —
R that satzsﬁes (V0)-(V3). Let u : R x St — M be a continuous function of
class Wlo’f, that is w, Opu, V;Oru, Osu are locally LP integrable. Assume further
that u solves the heat equation (6) almost everywhere. Then u is smooth.



Remark 1.6. It seems unlikely that the assumption u € Wllo’f can be weakened
to u € Wllof , as announced in [SWO03], unless we also weaken p > 2 to p > 3;
see remark 2.19. However, in the applications of theorem 1.5 in [SW03] and in

the present text the stronger assumption u € Wllt;f is satisfied.

Theorem 1.7 (Apriori estimates). Fiz a perturbation V : LM — R that satis-
fies (V0)—(V1) and a constant co. Then there is a positive constant C' = C(co, V)
such that the following holds. If u : R x S' — M is a smooth solution of (6)
such that Sy(u(s,-)) < ¢ for every s € R then

[10cull oo + [IViBrull o + [0sull o + IVe0sull o + IVsOsull o < C-
Theorem 1.8 (Exponential decay). Fiz a perturbation V : LM — R that
satisfies (V0)—(V3) and assume Sy is Morse.

(F) Let u : [0,00) x S1 — M be a smooth solution of (6). Then there are
positive constants p and cy,cy,ca, ... such that

||6SuHCk([T,oo)><Sl) < cke_pT

for every T > 1. Moreover, there is a periodic orbit x € P(V) such that

u(s,-) converges to x in C*(S') as s — .

(B) Let u: (—o00,0] x St — M be a smooth solution of (6) with finite energy.
Then there are positive constants p and cg,c1,cCa,... such that

10sttll o (oo, 17 x 51y < crE™T

for every T > 1. Moreover, there is a periodic orbit x € P(V) such that
u(s,-) converges to x in C*(S') as s — —oc.
The covariant Hessian of Sy at a loop = : S — M is the linear operator
Ay W22(SY 2*TM) — L*(SY, 2*TM) given by
where R denotes the Riemannian curvature tensor and the Hessian Hy, is defined
by (4). This operator is self-adjoint with respect to the standard L? inner
product. The number of negative eigenvalues is finite. It is denoted by indy, (A,)
and called the Morse index of A,. If z is a critical point of Sy, we define its Morse
index by indy(x) := indy(A;) and we call z nondegenerate if A, is bijective.
In this notation the linearized operator D, : WhP — LP is given by
Dué = Vi€ + Ay & (11)

where us(t) := u(s,t) and the spaces W, = WP and £, = LP are defined
as the completions of the space of smooth compactly supported sections of the
pullback tangent bundle v*TM — R x S' with respect to the norms

') 1 1/10
m(/ /0|5|Pdtds) ,

00 1 1/p
II£IIW=</_ /0|£P+|Vs§|p+vtvtgpdtds> .



Theorem 1.9 (Fredholm). Fiz a perturbation V : LM — R that satisfies (VO)—
(V3), a constant p > 1, and two nondegenerate critical points = € P(V).
Assume u : R x ST — M is a smooth map such that ||V;V;0sus||2 is bounded,
uniformly in s € R, and

us = exp,+ (nF), Hn;tHW,_,,2 —0, ||0stus|lyyr2 =0, ass— Foo.
Then the operator D,, : WP — LP is Fredholm and
index D,, = indy(z7) — indy(2™).

Moreover, the formal adjoint operator D}, = —Vs+ Ay, : WhP — LP is Fredholm
with index D}, = —index D,,.

Concerning the funny assumption on V; V,0,u, see the footnote in section 3.4.

Theorem 1.10 (Implicit function theorem). Fiz a perturbation V : LM — R
that satisfies (V0)—(V3). Assume x* are nondegenerate critical points of Sy
and D, is onto for every u € M(z~,xz";V). Then M(z~,z";V) is a smooth
manifold of dimension indy(z~) — indy (zT).

Proposition 1.11 (Finite set). Fiz a perturbation V : LM — R that satisfies
(V0)—(V3) and assume Sy is Morse-Smale below level a in the sense that every
uw € M(x=,2T;V) is regular (i.e. the Fredholm operator D, is surjective), for
every pair x+ € P*(V). Then the quotient space

./T/l\(xf,sﬁ;V) = Mz, 27 V)/R

is a finite set for every such pair of Morse index difference one. Here the (free)
action of R is given by time shift (o,u) — u(o + -, ).

Theorem 1.12 (Refined implicit function theorem). Fiz a perturbation V :
LM — R that satisfies (V0)—(V3) and a pair of nondegenerate critical points
€ P(V) with Sy(x7) < Sy(z~) and Morse index difference one. Then, for
every p > 2 and every large constant ¢y > 1, there are positive constants dg
and c such that the following holds. Assume Sy is Morse—Smale below level 2¢3.
Assume further that u : Rx St — M is a smooth map such that u(s,-) converges
in Wh2(SY) to x*, as s — o0, and such that
€o

|Osu(s,t)] < 1152 |O¢u(s, t)| < co, [Vi0ru(s, t)] < co,

for all (s,t) € R x S* and
|0su — ViOpu — gradV(u)||,, < do.
Then there exist elements u, € M(z~,xz;V) and £ € im D}, NW satisfying

u=exp, (£, €l <cllfsu—Vibiu — gradV(u)], -



In the previous theorem “cy large” means that the constant ¢y should be
larger than the constant Cp in axiom (V0).

Theorem 1.13 (Transversality). Fiz a perturbation V : LM — R that satis-
fies (V0)—(V3) and assume Sy is Morse. Then for every reqular value a there is
a Banach manifold O% = O*(V) of perturbations supported on the sublevel set
{Sy < a} and satisfying (V0)—(V3) such that the following is true. For every
v € O% the functionals Sy and Sy, have the same critical points on LM and
the same sublevel set with respect to a. Moreover, there is a residual subset
Ofeqy C O such that the perturbed functional Sy, s Morse-Smale below level

a whenever v € OF,,.

Contrary to what we expected in view of excellent previous work by Ab-
bondandolo and Majer [AMO05, AM06] on C' flows on Banach manifolds, we
do not get the natural isomorphism between heat flow homology and singular
homology of the loop space as a simple byproduct. The reason is that the heat
equation generates only a C' semiflow on the loop space. To overcome the prob-
lems we propose to generalize the notion of Conley index pairs to our infinite
dimensional situation. In section 9.2 we give a detailed sketch of how to prove
the isomorphism in theorem 1.14. Full details will be provided in a forthcoming
paper. In this sense theorem 1.14 should be understood as an announcement.

Theorem 1.14. Let V : LM — R be a perturbation that satisfies (V0)—(V3),
let ¢ be a regular value of Sy, and assume that Sy is Morse—Smale below level
c. Then, for every reqular value a < ¢ of Sy and every principal ideal domain
R, there is a natural isomorphism

HM®(LM, Sy; R) = H,(L°M; R), LM = {z € LM |Sy(z) < a}.

If M is not simply connected then there is a separate isomorphism for each com-
ponent of the loop space. The isomorphism commutes with the homomorphisms
HM?(LM,Sy) — HMY(LM, Sy) and H,(L*M) — H,(L*M) for b € (a,c).

Overview

In chapter 2 we prove local regularity and provide interior estimates for the
linear heat equation ds;u — 0;0yu = 0 for real-valued maps u defined on the
lower half plane H~ or on cylindrical sets. The main result is theorem 2.1 on
regularity of solutions to a perturbed heat equation. The proof is by parabolic
bootstrapping and uses a subtle product estimate which is provided in sec-
tion 2.3. The quadratic estimates required in our proof of the refined implicit
function theorem 1.10 are also based on that product estimate.

In chapter 3 we study the solutions to the linearized version of the heat
equation (6). In other words, the kernel of the operator D, given by (11). In
theorem 3.1 we show that these solutions are smooth, even if they are only
weak solutions. In section 3.2 we derive pointwise bounds in terms of the L?
norm. Section 3.3 then establishes exponential decay of these L? norms. The
combination of these results is used in section 3.4 to prove that the operator

10



D, is Fredholm for a rather general class of smooth cylinders w in M with
nondegenerate asymptotic limits * € P(V). The main result is theorem 1.9.

In chapter 4 we study the solutions w to the (nonlinear) heat equation (6).
Since Osu solves the linearized equation the results of chapter 3 apply. In
section 4.1 we prove smoothness of Wllo’f solutions and a compactness result
for sequences with uniformly bounded gradient in appropriate norms. In sec-
tions 4.2-4.4 the following assumption is crucial. Fix a positive constant cg.
Then all solutions u of (6) with

sup Sy (us) < ¢
seR

admit a uniform apriori estimate for |[Opul|c (theorem 4.5), uniform energy
bounds (lemma 4.8), uniform gradient bounds (theorem 4.9), and uniform L2
exponential decay (theorem 4.10). In section 4.5 we study compactness of the
moduli spaces M(z~,z";V) in case that Sy : LM — R is a Morse function.

Chapter 5 deals with implicit function type theorems. Here, in addition to
the Morse condition, the Morse-Smale condition enters: To prove that the mod-
uli spaces are smooth manifolds we not only need nondegeneracy of the asymp-
totic boundary data, that is the critical points %, but in addition surjectivity of
the linearized operators. Under these assumptions we prove (proposition 1.11)
that modulo time shift there are only finitely many heat flow lines from = to
in case of Morse index difference one. Here the compactness results of section 4.5
enter. Furthermore, we prove the refined implicit function theorem 1.12, a major
technical tool in [SWO03]. Here the product estimate provided by lemma 2.14 is
the crucial ingredient to obtain the required quadratic estimates. Furthermore,
the choice of the sublevel set on which Sy, needs to be Morse-Smale requires
care. The reason is that one starts out only with an approzximate solution u
along which the action is not necessarily decreasing. However, the assumptions
guarantee that all loops us are contained in the sublevel set {Sy < 2¢2}.

In chapter 6 we prove unique continuation for the heat equation (6) and its
linearization. The proof is based on an extension of a result by Agmon and
Nirenberg. In contrast to forward unique continuation the result on backward
unique continuation is surprising at first sight. Of course, there is an assumption.
Namely, the action along the two semi-infinite backward trajectories u, v which
coincide at time s = 0 must be bounded. In this case we obtain that u = v.

In chapter 7 we construct a separable Banach space Y of abstract pertur-
bations that satisfy axioms (V0)—(V3). Assume Sy is Morse and a is a regular
value. Then we define a Banach submanifold O%(V) of admissible perturbations
v supported in {Sy < a}. They have the property that Sy and Sy, do have
the same critical points on the whole loop space LM and, moreover, their sub-
level sets with respect to a coincide. The proof that there is a residual subset
Orey(V) of regular perturbations for which Sy, is Morse-Smale below level a
requires unique continuation for the linearized heat equation and the fact that
the action is strictly decreasing along nonconstant heat flow trajectories.

In chapter 8 we define Morse homology in terms of the heat flow. In sec-
tion 8.1 we define the unstable manifold of a critical point = of the action

11



functional Sy : LM — R as the set of endpoints at time zero of all backward
halfcylinders solving the heat equation (6) and emanating from x at —oo. The
main result is theorem 8.1 saying that if the critical point z is nondegener-
ate, then this is a contractible submanifold of the loop space and its dimension
equals the Morse index of z. Section 8.2 puts together all results to construct
the Morse complex for the negative L? gradient of the action functional on the
loop space.

The aim of chapter 9 is to relate heat flow homology and singular homology
of the loop space. The geometric idea is that only the unstable manifolds are
relevant in homology, since all other loops move under the heat flow into a neigh-
borhood of the unstable manifolds. To make this precise we solve in section 9.1
the forward time Cauchy problem for the heat equation (6) for initial values in
the Hilbert manifold AM = W12(S1, M). As a result we obtain a C* semiflow
@ :(0,00) x AM — AM which extends continuously to zero. In section 9.2 we
sketch the proof of theorem 1.14.

Notation. If f = f(s,t) is a map or more generally a section, then f, abbreviates
the map f(s,-) : t — f(s,t). In contrast partial derivatives are denoted by Osf
and 9, f. By Q°(B, E) we denote the set of smooth sections of a vector bundle
E— B.

Acknowledgements. For useful discussions and pleasant conversations the author
would like to thank A. Abbondandolo, K. Cieliebak, K. Ecker, P. Majer, K. Mohnke,
J. Naumann, D. Salamon, and M. Struwe. For partial financial support and hospitality
we are most grateful to MSRI Berkeley and SFB 647 at HU Berlin.
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2 Parabolic regularity

By H™ we denote the closed lower half plane, that is the set of pairs of reals (s, t)
with s < 0. In this section, unless specified differently, all maps are real-valued
and the domains of the various Banach spaces which appear are understood to
be either open subsets Q of R? or H~ or (cylindrical subsets of) the cylinder
Z = RxS8!. To deal with the heat equation it is useful to consider the anisotropic
Sobolev spaces Wivzk. We call them parabolic Sobolev spaces and denote them

by WFP_ For constants p > 1 and integers k > 0 these spaces are defined as
follows. Set W%P = LP and denote by W' the set of all u € LP which admit
weak derivatives dsu, Oyu, and 0;0yu in LP. For k > 2 define

WEP = {u € WP | Ogu, Oyu, 0:0,u € WHLPY

where the derivatives are again meant in the weak sense. The norm

1/p

llullyyrp = // Z |0 0t u(s, t)|" dtds (13)

2v4+p<2k

gives WFP the structure of a Banach space. Here v and p are nonnegative
integers. For k = 1 we obtain that

[ullyyrs = Nl + 10sully + 10cully + 110:0pull;

and occasionally we abbreviate W = WP, Note the difference to (standard)
Sobolev space W*P where the norm is given by

[ullf,, = > lorofulll.
v+p<k

A rectangular domain is a set of the form I x J where I and J are bounded
intervals. For rectangular (or more generally Lipschitz) domains € the parabolic
Sobolev spaces W*P can be identified with the closure of C*°(Q) with respect
to the WHP norm; see e.g. [MS04, appendix B.1]. Similarly, we define the C*
(or WH>°) norm by

fullor == > (1070} ull - (14)

2v+p<2k

Again C° = CY and
luller = llull oo + 195 ull o + 10ull oo + 110:0rul| -
Throughout we use the notation
Zr = (=T,0] x S*.

The main result in this section is the following.

13



Theorem 2.1 (Parabolic regularity). Fiz constants p > 2, ug > 1, and T > 0.
Fiz a closed smooth submanifold M — RY and a smooth family of vector-valued
symmetric bilinear forms T : M — RVNXNXN = Assume that F : Zp — RY s
a map of class LP and v : Zr — RN is a WYP map taking values in M with
llullwir < po and such that the perturbed heat equation

Osu — O 0pu = T'(u) (Opu, Opu) + F (15)

1s satisfied almost everywhere. Then the following is true. For every integer
k > 1 such that F € WEP(Zr) and every T' € (0,T) there is a constant cy,
depending on k, p, po, T —T', |Ullc2r+2(ary, and || F|lyr.o(z.) such that

||U||Wk+1.,p(ZT,) < k.

The theorem shows that if F' is smooth, then u is smooth on domains which
extend slightly less into the past. The refined version proposition 2.18 of this
result is used in section 4.1 to prove regularity and compactness properties of
solutions to the nonlinear heat equation (6). The proof of theorem 2.1 in sec-
tion 2.4 is by parabolic bootstrapping. The main technical tool is the following.

Theorem 2.2 (Interior regularity). Fiz constants 1 < ¢ < oo and T > 0 and
an integer k > 0. Then the following is true.

a) Ifue L}, (Zr) and f € Wlk’q(ZT) satisfy

loc oc

/ w(=0ut— 0,000) = | fo (16)
Zr ZT

for every ¢ € C°((=T,0) x SV, then u € WETH(Zy).

loc

b) For every 0 < T' < T there is a constant ¢ = c(k,q, T —T") such that

el roaczyy < € (105 = 000l g + 6l o))

for every u € C(Zr).

The prove part a) it is useful to prove in a first step the case where f = 0
and € is an open subset of the lower half plane. The corresponding statement
for the Laplace operator is called Weyl lemma.

2.1 The parabolic Weyl lemma
Lemma 2.3. Let Q C H™ be an open subset. If u € L, () satisfies

loc

téu“@¢‘@@@:0 (17)

for every ¢ € C§°(int ), then u € C°(Q) and dsu — OOyu = 0 on Q.

14



The proof of lemma 2.3 is based on approximating u via convolution by a
family of smooth solutions u. converging to uw in L'. The point is that con-
volution is carried out over individual time slices for almost all times s using
mollifiers defined on R. (It is also possible to carry over the proof of the original
Weyl lemma for the Laplacian using mollifiers supported in R2. However, this
leads to restrictions and is explained in a separate section below.) On the other
hand, given any integer & > 0, standard local C* estimates for smooth solu-
tions of the linear homogeneous heat equation in terms of the L' norm apply;
see [Ev98, sec. 2.3 thm. 9]. They provide C* bounds on compact sets in terms
of |luelli. Now by Young’s convolution inequality |lue|l1 < |lu|1. Hence these
bounds are uniform in £. Therefore by Arzela-Ascoli the family u. converges in
Cﬁ;l(Q) to a map v. Hence u = v by uniqueness of the limit. As this is true
for every k and, moreover, every point is contained in a compact subset of € it
follows that u € C°(Q2). Integration by parts then shows that

5Su — 8t8tu =0 (18)
on the interior of €. Since u is C°° on 2 this identity continues to hold on €.

Proof of lemma 2.3. Every point of € is contained in (some translation of) a
parabolic set (—r2,0] x (—r,r) whose closure is contained in  for some suf-
ficiently small » > 0. Hence we may assume without loss of generality that
Q= (-r%0] x (—r,r) and u € L' (2). We prove the lemma in nine steps.

1) We introduce appropriate mollifiers: Fix a smooth function p : R — [0, 1]
which is compactly supported in the interval (—1,1) and satisfies fR p = 1. For
e > 0 consider the mollifier p.(t) := 1 p(%). It is compactly supported in the
interval (—¢,¢) and satisfies [ p. = 1.

2) For almost every s € R we define the family {p. * us}es0 C C5°(R) and
calculate the L' norm of its derivatives: From now on we extend u by zero to
R?\ Q and denote the extension again by u. Then u € L*(R?) and

us = u(s,) € L'(R)
for almost every s € R. For such s and € > 0 consider the convolution
(pe *us) (t) == /Rps(t — T)us(T) dT.
In this case p; x us € C§°(R),
llpe * us — us||L1(R) —0, ase—0,

and p. * ug converges to ug, as € — 0, pointwise almost everywhere on R;
see [Jo98, app. A]. Moreover, by Young’s convolution inequality we obtain that

Il pe *USHLl(]R) < ”pEHLl(]R) HuSHLl(]R) = ”uS”Ll(R)
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and, more generally, that

|

()

<]

ptk) ‘

ak (pe * us) ||USHL1(1R)

L1(R) LY(R)

L1(R)

o™
= " gl gy

for every positive integer k. Here p(*) denotes the k-th derivative of p.
3) We prove that for £ > 0 the function defined by

ue 1R =R, (5,1) = (pe * ug)(t)

is integrable and wu. converges to u in L'(R?), as ¢ — 0. Indeed by step 2)

el sy = [ Detallsscey ds < [ lllogey ds = lullocay
Now define the family of functions {fe : R — R}.5¢ for almost every s by

fe(s) = llpe xus — u5||L1(R) .

By the former estimate these functions are integrable

1fell oy = llue — ull prgey < 2lullpr(q) -

Moreover, they are dominated almost everywhere by an integrable function g.
Namely, by step 2

[fe() < 2usll iy = 9(s)s 19l @y = 2 llullpr o -

Again step 2) shows that f. — 0, as ¢ — 0, for almost every s. Hence by the
dominated convergence theorem it follows that

i e =l ey = Jimy [ e =l

AL

=0.

4) The function u. : R?> — R defined in 3) admits integrable weak t-
derivatives of all orders. Fix € > 0 and a positive integer k, then

/ueafz/;dtds:/ (pe * us) OFep dt ds
R2 R2
= (=" / (%) # ug) 4 dt ds
RQ

for every ¢ € C§°(R?). Here pgk) denotes the k-th derivative. Moreover, the first
step is by definition of u. and the second step by integration by parts followed
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by commuting differentiation and convolution. Next observe that the function

pgk) * ug is integrable. Indeed step 2) shows that

16 ¢l ey < 5 Nl

with constant ¢, = cx(p) = ||0fp||r1(r). Hence the weak ¢ derivatives of the
function u. : R? — R are integrable and given by

Oy us(s,t) = (p) xus)(1).

5) Fix € > 0. Define the subset Q. = (—72,0] x (=r+e¢,r—¢) C Q. We prove
by induction that for every k > 1 the weak derivative 0%u, exists in L(£).) and
equals 02Fu. almost everywhere on Q.. Here assumption (17) enters.

Step k = 1. Straightforward calculation shows that

/Qwﬁtatug = /R2 U(s,t) </R OrOpe(t — T)us(T) dr) dsdt
= / (s, t)u(s,7) 0.0 pe(t — 7)dr dsdt
R3

_ /R (/R uls, ) 0:0r (pelt = 7)i(s,)) dr ds) dt
=~ [ ([ utsmr0.(put6 = m1065.0) aras ) a
-/ ( JETG df) Dyi(s,) ds dt
. /Q 01

for every test function ¢ € C§°(int).). This identity means that on int ),
hence on )., the weak derivative dsu. exists and equals 0;0;u. which is inte-
grable by 4). To prove the identity note that the first and the final step are
by definition of u. in 3). To obtain the second step we changed the order of
integration and applied the chain rule. Steps three and five are obvious. To
obtain step four we used assumption (17) and the fact that

bi(s,7) := pe(t — T)1b(s,1)

lies in C§°(int Q) for every t € R. To prove this assume that ¢;(s,7) # 0. This
means firstly that p.(t — 7) # 0, hence 7 € [—¢ + t,& + t], and secondly that
(s, t) # 0. Now fix a sufficiently small constant § = d(g) > 0 such that

supp ) C [=12 +8,—0] x [~ +e+6,r —e — ] Cint Q..
It follows that

(5,7) € [=1° +6,=6] X [—e + (—r + e+ 0),e + (r —e — )]
e 6d] x [r 4 6] C e

17



Induction step k = k + 1. The calculation follows the same steps as above. We
only indicate the minor differences. Assume that case k is true, then

14w8%*%6:04ﬁ*14(A;M&ﬂafﬂ@At—ﬂw@JDdTw)ﬁ
::(—4)k+1j£2ug(&t)65+1w(&t)dsdt

. / (0Fuz) D)
Q

for every test function ¢ € C§°(int).). Note that to obtain the first step
we applied k£ + 1 times assumption (17) using that ¢; and therefore also its
derivatives are in C§°(int ). In the final step we used the induction hypothesis
to integrate by parts k times the s variable.

6) The function u. is smooth on the closure of Q.. Fix e > 0 and positive
integers m and £. Then 97"0%u. equals 07" *u, almost everywhere on Q. by 5)
and the latter function is integrable by 4). This proves that

ue € [ WHH(Q:) = C ().
k=1

Moreover, by 5) with k = 1, each u. solves the linear heat equation (18) on €),.

7) From now on fix a compact subset Q@ C 2. We prove that for every positive
integer k the family u. is uniformly bounded in the Banach space C*(Q) by a
constant g = ur(Q). To see this consider the compact parabolic rectangle
of radius 7, height r2, and top center point (s,t) € Q given by

Po(s,t) :=[s — 712 8] x [t —r,t +7].

By compactness of @) there is a constant €9 = €¢(Q) > 0 such that Q C Q,
and, moreover, there is a constant p = p(eg, Q) > 0 such that

Pzp(s,t) C Qso

for every point (s,t) € Q. By step 6) each function u. with € € (0,¢9) is a
smooth solution of the linear homogeneous heat equation (18) on the domain
Q. and therefore on €2.,. Now given a point (o, 7) € @ and a pair of nonnegative
integers m, ¢ there is by [Ev98, sec. 2.3 thm. 9] a constant ¢, ¢(o, 7) such that

0 C’rn,l(ga T)
Pﬂiﬁ) |8§"5’Sv’ < W ||U||L1(Pp(o—,r))
2

for all smooth solutions v of the heat equation (18) in P5,(o, 7). By compactness
of @ there are finitely many sets P, 5(0,,7,) covering Q. Then the correspond-

ing estimates for v = u. and m,£ =0,1,...,k imply that

H“e”ck(Q) S« ||u6||L1(R2) Sa ”uHLl(Q)
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for every € € (0,e9) and where the constant o > 0 depends only on the compact
set @ (since p eventually depends on @ only). Inequality two uses step 3).

8) We prove that v € C*°(Q). In the setting of step 7) the Arzela-Ascoli
theorem for each k together with choosing a diagonal subsequence yields exis-
tence of a sequence ¢, — 0, as k — oo, and a smooth function @ defined on @
such that u., — @ in C*°(Q), as k — co. On the other hand, the sequence u,,
converges to u in L'(Q) by step 3). Hence u = @ by uniqueness of limits.

9) We prove lemma 2.3. The function u is smooth on €2, because every
point of € is contained in a compact subset Q on which wu is smooth by step 8).
To prove the identity dsu — 9;0;u = 0 on Q assume by contradiction that this
identity is violated at a point (s, t.) of Q. There are two cases.

If (s4,t.) is in the interior of §2, then by smoothness of u there is a sufficiently
small open neighborhood U of (s.,t.) in  and a function ¢ € C§°(U, [0,1])
with ¢(s4,t.) = 1 such that assumption (17) fails. For instance, if ¢ > 0 is the
value of the function dsu — 0;0;u at the point (s, t.), let U be the subset of
on which dyu — 9:0pu > ¢/2.

If (s«,t.) is in the boundary 0 x (—r,r) of €, the former argument works for an
interior point of 2 sufficiently close to (s, t.). Existence of such an interior point
uses again smoothness of v on 2. This proves the parabolic Weyl lemma. [

The heat ball approach

This subsection is supplementary. We give an alternative proof of the parabolic
Weyl lemma 2.3 along the lines of the proof of the original Weyl lemma for the
Laplacian. However, we will face two restrictions. Firstly, the set €2 should be
open in R? and, secondly, the function u should be locally L? integrable over
for some g > 3.

Lemma 2.4. Let  C R? be an open subset and q > 3. If u € L} _(Q) satisfies

loc
/Qu(—am —00,6) = 0 (19)

for every ¢ € C§°(Q2), then u is a temperature on €.

Remark 2.5. To overcome the restriction ¢ > 3 we tried in a first step to
show that u € L, implies u € L{ under the assumptions of lemma 2.3.
This resulted in steps 1)-6) of the proof of lemma 2.3 and step 7) with k = 1.
However, since step 7) actually works for every integer k > 1, it follows directly

that u is smooth and lemma 2.4 became unecessary for this purpose.

The proof of the original Weyl lemma for the Laplacian is based on the
fact that harmonic functions are characterized by their mean value property
over balls or spheres; see e.g. [GT77, Jo98]. There is a similar statement for
solutions of the heat equation. However, in the corresponding parabolic mean
value equalities a weight other than one appears and this eventually leads to
the restriction ¢ > 3. More precisely, the weight is t?/s?. This function is L?

integrable over heat balls about the origin whenever p = # € (1, %) A further
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difference is that balls and spheres over which the means are taken are replaced
by heat balls and their boundaries, respectively. The parabolic mean value
property with respect to boundaries is due to Fulks [Fu66] and with respect to
heat balls it is due to Watson [Wa73]. Here we use that Q C R? is open.
Recall that the fundamental solution to the heat equation is given by

1 2
——ec 45 [5>0,tER,
O(s,t) := Ans (20)

0 ,s<0,teR.

For r > 0 we denote by E,. = E,.(0,0) the area enclosed by the level set which
is determined by the identity

This level set is parametrized by

t(s) =+4/2sln ;—28, s € (=r%0).

Think of it as resembling an ellipse in the plane such that the origin is located
at the morth pole’. For general base points (s,t) € R? the sets E,(s,t) are
defined by translation and they are called heat balls of “radius” r.

Definition 2.6. Following Watson [Wa73] we call a function u defined on an
open subset Q C R? a temperature if 0,4 and Osu are continuous functions on
Q and dsu — 0;0;u = 0 pointwise on (2.

Temperatures are automatically in C°°(Q); see e.g. [Ev98, sec. 2.3 thm. 8].

Theorem 2.7 ([Wa73] § 10 cor. 1). Let u be a continuous function on an open
subset Q C R2. Then the following are equivalent.

(a) The function u is a temperature.

(b) At every point (s,t) € Q the weighted mean value equality for u holds

1 (t—7)2
8- 1 /ET(s,t) (s—0)?

whenever E,.(s,t) C Q.

u(s,t) = u(o,7) drdo

Proof of lemma 2.4. First we sketch the proof. The main idea is to mollify the
given weak solution « to obtain a family {u,} of smooth functions converging in
L', hence almost everywhere, to u. Here we mollify over 2-dimensional domains
as opposed to the slicewise mollification used in the proof of lemma 2.3. Now
assumption (19) implies that each function w, is a temperature on a slightly
smaller set €. C . Hence u, satisfies the weighted mean value equality in
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Watson’s theorem 2.7. On the other hand, the family {u,.} is uniformly bounded
— here we use the assumption ¢ > 3 — and equicontinuous. Hence by Arzela-
Ascoli it converges in C° to a continuous function v as r — 0. But we already
know that {u,} converges almost everywhere to u. Hence v = w. Since the
functions u, satisfy the mean value equality, so does their C° limit u, and
therefore u is a temperature again by theorem 2.7.

In seven steps we provide the details in case that () is bounded and w is L4
integrable over . In step eight we prove the general case.

(1) We introduce appropriate mollifiers. Fix a smooth function p which is
compactly supported in the unit heat ball E = F;(0,0) and satisfies fE p=1
For r > 0 consider the rescaled function

1 s t
pr(st) '_ﬁp 2

It is compactly supported in F, and satisfies f 5. Pr = 1. Denote by €2, the set
of all points (s,t) € Q such that the closure of the heat ball E,(s,t) is contained
in Q.

(2) We define the family {u,}. First we extend u by zero to R?\{2 and denote
the extended map again by u. Hence u € L4(R?). For 7 > 0 the mollification of
u is defined by

ur(s,t) == (pr xu) (s,1) = /]Rz pr(s —o,t — T)u(o, 7) drdo.

Mollification is useful, because u, € C§°(R?),
lur —ullq =0 asr—0,

and u, converges to u pointwise almost everywhere; see e.g. [Jo98, app. A]. We
denote L(R%) by L4. Moreover, note that by Young’s convolution inequality
the L2 norm of u, is uniformly bounded, namely

[urllpa = lor * ullpa < llorll o llell Lo = llull o - (21)

(3) We prove that each u, is a temperature on the set €2, defined in step (1).
Here assumption (19) enters. Let ¢ € C3°(€2,), then it follows that

/ @ (Osuy — OrOru,) dt ds = / (pr * u) (—0s¢ — 0:0:p) dt ds
Q Q

- / U (pr + (= 0o — 0,0,0)) dr do

<

)
/ U (=05 — 070-¢) dr do

Q
0.

Here the first step is by integration by parts and the definition of u,.. The second
step follows by commuting the integrals. To obtain the third step we first use

21



integration by parts to throw the parabolic differential operator on the mollifier
pr. Then we observe that (0 —0:0;)pr(s—0,t—7) = (=0, — 00 ) pr(s—o,t—7)
and pull out the latter differential operator of the integral (over the product of
two smooth functions). To see the final step observe that ¢, = p, * ¢ € C§°(Q),
because ¢ € C§°(€2,.), and therefore assumption (19) applies. Since the identity
is true for all test functions ¢ € C§°(€2.) and w, is smooth, it follows that
Ot — OyOpuy = 0 pointwise in §2,..

(4) Fix a constant R > 0 and allow r to vary in the interval (0, R/2). Then

Qr CQrpp CQ CQ, ERra(s,t) C Qrja V(s t) € Qg.

Hence by theorem 2.7 each temperature u, satisfies the mean value equality on
all heat balls with base point in Qg and radius less or equal to R/2.

(5) We prove that the family {u, },e(0,r/2) is uniformly bounded on Qp. Fix
a point (sg,tp) € Q. Then by the mean value equality for the temperature u,
over the heat ball Erg/s(s0,t0)

1 (to _7_)2
ur(so:to)l < g —— |uy(0,7)| drdo
I ( 0 0)| 4\/7?R /ER/2(507t0) (80—0)2| ( )‘
1 2
TR Js, 00 2 lur(s+s0,t +to)| dids
Rr/2(0,

1 _
L L I

< ¢q,r ||ull Lo -

In the second step we introduced new variables t = 7 — tg and s = 0 — sg9. In
step three we use Holder’s inequality with 1/p+1/¢ = 1 and p,q > 1. Since the
weight function t?s~2 is not bounded on ER/o we can’t get away with pulling
out the sup norm. In the last step we applied (21). The constant ¢, g is given

by [[t2s 72| Lr(Eg,s) /4T R With p = 717 To see that it is finite observe that

opt+d 0 (gln(—s))Pt2
[,

HtQS_QHIZP(El) = 2p+1

-1 (=)
+5 o
_ e / e (30 gy
2p+1 Jg
B op+t:  D(p+ 3)
S 2p+ 13 \PHE]
P G-n
Here we used the change of variables x = —log(—s) in the second step, the last
step is valid whenever —% <p< %, and I' denotes the gamma function. The

earlier use of Holder’s inequality further restricts p to the interval (1, %) and
this is equivalent to ¢ = 5 > 3. We still need to transform the unit heat ball
Ey to ER/s. This leads to a finite constant which depends only on R and p.
(6) We prove that the family {u,},c(0,r/2) is equicontinuous on Qg. Here
we use uniform boundedness of the family which we proved in step (5). Given
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two points (sg,to) and (s1,t1) of Qg, the mean value equality for w, over the
heat balls A = Eg/s(s0,t0) and B = Eg/s(s1,t1), respectively, shows that

47 R |ur(s0,t0) — ur(s1,t1)]
_ MuJT rdo — QUUT Tdo
_/,4(50—0)2 rlov7) drd /3(51—0)2 o) drd

to — )2 — )2
g/ (077)2|ur(0,7)| deU—i-/ —
A\B (s0 —0) B\A \S1 — 0O

(to—7)* (t1—1)°
- /m (50—0)  (s1-0)

§s5p|ur|(f+g+h) (so — s1,t0 — t1)
R

lu,(o,7)| drdo

< CqR Hu”Lq Cr(s0,t0) — (s1,11)]

where
to — 2
f(So—S1,to—t1):/ (to T)2 drdo
Ery2(s0,to)\Ery2(s1,t1) (so —0)
_ (ti—7)*
g(s0 — s1,t0 —t1) = 5 drdo
Ery2(s1,t1)\Er/2(s0t0) (81 )
to — t 2
h(So—Shto—tl):/ (to —7)° - (t ) drdo.
ERr/2(s0,to)NER/2(s1,t1) (30 - U) (31 - ‘7)
To see the final step in the estimate observe that
t2
f(So—Sl,to—ﬁ):/ dtds
Er/2\ERr/2(s1—50,t1—t0) 52

by change of variables. This shows that f > 0 depends continuously on the
difference (so,to) — (s1,t1) and vanishes precisely for (sg,t9) = (s1,¢1). If sg —
51> —R*/4orty—t; > \/%R, then f is constant and equal to 4,/7 R. Denote
this set by Ug. Its complement is compact. Hence f admits a uniform constant
of continuity Cr/3. The same is true for g and h. Concerning h note that

2 (to—t
h(So—Sl,to—tl):/ j—u dtds.
Ep 2NEpryz(s1—soti—to) | § (s0— 81— )

Again h > 0 is continuous and constant on Ug, but this constant is zero because
the integral is taken over the empty set.

(7) We conclude the proof in the case u € L%(Q) with Q bounded. By
uniform boundedness and equicontinuity of the family {u, : Qr — R}, c(0,r/2)
the Arzela-Ascoli theorem asserts existence of a continuous function v on Qg
and a sequence of positive reals r;, — 0 such that u,, — v in C°(Qg). On the
other hand, the sequence u,, converges to w in L? by step (2). Hence u = v is
continuous on 2g. Since the temperatures u,, satisfy the mean value equality
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so does the uniform limit u. Hence u : Q2 — R is a temperature by theorem 2.7.
Since every point of €2 is contained in some Qg for R > 0 sufficiently small, it
follows that u is a temperature on €.

(8) We prove the general case. Let Q2 C R? be open and u € L] (Q). Given
any point of © choose a sufficiently small bounded open neighborhood €' C Q
on which w is L7 integrable. Then u is a temperature on Q' by step (7). As the
point was chosen arbitrarily, the function u is a temperature on 2. O

2.2 Local regularity

The parabolic analogue of the Calderon-Zygmund inequality is the following
fundamental L? estimate. It is used to prove theorem 2.9 on local regularity
and it implies the interior estimates of theorem 2.11 by induction.

Theorem 2.8 (Fundamental L? estimate). For every p > 1, there is a constant
¢ = c(p) such that

[0svllp + 10:0¢vllp < c[|Osv — DeDrvllp
for every v € C§°(R?). The same statement is true for the domain H~.

Proof. A proof for R? is given in [SW03, thm. C.2] by the Marcinkiewicz-Mihlin
multiplier method. In the case of the lower half plane H™ choose a compactly
supported smooth function v on H™ and constants 7" > 0 and a < b such that
suppu C (=T/2,0] x (a,b). Then [Li%9, prop. 7.11] with n = 1, A" = 1,
A=A =1, the cube Ky = (-7/2,0] x (a,b) in (=T,0) x R, and the function
f = 0su — 0;0ru proves the statement. Note that the case H™ implies the case
R? by translation. O

Theorem 2.9 (Local regularity). Fiz a constant 1 < g < oo, an integer k > 0,
and an open subset @ C H™. Then the following is true.

a) Ifue L. (Q) and f € WHI(Q) satisfy

loc loc

[ u-0.0-000) = [ fo (22)

for every ¢ € C§°(int Q), then u € WETH(Q).

loc

b) Ifue L. () and f,h € WY(Q) satisfy

loc loc

/Q U (0.6 — B:0,0) = /Q fo- /Q how (23)

Jor every ¢ € C§°(int Q), then u and dyu are in WE(Q).

loc
Here int © denotes the interior of the set Q. Part b) is used to prove theo-
rem 3.1 on regularity for zeroes of the linearized heat equation. For convenience
of the reader we recall Poincaré’s inequality and its proof, since it is used in the
proofs of theorem 2.9 and theorem 2.11.
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Lemma 2.10 (Poincaré’s inequality). Fiz constants ¢ > 1 and r > 0. Then

lell, < 2rl|oeell,
for every ¢ € Cg°((—r,1)).
Proof. For such ¢ it holds that ¢(—r) = 0 and hence

o(t)= [ Owp(r)dr

by the fundamental theorem of calculus. This implies that

T

o(t)] < / Brp(r)] dr < / 1+ [Bup(r)] dr < @)Y7 [0y,

-r -r

where the last step uses Holder’s inequality with 1/¢ 4+ 1/p = 1. Therefore

o) < (2r)7 " [|0eellg
and integration over t € (—r,r) concludes the proof of the lemma. O

Proof of theorem 2.9 . Since any given compact subset @ of 2 can be covered
by finitely many parabolic rectangles whose closure is contained in {2, we may
assume without loss of generality that Q = (—r2,0] x (—r,r) for r > 0.

The proof of part a) consists of four steps I-IV and part b) requires another
four steps V-VIII.

Step I: Fix two open subsets Q' and U of Q = (—72,0] x (—r,r) such that the
closure of § is contained in U and the closure of U is contained in Q. Fix a
smooth compactly supported cutoff function 8 : © — [0,1] such that g = 1
on U. Then Bf is compactly supported and W*9 integrable over . Now
approximate Sf in W*4(€2) through a sequence (f;) C C$°(2), that is

||fz_6f||wkq(ﬂ) —>O, as 1 — 0.
Step 1I: Fach smooth problem
(0s = 00y )u; = f; (24)

with f; € C§°(£2) admits a unique solution u; € C5°(2); see e.g. [Li96, thm. 5.6].
We prove below that the sequence of solutions u; is a Cauchy sequence in
WHHL4(Q). Therefore it admits a unique limit @ € WkT14(Q). Now the limit @
solves the identity (05 — 0;0;)@t = Bf almost everywhere on ) as can be seen as
follows: The sequence Osu; — 0;0ru; converges to Ost — 0:0:t in LY, since u; is a
Cauchy sequence in W*+1:4(0Q)), and the sequence f; converges to 3f by step I.
Uniqueness of the limit then proves equality in L7((2).
It remains to prove that the sequence w; is Cauchy. All norms are with
respect to the domain €. Note that
lui = ujll, < 20 (18 (ui —uj)ll, < (2r)? 1|80 (ws — uy)|

q°
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The first inequality follows by integrating Poincaré’s inequality (lemma 2.10)
for ¢(t) = wi(s,t) — u;(s,t) over s € (—r?,0). The second inequality follows
similarly. Now use equation (24) to obtain that

s = wsll, < @) (194w = wp)ll, + 16 = £, ) -

More generally, there is a constant C' = C(k,r) such that

lts = lhessa < € (1057 (s = w) |, + 16 = Fillye)

for all 4 and j. This follows by inspecting the left hand side term by term replac-
ing any two t-derivatives by one s-derivative and the error term f; according to
equation (24). If an odd number of t-derivatives appears then use lemma 2.10
to obtain an even number. Now the fundamental LP estimate theorem 2.8 with
constant ¢ = ¢(g) and function v = 0% (u; — u;) asserts that

102 (ws — uz)llq < el (s — 0:0)0% (ws — uy)lq
= cllo(fi = fi)lla

< cllfi = fillwra-

Here we used again equation (24). Next use the approximation of Sf in step I
to obtain that the sequence u; in W¥4(€Q) is Cauchy, namely

Ilfi = filbwra < fi = Bflbwwra +I1Bf = fillwra — 0, as 4,j — 0.

Step II1: The restriction of 4 — u to the open subset U C  is a weak solution
of the homogeneous problem. More precisely, it is true that

[ (= w00 -000) = [ @.i-0800~ [ ui-0.0-000

= /U(asﬁ — 00yt — 5f)¢
=0

for every test function ¢ € C§°(int U). Here the first step is by integration by
parts using step IT and the second step is by assumption (22) and the fact that
f=p8f on U. The last step uses the identity in step II.

Step IV: The difference @ — v is in L*(U) by step II and assumption on u.
Hence by the parabolic Weyl lemma 2.3 the function F' := 4 — u is smooth
on U. Together with the fact that & € W*+1:4(Q) by step II this shows that
u =10 — F is of class W*t14 on each bounded open subset of U, hence on €.
This proves part a) of theorem 2.9. The proof of b) takes four further steps.

Step V: Let the sets ' and U, the cutoff function 8, and the sequence (f;) C
C§°(€2) be as in step 1. Approximate the compactly supported function Sh in
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Wk4(Q) through a sequence (h;) C C§°(2). Now as in steps II and III each
smooth problem

(85 — 8t8t)vi = hz (25)

admits a unique solution v; € C§°(Q2) and the sequence (v;) is Cauchy in
WE+L4(Q) with unique limit & which solves the identity (95 — 0;0;)9 = fh
almost everywhere on ).

Step VI: Observe that the sequences
w; = u; + Oy, Opw; = Oyu; + Op0pv;,
converge in W¥4(() to the limits
W= U+ 0y, Ot = Ot + 04040,

respectively. Moreover, each w; satisfies the identity (95 — 0;0;)w; = fi + O¢h;
on ). Integration by parts then shows that

/Q wi (~0, — 0,0,) 6 = /Q fib— /Q R0y

for every ¢ € C§°(int 2). Taking the limit ¢ — oo we obtain that

/Q (0, — 0,0,) 6 = /Q 816 - /Q Bh By (26)

for every ¢ € C5°(int ).

Step VII: The restriction of @ — u to the open subset U of €2 is a weak solution
of the homogeneous problem, meaning that

[ o= w-0.6-000) = [ 0.~ 0000~ [ w-0.6-200)

:/ (ﬁf¢—ﬁh@t¢)—/ (fé— h i)
U U
—0

for every test function ¢ € C5°(int U). Here step two uses the identity (26) for
w and assumption (23) on u. Step three is true since 8 =1 on U.

Step VIII: Note that the difference 1w —wu is in L'(U) by step VI and assumption
on u. Hence by the parabolic Weyl lemma 2.3 the function G := W —u is smooth
on U. Since @ € WF4(Q) by step VI, this shows that u = @ — G is of class
W¥:4 on each bounded open subset of U. Since also d;1 € W*4(Q) by step VI,
the function dyu = O — 8,G is of class W7 on each bounded open subset of
U, in particular on Q. This concludes the proof of theorem 2.9. O
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Interior estimates

Theorem 2.11 extends the fundamental LP estimate theorem 2.8 to parabolic
Sobolev spaces of higher order. The proof is by induction. Parabolic boot-
strapping in section 2.4 relies on this extension. Also theorem 2.2 on interior
regularity now follows readily. Then in proposition 2.13 we establish the linear
version of the fundamental LP estimate.

Theorem 2.11 (Interior estimates for parabolic rectangles). Fiz an integer
k >0 and constants 1 < ¢ < 0o and 0 < r < R. Define Q. = (—r2,0] x (—=r,7).
Then there is a constant ¢ = ¢(k,q, R — r) such that

||UHW’9+1vfI(Q,.) <c (||8su - atatu”WWJ(QR) + ”uHL‘?(QR) + HatUHLq(QR)) (27)

for every u € C*°(QpR).

Proof. The proof is by induction on k.
Step k = 0. Fix a smooth compactly supported cutoff function S : Qr — [0,1]
such that § =1 on €2,. Then

HUHqu(QT)

< Bull ooy + 10 (Bu)ll Loy + 110:0: (Bu)l La(qrp) + 1105 (Bu)ll Lo
< 2R(1+42R) [|0:0¢ (Bu)l| pa(a ) + 105 (BU)ll Lo,

< (95 = 0:9)Bull oy

< 0. ~ 90l gy + € (Il + 1900 o)
where ¢ = ¢4 (1 + 2R(1 + 2R)) with ¢, being the constant in theorem 2.8 and
C = 19:8lo + 110:0:Bll o + 21108 s -

The first step uses the fact that 5 = 1 on ,, the definition of the W' norm,
and monotonicity of the integral. To obtain step two we fixed s and applied
Poincaré’s inequality lemma 2.10 to the functions Su,d;(fu) € C3°(—R, R),
then we integrated over s € (—R?,0]. Step three is by theorem 2.8.

Induction step k —1 = k. Fix k > 1. It suffices to estimate the W*+14
norms of u, dyu, 9;0u, and dsu individually by the right hand side of (27). We
provide details for the least trivial term and leave the others as an exercise. Fix
constants r < r; < ro < R. Then by the induction hypothesis, that is case k—1
with pair of sets €2, C Q,, and function v = J,u, we obtain that

Hasu”yvk,q(gr)
< 1 (0 = 20)0sullyyi1.agq, ) + 105l oo, + 10Dl g, )

<cr ([[(Osu— atat)ullwk,q(QR) + ”uHWLQ(QT )yt |‘atuHW1,q(gzr )
1 1
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for some constant ¢; = ¢1(k — 1,¢q,71 — 7). To deal with the last term in the
sum we apply the case k = 0 with pair of sets 2, C ,, and function v = d,u
to obtain that

||atu||W1,q(er) S e (||(5s - 3tat)8tu”Lq(Qr2) + ”atu”Lq(Q,‘z) + ”atatu”LQ(QTz))
< e (||(8Su = 000 ullyyr.a(ar) + 10wl Loy + ||uHW1>q(Q,.2))

for some constant c; = ca(q, 72 — 71). It remains to estimate the last term in
the sum. We apply again the case k = 0, but now for the pair of sets Q,, C Qg
and the function u to obtain that

Hu“wl,q(nrz) <3 (H(as - 8tat)“HLq(QR) + Hu||L<I(QR) + ”atu”Lq(QR))
for some constant ¢z = c3(q, R — r2). O

Proof of theorem 2.2 on interior reqularity. a) Assume the parabolic rectangle
Q= (0c—1r%0]x(r—r,7+7r) is contained in the cylinder Zy = (—T,0] x S*.
Then the assumptions of theorem 2.9 a) are satisfied for v and f restricted to
Q. Hence u € Wl’le’q(ﬂ). Now u is locally W¥+1:4 integrable on Zr, because
every compact subset of Zp can be covered by finitely many parabolic rectan-
gles. Part b) follows by induction over k based on theorem 2.11 and a covering

argument by parabolic sets. O

Lemma 2.12 ([SW03, lemma D.4]). Let x € C°*°(S', M) and p > 1. Then

i€l < mp (5721l + 8 1% %el, )

for d > 0 and smooth vector fields & along x. Here k, equals p/(p—1) for p <2
and it equals p for p > 2.

Proposition 2.13. Assumeu : RxS* — M is a smooth map such that ||0sul| s,
|0cu]lco, and ||Vidiullso are finite and limg_, 1o u(s,t) exists, uniformly in t.
Then, for every p > 1, there is a constant ¢ = c¢(p,u, M) such that

Vel + 1€, + INevagll, < e (I = Vewaell, + ligll,) - (28)

for every smooth compactly supported vector field & along w. FEstimate (28)
remains valid for —Vs replacing Vs. Estimate (28) also remains valid if u is
defined on the backward halfcylinder (—oo, 0] x St.

Proof. The proof of (28) for R x S and (—oc,0] x S* is based on theorem 2.8
for R? and H™, respectively, using a covering argument. Full details in the case
R x St are provided by [SW03, prop. D.2]. Lemma 2.12 allows to add the term
Vi€ to the left hand side of (28). The underlying reason is periodicity in the ¢
variable. The statement for —V; follows by reflection s — —s. O

Applications of the proposition include closedness of the range of the lin-
earized operator, proposition 3.18, estimate (77) in the proof of the exponential
decay theorem 1.8, and step 2 in the proof of theorem 8.5.
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2.3 A product estimate

The product estimate lemma 2.14 is the key tool to obtain the quadratic esti-
mates of proposition 5.2. These in turn are used to prove the refined implicit
function theorem 1.12. The Euclidean version corollary 2.16 of the product es-
timate is crucial in section 2.4 on parabolic bootstrapping. Namely, it allows to
estimate the quadratic first order term I'(u) (Oyu, O;u) of the heat equation (30)
in the L? norm as opposed to the L?/? norm which one expects at first sight.

Lemma 2.14. Let N be a Riemannian manifold with Levi-Civita connection
V and Riemannian curvature tensor R. Fix constants 2 < p < oo and ¢y > 0.
Then there is a constant C = C(p,co, |R|loc) such that the following holds. If
u: (a,b] x St — N is a smooth map such that

[0sull o, + 19eull o, < co,
then

b1 p
(/ / <|vt§||th|>”dtds> < el (1K1, + %91,

for all smooth compactly supported vector fields & and X along u.

Remark 2.15. Lemma 2.14 continues to hold for smooth maps u that are
defined on the whole cylinder R x S'. In this case the (compact) supports of &
and X are contained in an interval of the form (a, b].

Corollary 2.16. Fiz 2 < p < co. Then there is a constant C = C(p) such that

0 1 1/p
([ [ Gonliowly duds) < C ot (101w, + l000,)
-1 Jo
for all compactly supported smooth maps v,w : (—T,0] x ST — R¥.
Proof. Lemma 2.14 with N = R¥, u = const, £ = v, and X = w. O

Proof of lemma 2.14. The proof has three steps. Step 2 requires p > 2. Abbre-
viate I = (a,b] and for ¢,r € [1, 00| consider the norm

1€l g == 1€l Loz, Lr(s1) -

STEP 1. Fiz reals « > 1 and q,7,q¢',v" € [, 00] such that % —|—% = é and

% + = Then || fglly < Ifllyq gl for all functions f,g € C>(I x S*).

87

Let fs(t) :== f(s,t). Apply Holder’s inequality twice to obtain
b
alGeresn = [ 1£0ecsey ds

b
< [ (18 agsn o

= ||UU||(£w(1)

< (HUHLq’([) ||UHL7"(I))

[e3
L"(Sl)) ds
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where u(s) = || fs|l pa(s1) and v(s) := [|gsll ;- (1) This proves step 1.

STEP 2. Given p,cg, and u as in the hypothesis of the lemma, then there is a
constant ¢ = ¢(p,cy) such that

Vi€lloosp < € llEllmrs

for every smooth compactly supported vector field & along v : I x S' — N.

The proof uses the generalized Young inequality: Given reals a,b,c¢c > 0 and
1 <a,f,y < oosuch that & + 5+ 2 =1, then

a® b &
abc < — + — + —. 29
s TS (29)
To prove this inequality one applies twice the standard Young inequality. The
first application uses the exponents « and a/(a— 1) and the second application
£:=pB(a—1)/aand m := y(a—1)/a. The sum of the inverted exponents equals
one in both cases. It follows that

abe < ﬁ + L_l pe/ (a=1) La/(a—1)
=5 5

e’ a—1 ba@/(a—l) Cam/(a—l)
e ()

« Y4 m

L Lty L @71 amja-

a
a
aOL
o ol am

and this proves (29). Next straightforward calculation using integration by parts
and abbreviating £(s,t) by £ shows that

d 1
& [ 1wt a
1
—p / VP2 (Vi Vil + [V, VIE) dit
0
1 1
—— [ (G mer) mevea—p [ v Eue Vg
1
+p / V€72 (V€L R(Dyu, D)) dt
0
1
— pp—2) / VP (ViE, ViVi€) (Vi€ Vi) dit
0

1
—p / VP2 (ViVAE, Vi) — (N, R(Dou, Dyu)€)) di.
0

Take the absolute value of the right hand side, apply the generalized Young
inequality (29) in the case? p > 2 with a = p/(p — 2), B8 = p, v = p, and the

2The case p = 2 is taken care of by the standard Young inequality.
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standard Young inequality with o = p/(p — 1), 8 = p to obtain the inequality
L[ imetsor a
— s
dS 0 t )
! 2 ! 1
<plp- 1)/ [ViEl"" ViVl - V€| dt + peg ||R||oo/ V&P 1€] dt
0 0

= p_ 1 p_ 1 P
<plp-1) — [Vil" + - [V Vgl" + — [Vl ) dt
0 b p b
1
p—1 1
s Irl, [ (L 1ler) a
0 p p
< C1 (16l g1, + IVl o) + VTl ) ) -
Here C > 0 is a constant depending only on p, co, and || R|| ., and &s(t) := (s, t).
Note that we used lemma 2.12 to estimate the terms involving V;£;. Now fix
o € (a,b] and integrate this inequality over s € (a, o] to obtain the estimate

HVt&;II’ip(Sl) <c H§||€)/v1=p((a,b]xsl) .

Here we used compactness of the support of £ and monotonicity of the integral.
Since the right hand side is independent of o the proof of step 2 is complete.

STEP 3. We prove the lemma.

Define
f(87t) = |Vt§(87t)|7 g(&t) = ‘VtX(87t)|'

By step 1 with a = ¢ = 7’ equal to p and with r = ¢’ = co we have that

bl
| (mts ol mx s o)y deds = 5l
a JO
Now apply step 2 to the first factor. For the second one we exploit the fact
that, since the slices s x S! of our domain are compact, there is the Sobolev

embedding
WHP(SY) — L=(S)

with constant u = p(p) > 0. It follows that

b b
/ IV Xl oo (51 ds S/ 1 IV X s lTyam 51y ds
b
i [ NGy + [GTKe o,

This concludes the proof of lemma 2.14. O
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2.4 Parabolic bootstrapping

In this section we establish by parabolic bootstrapping uniform Sobolev bounds
for strong solutions u of the perturbed heat equation (30). Proposition 2.18
is a refined version of theorem 2.1 providing Sobolev bounds for d;u, dsu, and
0;0pu. In order to deal with the quadratic lower order nonlinearity I' of the
heat equation we shall first prove apriori continuity of d;u in lemma 2.17. This
provides a C° bound for d;u and we can think of the quadratic nonlinearity
becoming linear. This is crucial in the first step £ = 1 of the parabolic bootstrap
in the proof of proposition 2.18.

Throughout this section we fix a closed smooth submanifold M < R™ and
a smooth family of vector-valued symmetric bilinear forms I' : M — RNXNXN,
Abbreviate WFP(Z) = WFP(Z,RN). Moreover, for T > T > 0 we abbreviate

Z=27r=(-T,00xS",  Z'=2Zp=(-T,0 xS"

Lemma 2.17 (Apriori continuity of dyu). Fiz constants p > 2, ug > 1, and
T >0. Fizamap F: Z — RN such that F and 0,F are of class LP. Assume
that u : Z — RN is a WY map taking values in M with ||ulwi.» < po and
such that the perturbed heat equation

Osu — 0y0pu = T'(u) (Opu, Opu) + F (30)

is satisfied almost everywhere. Then Oiu is continuous. More precisely, for
every T" € (0,T) there is a constant ¢ = c(p, po, T, T", ||T'||c1) such that

1Beullcogzn < e (14 10:F ] 1o z)

Note that by the Sobolev embedding theorem the assumption p > 2 guaran-
tees that every WP map u is continuous. Hence it makes sense to specify that
u takes values in the submanifold M of RYV.

Proposition 2.18. Under the assumptions of lemma 2.17 the following is true
for every integer k > 1 such that F,0.F € WF=12(Z) and every T' € (0,T).

(i) There is a constant ai depending on p, po, T, T', ||T||c2x+2, and the
WE=LP(Z) norms of F and O, F such that

||8tu||wk,p(zl) S Q.

(i) If 0,F € Wrk=1P(Z) then there is a constant by, depending on p, o, T,
T, |T|lc2r+2, and the WE=YP(Z) norms of F, 8, F, and OsF such that

Hasu||wk,p(2/) é bk

(iii) If 0,0,F € W*=1P(Z) then there is a constant cj, depending on p, po, T,
T, |IT||c2k+2, and the WE=YP(Z) norms of F, 0, F, and 8,0, F such that

HatatuHWk,p(Z/) < ¢.
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Remark 2.19. Since the proof of lemma 2.17 relies heavily on the product
estimate corollary 2.16 it seems unlikely that the assumption u € WP can be
weakened to u € WP — unless we also replace the assumption p > 2 by p > 3.

Remark 2.20. The assumption v € WP in lemma 2.17 and proposition 2.18
can likewise be replaced by u, 0;0,u € LP N C°. To see this observe that the
new assumption implies firstly that d;u € LP, see e.g. [SWO03, lemma D.4], and
secondly that Osu is in LP, though on a smaller domain. This follows similarly
to the argument in the proof of lemma 2.17 leading to an LP bound for 0;0;u.

Notation. In the proofs of lemma 2.17 and proposition 2.18 we use the following
notation. Given two constants T' > T” > 0 consider the sequence given by

T-T
To=T+-——, keN (31)

Note that 17 = T. The definition also makes sense if we replace k by a real
number 7 > 1. Now consider cylinders Z, = (—T;.,0] x S'. By int Z, we denote
the interior (—7},0) x S of Z,. It is useful to memorize that 7,1 C Z,. For
each positive integer k fix a smooth compactly supported cutoff function

pr t (= Tk, 0] — [0, 1] (32)
such that p,, = 1 on Zy1; and ||0sp| s > 1. Recall that C* is defined by (14).
Proof of lemma 2.17. Denote the nonlinear part of the heat equation (30) by
h = h(u) =T (u) (Osu, Oru) + F
and the first cutoff function fixed in (32) by p = p1. Then h € LP(Z5), namely
Hh”Lp(ZQ) < Hp2h||LP(Z1)
< 100 1196 - 8ol 1) + 102F |
< Cp Il oo 1012 1o zy + 1l oz

where in step one and two we used that p?> = 1 on Z, and independence of
p on the t variable, respectively. The last step is by the product estimate
corollary 2.16 with constant C, > 0 applied to the compactly supported W'?
map pu : Zp — RY using a density argument. Compactness of M implies that
IT|lco < co. Next observe that

3th = dF(U) (8tu, 8tu, 3tu) + QF(U) (8t3tu, 3{&) + 8tF (33)

Now we indicate the main idea of the proof. Suppose we knew that d.h €
LX(Zy41) for some x > 1 and some k € N, then

/ Dy (~0up — 0,01) = — / D0y + / D400
Zk+1 Zk+1

Zi41

_ / how (34)
Zrt1

Zkt1
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for every ¢ € C§°(int Zy4+1). Here all steps use integration by parts. Step
two is by definition of h and the assumption that wu satisfies the heat equa-
tion (30) almost everywhere. Now theorem 2.2 on interior regularity asserts
that 9;u € WHX(Z;12). Hence we have improved the regularity of d;u which in
turn improves the of regularity d;h as given by (33). Now start over again. We
prove below that under this iteration y eventually converges to p. But p > 2,
hence continuity of d;u follows by the Sobolev embedding WX « CY.

To get the iteration started at k = 1 we first need to prove that d;h € LX(Z3)
for some x > 1. As a first try recall that by assumption u € WP(Z;). Therefore
the first term in (33) is in LP/3 only whereas the second term is in L?/2. Hence
dih € LP/3 but p/3 is not necessarily larger than 1. Fortunately, using the
product estimate corollary 2.16 we can do better. By assumption p > 2 is given
and fixed. Consider the function

b p+q

and observe that 1/p+ 1/q = 1/x. Apply Holder’s inequality to obtain that

||8th||Lx( ) < ||pk23t

h||LX(Zk)

Zpt1
< [[dT[ [110: (o)l - 10 (ox)l| Lo 2,y 1Oetell La 24
+2 ||FHOO HatatU”Lp(zk) ||3tu||Lq(Zk) + HatFHLx(Zk) (35)
2 2
< Cp ||l | oo 195 ll56 Nulliro 2y [Oetell La( 24

+ 2Tl oo 10:0eull 1o 2,y 10sull Lo 2,y + N10F || 1o 2,
S« ||8tu||L<1(Zk) + HatFHLP(ZT) :

Here the third step is by the product estimate corollary 2.16 with constant
Cp and the constant « in the last line depends on p, po, |I'l|c1, and pr. We
used again one of the cutoff functions in (32) to produce a compactly supported
function as required by the product estimate. Consequently the domain shrinks.

Now we start the iteration with initial value g; = p. Then x(q1) = p/2 > 1.
Hence 9;h € LP/?(Z,) by estimate (35) for k = 1. Therefore by (34) theorem 2.2
applies to the functions 0;u and f = 0;h and proves that dyu € Wllo’p / 2(ZQ) and

C

00wy < o2 (100h sz + o) (36)
< ¢y (auo T N0 F o2y + uo)

for some constant co = co(p, To —T3). Step two uses (35) for k = 1 and ¢ = p/2,
the fact that ||0sul|,/2 < [|0ullp, and the assumption ||dyull, < po.

Now there are three cases: If p > 4 then we are done by the Sobolev embedding
Wr/2 <5 00 on the domain Zs; see e.g. [MS04, app. B.1] for relevant embed-
ding theorems. If p < 4 then the value of x = xp(q1) = p/2 is in the interval
(1,2). In this case there is the Sobolev embedding

WEX(Z3) € WEX(Z3) — L2X/ 70 (7,) = L%2(Z,)
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with constant Cy = Ca(p, T5) > 0. Here we abbreviated

X _ 2pq1 _ %
2—-x  2p+2p-py  4-p

q2 =

Hence 0;u € L?P/(4=P)(Z3). Since 2p/(4 — p) > p is equivalent to 2 < p < 4,
this means that the regularity of d;u has been improved — on the expense of a
smaller domain though. The case p = 4 means that u : Zp — RY is a W4 map
to start with. But then it is also a W3 map and we are in the former case.

Repeating the same argument with new initial value ¢o proves that dyu €
Whxe(e2)(Z5). Again this space embedds either in C°(Z5) and we are done or
it embedds in L% (Z5) where g3 = 2pg2/(2p + 2g2 — pg2) > ¢2. It is crucial that
in (35) the value of p is fixed. Firstly, because the product estimate corollary 2.16
requires p > 2 and, secondly, because we only know that 0;0;u € LP. Proceeding
this way we obtain the sequence ¢; determined by

2pqy

’ . 37
2p + 2q1, — pax n=r (87)

dk+1 =
Observe again that the condition p > 2 implies that gp4+1 > qr. Hence the
sequence is strictly monotone increasing. Next we prove that g, — oo as k — oo.
Assume by contradiction that this is not true. Then by strict monotonicity the
sequence is bounded and admits a unique limit, say ¢. By (37) this limit satisfies
q = 2pq/(2p + 2q — pq). But this is equivalent to p = 2 contradicting p > 2. It
follows that x,(gx) converges to p as k — co. But p > 2, hence whenever k is
sufficiently large there is the Sobolev embedding

W17Xp(qk)(Z2k+1) [SEEN CO(Z2k+1) C CO(ZT’)

and this implies the estimate in lemma 2.17. Clearly O;u is continuous on the
whole cylinder Zp since every point is contained in some subcylinder Zp,. O

Proof of proposition 2.18. We prove the following claim by induction on ¢. Re-
call from (31) the definition of the real Ty and the cylinder Z,. The claim with
¢ = k proves proposition 2.18.

CLAIM. Given 0 < T' < T and an integer k > 1 such that F and O;F are in
WE=LP then the following is true for every £ € {1,... k}.

(a) Qwu € WfOJC)(Zgg_l) and there exists a constant A, depending on p, uo,
IT|lc2e+2, || Fllwe-10, and ||OcF||yye-1.0 such that

||8tu||wl4-,p(z3z) S AK'

(b) If0sF € WF=LP(Z7) then dsu € Wfo’g(23g) and there exists a constant By

depending on p, po, |Tllczerz, |Fllwe-1.0, [|OLF |lywe-1.0, and ||0sF||ye-1.0
such that

||aSuHWé’p(Z35+1) S B,@.
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(c) If 0;,0,F € WF-LP(Zp) then 9,0pu € WfO’Z(Zgg_H) and there exists a
constant Cy depending on p, po, |T||c2etz, [|Fllwe-1.0, [|O:F ||we-1.0, and
|0:Oe Fl|ype-1.0 such that

Hatatu”WZ’p(ZmHz) < Ce.

Here and throughout the domain of all norms is Zp, unless specified oth-
erwise. An exception are the various norms of I' for which the domain is the
compact manifold M. We abbreviate h = I'(u) (Osu, Oyu) + F.

Step £ = 1. By lemma 2.17 with T = T3 there is a constant Cy depending on
D, to, Ty To, and ||T'||c1, such that

10l zy) < Co (14 10:F1,) (38)
(a) Recall that Oh is given by (33). Straightforward calculation shows that
10l 1o 2,y < Tl 100l G0 7, 100ull o 2y + 1O | 1o 2

+2[ll ||6tu||co(zz) ”atatUHLp(ZZ)
<a (1 n ||atF||§)

for some constant « = «(p, po, T, Ta, ||T']|cr). We used (38) and the assumption
llullwie < po. Recall from (34) that dyu satisfies

O (—5s¢ - 8t8t¢) = 8th¢

Z2 Z2

for every ¢ € C§°(int Z). Hence theorem 2.2 on interior regularity for ¢ = p,
T =Ty, T' = T3, k =0, and the functions f = 9;h and Oyu in LP(Zy) proves
that d;u € WP (Z;) and

C

10l czyy < 1 (10l oy + 1000l 1o 2,
for some constant p = p(p, Tz, T3). Now use the estimate for 9;h to see that
2
10l zyy < A (1+110F17)

for some constant A = A(p, po, T, T2, T3, ||T||c1).
(b) Straightforward calculation shows that

2
10shll Lo 25y < ML 10sullco(z) 0still Lo zy) + 105 F | 1o (z,)
+ 2Tl o 10suell oz, 11050kl 1o 24

<8 (1+10Fly) + 9.,
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for some constant 8 = B(p, uo, T, T, T3, ||T||c1) > 1. Here we estimated the L?
norm of 9,0;u by the WP estimate for d;u just proved in (a). We also used
the C° estimate (38). Next observe that

8su (—as(b - 6t8t¢) = —/ (@u - 8,58{11) (‘Ld)

Z3

_ /Z (D(u) (Bu, Opu) + F(u) dyd (39)

Z3

= Osh ¢

Z3

for every ¢ € C§°(int Z3). Here steps one and three are by integration by parts.
Step two uses the assumption that u satisfies the heat equation (30) almost
everywhere. Now theorem 2.2 proves that d,u € Wll’p (Z3) and

oc

105tz < 1 (19B] Lozy) + 10500 1oz )

for some constant p = p(p, T3, Ty). Now use the estimate for dsh to see that
3
10stllyn 2y < B (1+ 105 + 1051, )

for some constant B = B(p, po, T, Ta, T35, T4, |T]|c1)-
(¢) Straighforward calculation shows that

3
18:0eh 1o 2,y < [T || o 10t o 2y 100l Lo 20y + 100 | 1o 2,
A 195l gy 19000t 1
+ 2Tl 10rull co (2, 19:0Brull Lo 2,
+ 20l o 18:8rull o (2, 1100rull 1 2,
<7 (1+110.Fy) + |00 F],
for some constant v = vy(p, po, T, T2, T3, Ty, ||T'||c2). In the final inequality we
used the C? estimate (38) for d;u and the WP estimate for d;u proved above
in (a). This takes care of all terms but one, namely the C° norm of 9;0;u. Here
we use that 0,0,0;u and 050.0;u = 9;0;0su are in LP(Z,) by (a) and (b), re-

spectively. Hence 0,0;u € C° by the Sobolev embedding W < C9. Similarly
to the calculation in (34) it follows that

00 (*aséf) - atat¢) = 0:0:h ¢

Z4 Z4
for every ¢ € C§°(int Zy). Theorem 2.2 then proves that d;9;u € W5P(Zy) and

10:0eullyyrnzyy < it (1905l o 2y + 1OcDrtll )
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for some constant u = p(p, Ty, Ts). Now use the estimate for 9;0;h to see that
10Detllyrn ) < € (14 10Fy + 0:00F )

for some constant C' = C(p, po, T, Ts, T3, T4, Ts, [|T]|c2)-

Induction step £ = £+1. Fix an integer £ € {1,...,k—1} and assume that (a—)
are true for this choice of £. We indicate this by the notation (a—c),. The task
at hand is to prove (a—c),, ;. Recall the parabolic C’ norm (14). An immediate
consequence of the induction hypothesis (a—c), is that

||“Hwé+1yp(z3,“2) < D2+1
for some constant Dy, = Dy (p, po, [|T||c2e+2, | F|lyer). Hence
||UHc@(Z3e+2) < Ditq (40)

for some constant Dyy1 = Doy1(p, po, ||Tllczetz, || Fllyer). To see this observe
that up to a constant the C* norm can be estimated by the WP norm. (This
boils down to the Sobolev embedding WP <« C° for each individual derivative
of u showing up in C*.)

(a)y,, Straightforward calculation shows that

10:hlyyes

2
< ldl| cze de ||U||c2(zu+2) ||8tu||wf,p(zu+2) + ||atF||W/f,p(zu+2)

Z30+42)

21T e de [llee ) (100l 7y 2y + 1900tlyen 2, )
< opqr + |0 F || pew

for some constant agr1 = agr1(p, po, |T||cze+2, | F|lyer). The first inequality
follows from the identity (33) and the last two estimates of corollary 2.22 with
constant dy. Notice the difference between the standard C* and the parabolic
C’ norms. To obtain the second inequality we applied (40) and the induc-
tion hypotheses (a), and (c), to estimate the W*? norms of d;u and 9;0u,
respectively. Next observe that theorem 2.2 applies by (34) and shows that
Owu € Wlf()tl,p(z3e+2) and

10l 2y < 1 (10 e 200y + 10000 112401 )
for some constant = pu(p, Zsry2, Zse13). Now the assumption |jullwrr < po
and the estimate for 9;h conclude the proof of (a),,,. For latter reference we
remark that (a),,, implies — similarly to (40) — the estimate

1Orulleez,,.,) < B (41)

for some constant Ey = Ey(p, pto, [|T||c2e+2, | F|lwer s [|0:F | wer )-
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(b),4 Straightforward calculation using the WHLP estimate for 0yu just proved
and the induction hypotheses (a—c), implies that

2
Hash”WZ’p(ZsHs) < HdF”CM ”atu”Ce(ZsHs) Hasu||we'p(zze+3) + ”asF”We'p(Z3H3)
+2 ||F||ng ||atu||cf(zag+3) Hasatuné,p(ZSHS)
< 6£+1 + ||asF||W2,p

for some constant Bpy1 = Bey1(p, po, [T c2e2, ([ F'll\pew 5 [|06F [|yppe.n)- To obtain
the first inequality we simply pulled out the C* norms. In the second inequality
we used (41), the induction hypothesis (b), to estimate the W“? norm of d,u,
and the induction hypothesis (a),,; just proved to estimate the WEP norm
of 050;u. Next observe that theorem 2.2 applies by the identity (39) with Z3
replaced by Zs¢13 and shows that dsu € Wfotl’p(Zgngg) and

10stllywes s zaray < 1 (10hlhyen gy + 1000 Loz )

for some constant u = p(p, Zse+3, Z3e+4). Now use the estimate for dsh.

(¢)g4, Straighforward calculation shows that

3
10:Dshllyyes 2y, 5y < [T || gae 0eullce [1Bsullyye.s

+ 5 [[dT| e [0uEe (1005 e

+ 2([Tll e 1Brullce 10:0:0pull e + [|0:0 F [lyye.s

+2[[Tllc2e Cy [10vullce 10: el ppe.r -
Here all norms are taken on the domain Zs,13 except those involving I' which
are taken over M. Notice that in the first three terms of the sum we simply
pulled out the C* norms. However, in the last term there appears originally
the product 9;0;u times 9,0;u. To deal with this product we applied the first
estimate of corollary 2.22 (where in both factors u is replaced by Oyu).

Now the C¢ estimate (41) for 9;u and the W*+LP estimate for 9;u established
in (a),,, above prove that

10:0ehllyyen (2, ) < Ver1 + |00 [ yye.
for some constant ve11 = Yer1(£,p, po, [Tl c2er2s | Fllwers 10:F [l wer). Apply
again theorem 2.2 to see that 9;0,u € Wfotl’p(Z:;[_H;) and
10000l 2y ) < 1 (100 o 00y + 10000 Loz )

for some constant u = u(p, Zsp+3, Z3e+4). The estimate for 9;0;h implies (C)E_H.
This proves the induction step, hence the claim. O

Lemma 2.21. Fiz a constant p > 2 and a bounded open subset Q C R? with
area |SY|. Then for every integer k > 1 there is a constant ¢ = c(k, |Q|) such that

10rw - vllyyr. < e (10rullyyrs [0l + luller l0llyns)

for all functions u,v € C*(12).
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Proof. The proof is by induction on k. By definition of the WP norm

105w - vllyyerrp < N[0t vllyyer + [18:05u - v + Dy - Dpollyyes
+ (10,050 - v + 20,0y - Dyv + Dy - Dol e (42)
+ ||5'58tu v+ atu ' asU”WLp .

Step k = 1. Estimate (42) for £ = 0 shows that

10 vl < (190l + 10000l + 10,00l + 10,0, ) o]l
+ (|9sull . + 2 18:05ull ) 150l
+ l9eull . (I0:0r0l, + 1001],)

and this proves the lemma for k£ = 1.

Induction step k = k + 1. Consider estimate (42) for ¢ = k, then inspect the
right hand side term by term using the induction hypothesis to conclude the
proof. To illustrate this we give full details for the last term in (42), namely

10t - Osvllypr.p < € (10rullyprr 050l + luller 10svllpr.r)
< e( [ 10ruller 10svllyprs + llex [10llyprers)
< ([ lullgrsr 0llyyop + i T0llyesss) -

Step one is by the induction hypothesis. In step two we pulled out the L> norms
of all derivatives of 0;u and for the term dsv we used the Sobolev embedding
whr ¢ Whr « O° with constant ¢/. Here we use the assumptions p > 2 and
Q bounded. Step three is obvious. Now WhHLP s W2P gince k > 1. O

Corollary 2.22. Fiz a constant p > 2 and a bounded open subset Q C R2.
Then for every integer k > 1 there is a constant d = d(k,|Q|) such that

[0 - Oeullypn,n < di [[uller Orullyy
10eu - OcOpullyyi < die [|ullen (10cullyynn + [[0:0pullypn.r)
10vw - Dy - Dyl < dli [[ullr (| Opull v
for every function u € C>(Q).

Proof. All three estimates follow from lemma 2.21. To obtain the first and the
second estimate set v = Jyu and v = 0;0;u, respectively, and use that

10culloo < lluller s [[0:0hull o < [lullcx -
To obtain estimate three set v = 0yu - Oyu and use estimate one. O

Proof of theorem 2.1. The WF+1.P norm of u is equivalent to the sum of the
WHEP norms of u, dsu, Osu, and 9;0;u. Apply proposition 2.18 (i-iii). O
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3 The linearized heat equation

Fix a smooth function V : LM — R that satisfies (V0)—(V3) and a smooth map
uw:R x S' — M. In this chapter we study the linear parabolic PDE

Vi§ = ViVi§ — R(E, Oru)Opu — Hy(u)€ = 0 (43)

for vector fields ¢ along w. Throughout R denotes the Riemannian curvature
tensor associated to the closed Riemannian manifold M and the covariant Hes-
sian Hy of V at a loop u(s,-) is defined by (4).

In section 3.1 we show that strong solutions, that is solutions of class W},
are automatically smooth. More generally, for £ € £? we define the notion of
weak solution and show that even weak solutions are smooth. In section 3.2
we derive pointwise estimates of £ and certain partial derivatives in terms of
the L? norm of & over small backward cylinders. In section 3.3 we establish
asymptotic exponential decay of the slicewise L? norm ||&,]| r2(s1y of a solution
& whenever the covariant Hessian A, given by (10) is asymptotically injective.
Still assuming asymptotic injectivity we prove in section 3.4 that the linear
operator

D, : WhP — [P

given by the left hand side of (43) is Fredholm.

Observe that if u solves the (nonlinear) heat equation (6) then £ := Osu
solves the linear equation (43). Hence the results of this chapter will be useful
in chapter 4 on solutions of the nonlinear heat equation.

3.1 Regularity
Define the operator D}, by the left hand side of (43) with V; replaced by —V;.

Theorem 3.1 (Local regularity of weak solutions). Fiz a perturbation V :
LM — R that satisfies (V0)—(V3) and constants ¢ > 1 and a < b. Let u :
(a,b] x S* — M be a smooth map with bounded derivatives of all orders. Then
the following is true. If n is a vector field along u of class L} . such that

loc
(n, D) =0

for every smooth vector field & along u of compact support in (a,b) x S, then n
is smooth. Here (-,-) denotes integration over the pointwise inner products.

Remark 3.2. Theorem 3.1 remains true if we replace D}, by D,, and define u
on [a,b) x S'. This follows by the variable substitution s — —s.

Proof. Tt suffices to prove the conclusion in a neighborhood of any point z €
(a,b] x S*. Shifting the s and t variables, if necessary, we may assume that
2 € Q. = (—=r2,0] x (—r,r) for some sufficiently small » > 0. Now choose local
coordinates on the manifold M around the point u(z) and fix r > 0 sufficiently

small such that u(€2,.) is contained in the local coordinate patch. In these local
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coordinates the vector field 7 is represented by the map (nt,...,n"): Q, — R"

of class L} . and the Riemannian metric g by the matrix with components g;;.

Throughout we use Einstein’s sum convention. By induction we will prove that

Uﬂigli]n EﬂWln;ch)’ ,LL:].,...,'I’L.

m=1

Note that the intersection of spaces equals C*°(2,); see e.g. [MS04, app. B.1].
Now apply the inverse metric matrix to obtain that 7/ = ¢g/#v, € C*°(£,.) and
this proves the theorem.

Stepm =1. Fix p € {1,...,n} and consider vector fields of the form
€ =(0,...,0,0,0,...,0): Q. - R"

where a function ¢ € C§5°(int €2,.) occupies slot p. Via extension by zero we view
£m9) as a compactly supported smooth vector field along u. Now our assump-
tion implies that (n, D)) = 0 for every ¢ € C°(int 2,.). By straightforward
calculation this is equivalent to

/QT 0 (~0u — D4016) = /Q fut— /Q oy

for every ¢ € Cg°(int Q,), where h,, = —2v;T}, dyu’ and

oo ark#
f“ = Vg (qu aSUZ + 6tu 8tu + F 8t8tu

+ Fk 6‘tu FJ 8t’u + Rl”] &gu 3tu] + Hk)
Here R, ; represents the Riemann curvature operator and H ¥ the Hessian Hy (u)
in local coordinates. The Christoffel symbols associated to the Levi Civita
connection V are denoted by Ffj.

From now on the domain of all spaces will be €2,., unless specified differently.
Observe that v, € Ll oc C Lloc by smoothness of the metric, compactness of M,
and the fact that n’ € L} . by assumption. It follows that h, and f, are in L} .
Here we used in addition boundedness of the derivatives of u and axiom (V1).
Hence dyv, € L} . by theorem 2.9 b) and this implies that d,h, € L] . Now

integration by parts shows that

loc*

/ Uy (=050 — 0;0;9) = / (fu +0thy) o
- Q.
for every ¢ € C§°(int 2,.) and therefore v, € Wloc by theorem 2.9 a).

Induction step m = m + 1. Assume that v, € W29, Then f,, h, € W:? by
compactness of M, boundedness of the derivatives of u, and axiom (V3). Hence
dyv, € W1 by theorem 2.9 b). But this implies that 9k, is in W, »? and so

is f, + Othy,. Therefore v, € W9 by theorem 2.9 a). O
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3.2 Apriori estimates

Theorem 3.3. Fiz a perturbation V : LM — R that satisfies (VO)—(V2) and
a constant Cy > 0. Then there is a constant C = C(Cy,V) > 0 such that the
following is true. Assume u:R x St — M is a smooth map with ||0;ul|s < Co
and £ is a smooth vector field along u satisfying the linear heat equation (43).
Then

1€(s, )] < ClIEll L2(ps—1,51x 51

for every (s,t) € R x S*. If in addition ||0sulleo + [|[ViOtt| o < Co, then
IVi€(s, )] < Cll€ll 2 (s—1,6x51)

for every (s,t) € R x S*.

Theorem 3.4. Fix a perturbation V : LM — R that satisfies (V0)—(V2) and
a constant Cy > 0. Then there is a constant C = C(Cy,V) > 0 such that the
following is true. Assume u:R x S* — M is a smooth map with

[0¢ulloo + |0sulloo + [ Va0l + || ViOstulloo + |V Vidhullo < Co

and £ is a smooth vector field along u satisfying the linear heat equation (43).
Then

‘Vtvtg(&t” + |VS§(Sat>| <C ||£||L2([572,5]><Sl)
for every (s,t) € R x St

Remark 3.5. If in theorem 3.3 or theorem 3.4 the vector field & solves D} ¢ = 0,
then 7(s,t) := &(—s,t) solves (43). The apriori estimates for 7 then translate
into apriori estimates for £&. For example, it follows that

‘6(5,t)| <C ”E”LQ([S,S—F%}XSl)

for every (s,t) € R x S and similarly for the higher order derivatives.

The proof of theorem 3.3 and theorem 3.4 is based on the following mean
value inequalities. Consider the parabolic domain defined for r > 0 by

P = (—12,0) x (—=r,7).

Lemma 3.6 ([SWO03, lemma B.1]). There is a constant ¢1 > 0 such that the
following holds for all v € (0,1] and a > 0. If w: P, — R, (s,t) — w(s,t), is
C! in the s-variable and C? in the t-variable such that

(0:0y — Os)w > —aw, w >0,

then

2

w(0) < ac / w.
P,

r3
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Corollary 3.7. Let ¢y be the constant of lemma 3.6 and fix two constants
r € (0,1] and p > 0. Then the following is true. If F: [—r% 0] — R is a C*
function such that

—F' + uF >0, F >0,

then

2 ur? 0
F(0) < 8162 / F(s) ds.
r _pr2

Proof. Lemma 3.6 with w(s,t) := F(s).

O
Lemma 3.8 ([SWO03, lemma B.4]). Let R,r > 0 and u : Pry, — R, (s,¢) —
u(s,t), be Ct in the s-variable and C? in the t-variable and f,g: Pry, — R be
continuous functions such that

(040 — 0s)u > g — f, u >0, f >0, g>0.

4 1
Los o+ Grm) e
Pr Pryr r Rr Pri-\Pr

Corollary 3.9. Fiz two positive constants r, R and three functions U, F,G :
[—(R+7)%,0] = R such that U is C* and F,G are continuous. If

Then

-U' >G-F, U >0, F>0, G >0,

then

0 0 0
R+r / <4 1 )/
G(s)ds < F(s)ds+ | - + — U(s)ds | .
[RZ () R ((R+T)2 () r2 Rr —(R+7)2 ()

Proof. Lemma 3.8 with u(s,t) = U(s), f(s,t) = F(s), and g(s,t) = G(s). O

Proof of theorem 3.3. We prove the theorem in three steps. The idea is to prove
in step 1 the desired pointwise estimate in its integrated form (slicewise esti-
mate). In steps 2 and 3 this is then used to prove the pointwise estimates. Note
that in step 3 we provide an estimate which is not used in the current proof,
but later on in the proof of theorem 3.4. Occasionaly we denote £(s,t) by &4(t)
and in this case [|{|| abbreviates [|{s||z2(s1)-

STEP 1. There is a constant C1 = C1(Co, V) > 0 such that

1 s 1
|l s [ [ S0P deds < €l s
S 16

for every s € R.
Define the functions f,g: R x S* = R and F,G : R — R by

1 1
2f == €)%, 29:=|Vi€|?,  F(s) ::/0 f(s,t)dt, G(s) ::/0 g(s,t) dt,
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and abbreviate

L= 8t8t—6s, EZ: VtVt—Vs.

Then
Lf=2g+U, U := (£, LE). (44)

Assume that U satisfies the pointwise inequality

1
UL < nf + 5l1EI? (45)

for a suitable constant p = u(Co,V) > 0. Hence Lf + uf + F > 2g by (44) and
integration over the interval 0 <t < 1 shows that

—F' '+ (p+1)F > 2G.

Step 1 follows by Corollary 3.7 with r = % and corollary 3.9 with R =1 = i.
It remains to prove (45). Since £ solves the linear heat equation (43), it
follows that
U] = (&, Vi Vi€ — Vi)
= [(§, R(§, Oru)Opu + Hy (u)§) |

< IRl oo 100ullZ, 1€1° + ex 1€] (1€] + 16sll 2 sn)

1 2 1 2
< (2C2|R||, +2c1 +1?) 5 1€+ S lIEI

Here we used the assumption on d;u, axiom (V1) with constant ¢;, and the fact
that ||| L1 (s1) < ||I|z2¢s1y by Hélder’s inequality. This proves (45).
STEP 2. We prove the estimate for |£| in theorem 3.3.

Note that Lf > —|U| by (45). Hence the estimate (45) for |U| and the slicewise
estimate for & provided by step 1 prove the pointwise inequality

Lf > —uf—2C ||€||§12([sfi,s]><51)

for all s and ¢. Fix (sp, o) and set a = a(sg) := % ||§||22([8071 so]xs1)- Then

L(f+a)=—pu(f+a)

forall t and s € [sg— %, s0]. Hence lemma 3.6 with r = % applies to the function
w(s,t) := f(so + s,to +t) + a and we obtain that

0

1
f(s0,t0) < 8016“/4/ / (f(so+s,to+1t)+a) dtds
-1Jo

1
1

1 C 2
< Seyeh/d (2 n 2#) 12— 3oty -

Since sy € R and tg € S* were chosen arbitrarily, this proves step 2.
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STEP 3. There is a constant C5 = C3(Cy, V) > 0 such that

s 1
/Sil/o GV (s, O dtds < Co €123 st
4
for every s € R. Moreover, the estimate for |V;€| in theorem 3.8 holds true.
Define the functions fi,g: : R x S' — R by
2f1 =€, 201 := [ViVig?

and the functions Fi,G; : R — R by

1 1
Fi(s) ::/0 fi(s,t)dt, Gi(s) ::/O g1(s,t) dt.

Then
Lfy =2g, + U, Up = (Vi&, LVE). (46)

Since £ solves the linear heat equation (43), it follows that

LV = Vi (ViVi€ — Vi) — [Vs, Vi€
= Vi (—R(&, 0pu)0su — Hy(u)€) — R(Osu, Opu)§
= — (%R) (§, 0ru)Oyu — R(Vi§, Opu)Opu — R(E, V;Opu)Oru
— R(&, 0ru)ViOru — ViHy (u)€ — R(Osu, Opu)€.

Now take the pointwise inner product of this identity and V. and estimate
the resulting six terms separately using the L*° boundedness assumption of the
various derivatives of u. For instance, term five satisfies the estimate

(W&, GHy ()] < e Vi€l (I%6€]+ (1 + 19eul) (1€] + sl o sn)) )

by the second inequality of axiom (V2) with constant co. It follows that U
satisfies the pointwise inequality

U] < pufy + €%+ 116l 7o
for a suitable constant u = u(Cp, V) > 0. Hence
Lfi > 2g1 — pfr — wl€l® = pll&l G sy (47)
pointwise for all s and ¢. Integrate this inequality over ¢ € [0, 1] to obtain that
—F] >2Gy — pFy — 2uF

pointwise for every s € R. Then corollary 3.9 with R =1 = % shows that

S0 S0 S0
/ IV ds < (u + 20) / IV 2ds + 24 / €. ds
so—% —1 so—1

So
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for every so € R. Now
S0 9 So 9
[ metas<ioc [ jeas
so—1 so—%

by step 1 and this proves the first assertion of step 3. (We need this result only
in the proof of theorem 3.4 below.)

To prove the second assertion of step 3, that is the estimate for |V;£|, note
that estimate (47), step 1, and step 2 imply the pointwise estimate

Lfi > —pf1 — MH&”%z([sf%,s]xsl)

for all s and t. Here we have chosen a larger value for the constant p. Fix
2
(s0,t0) € R x S and set a = a(sg) := €072 (s9—1,50] x 51)- Then

L(fi+a)>—p(fi+a)

for all t and s € [sg — %, s0]. Hence lemma 3.6 with r = % applies to the function

w(s,t) := fi1(so + s, to +t) + a and proves the desired estimate, namely

0 1
fl(So,t()) < 8016’”4 / (fl(SO +s,t0 + t) + CL) dtds
0

1
1

1 S0 1
= 8cyet/* 7/ / IVi&(s, t)| dtds + a4
2 50_% 0 4

2 1, .2
< 801@*‘/4 (2 ||€||L2([507%,so]><sl) + 1 |§L2([501,so]xsl)>

for all sp € R and ty € S'. The final inequality uses the estimate of step 1. This
concludes the proof of step 3 and theorem 3.3. O

Proof of theorem 3.4. Occasionaly we denote £(s,t) by &(t). Define the func-
tions fa, g2 : R x S = R by

foi= SINGER, g = INVVEP
and abbreviate L := 0,0; — s and L := V;V; — V,. Then
Lfs =292 + Uy, Ui := (V%€ LV, ViE). (48)
We estimate |Uy|. Since £ solves the linear heat equation (43), it follows that

LVNVE = ViV (Vi€ = Vib) + ViV, ViJ¢
= ViVt (=R(§, 9yu)0u — Hy(v)€) + V[V, Gl + [V, Vi Vi€

=V~ (HR) (& ) — R(VLE, Byu)vu — R(E, Vidy) Dy

— R, 8tu)Vt6tu) ~ViViHy (W)€ + (VR) (9u, Dsu)€
+ R(V;:Osu, Osu)€ + R(Opu, Vi0su)€ + 2R(Oru, Osu) V4E.
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Now take the pointwise inner product of this identity and V;V,&. Estimate the
resulting sum term by term and use the assumption that various derivatives of
u are bounded in L*°. It follows that

Ul < pa [ViViEL (€] + Vi€ ] + [V Vig]) + IV V] - [V ViR (u)é]

for some positive constant u; which depends only on the L>° bound Cj. Note
that by axiom (V3) there is a positive constant c¢3 = ¢3(V) such that

ViVt (W] < ca[WiVe| + e (1+ [Opul) [Vig
tes (1410 + (%]} (16]+ o on) -

Hence there is a positive constant s = us(Cp, V) such that

Ul < 2 (fo + V€ + 1€ + €6l agem) -
Theorem 3.3 applied to the last three terms of this sum implies that
2
|Utt| < /sz +u H£||L2([s—1,s]><51)

pointwise for all s and ¢ and with a suitable constant p = u(Cp,V) > 0. Now
Lfs > —|Uy| by (48) and therefore

2
Lfs = —pfo = pll€llzes—1,6xs1)
pointwise for all s and ¢. Fix so € R and set a := ||§H§/2([30—2750]XSI), then

L(fa+a)> —p(f2+a)

for all t € S* and s € [sg — 1, s0]. Fix tg € S! and apply lemma 3.6 with r = 1
to the function w(s,t) := fa(so + s,to + t) + a to obtain that

0 1
f2(s0,%0) §C1e”/ / (f2(so + s,t0 +t) +a) dtds
“1J-1

S0 1
=cet (/ / IV, Vié(s, t)|? dids + Qa)
Sg*l 0

< ciet (4C3 +2) ||§||i2([5072,so]xsl) :

Here the last inequality follows by the estimate of step 3 in the proof of the-
orem 3.3 with constant C3 = C3(Cp,V) > 0. Since sy € R and t; € S* were
chosen arbitrarily, the proof of the first estimate of theorem 3.4 is complete.
The second estimate, that is the one for |Vi&|, follows easily from the fact
that £ solves the linear heat equation (43), the estimate for |V;V;£| which we
just proved, the estimate for |¢| of theorem 3.3, and the estimate for |Hy (u)|
provided by axiom (V1). This concludes the proof of theorem 3.4. O
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3.3 Exponential decay
Given a smooth loop z : S — M consider the linear operator defined by
Azl = =N = R(§, 0yw)0pr — Hy ()€ (49)

on L?(SY, x*TM) with dense domain W22(S1, z*TM). With respect to the L?
inner product (-,-) this operator is self-adjoint; see e.g. [W02] for the case of
geometric perturbations V; and use lemma 3.14 in the general case.

Theorem 3.10 (Backward exponential decay). Fix a perturbation V : LM —
R that satisfies (V0)—(V2) and a constant co > 0. Then there exist positive
constants 8, p, C such that the following holds. Let x : S* — M be a smooth loop
such that Ay given by (49) is injective and ||0zz|y + ||Vi0ix||y < co. Assume

u: (—00,0] x S — M is a smooth map and Ty > 0 is a constant such that
Us = exp,ns,  [Msllyee <6, 0sus|ly + [[VsOruslly <6,

whenever s < —Ty. Assume further that & is a smooth vector field along u such
that the function s — ||&s||2 is bounded by a constant ¢ = ¢(§) and & solves one
of two equations

+V,6 — Vi€ — R(E, 9yu)0pu — Hy (u)€ = 0. (50)
Then
1613 < e+ e |[3 < c2er(=H+T0)
and
1€ 2 —o0.a51) < S €T NI€N Do Ly -1 -y )
for every s < —=Tj.

< C2 onl
o

Note the weak assumption (L? versus L>) on the s-derivatives of dyu, and
its base component us. To prove theorem 3.10 we need two lemmas.

Remark 3.11 (Forward exponential decay). If the domain of u is the for-
ward half cylinder [0,00) x S and the vector field ¢ along u solves £(50),
then theorem 3.10 applies to v(o,t) := u(—o,t) and n(o,t) := {(—o,t), since n
solves F(50). The estimates obtained for 7 provide estimates for &, for instance

. 2
< €2 pp(—o+T0) ||5HL2([

2 2
||f||L2([g,oo)xsl) = To,To+1]xSt)

for every o > Tj.

Lemma 3.12 (Stability of injectivity). Fiz a perturbation V : LM — R that
satisfies (V0)—(V2) and a constant co > 1. Then there are constants u,d9 > 0
such that the following holds. If x and v are smooth loops in M such that the
operator A, is injective and

v=expy(n),  nllwez <00, [[0lle + [[ViBez]l2 < co,

then
€l + IVe€lly + IVEVEE ]y < e[| AE],
for every £ € Q°(SY,v*TM).
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Proof. By self-adjointness and injectivity the operator A, is bijective. Hence
it admits a bounded inverse by the open mapping theorem. This proves the
estimate in the case 7 = x for some positive constant, say o = po(V,co) > 1.
Since bijectivity is preserved under small perturbations (with respect to the
operator norm), the result for general x follows from continuous dependence of
the operator family on 1 with respect to the W22 topology. More precisely,
given a smooth vector field ¢ along v, define X = ®71¢ where ® = ®(z,7)
denotes parallel transport along the geodesic [0,1] 5 7 +— exp,(7n). Recall that
® is pointwise an isometry, then straightforward calculation shows that

€1l + IVl + [V Vil < ecipuo [|@ART1E],

where the constant ¢ > 1 depends only on the closed Riemannian manifold M
and the constant ¢; associated to the Sobolev embedding W2 — C°. Now

[@4:271€ — Asg|, < Clinllyz [€llwr2 < 00C [IEllyr.2

by straightforward calculation, where the constant C' > 1 depends on ||R||co,
o, ¢1, 0o, and the constant in axiom (V2) and where we estimated the term
quadratic in V7 by [|Vin||2, < ¢}|[n]|Z22- The second inequality uses the as-
sumption on 7. Now combine both estimates and choose §y > 0 sufficiently
small to obtain the assertion of the lemma with p = 2cc3puo. O

Lemma 3.13. Let f > 0 be a C? function on the interval (—oo,—Tp)]. If f
is bounded by a constant ¢ and satisfies the differential inequality f" > p*f for
some constant p > 0, then

f(s) < T f(=Ty)
for every s < —=Tj.

Proof. Although the argument is standard, see e.g. [DS94], we provide the de-
tails for the sake of completeness. The main point is to observe that f/(s) —
pf(s) > 0 for every s < —Ty. To see this assume by contradiction that
f'(s0) — pf(so) < O for some time sy < —Tj. Note that the function g(s) =
e”® (f'(s) — pf(s)) satisfies ¢’ > 0 on (—oo, —Tp]. Hence g(s) < g(sg), or equiv-
alently

'(s) < 07 (f'(s0) = pf(50)) + pe

for every s < sqg. It follows that f/(s) = —oo as s — —oo and therefore
/SU f(o) do — —c0, as s — —o0.
But this contradicts the fact that by boundedness of f
[ 1) do = sts0) - 192 ¢
for every s < sg. To conclude the proof consider the function h(s) = e f(s)

on the interval (—oo, —=Tp]. It follows from the observation above that h’ > 0.
Hence h(s) < h(—Tp) for every s < —T and this proves the lemma. O
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To prove theorem 3.10 it is useful to denote exp,,(£) by E(u,) and define
linear maps

Ei(w,€) : TuM — TogpeM,  Eij(u,€) : TuM X TyM — Toppy, e M

for € € T,M and i,j € {1,2}. If u : R — M is a smooth curve and &,7 are
smooth vector fields along u, then the maps E; and E;; are characterized by
the identities

L exp, (€) = Fy(u, )0, + Byl )%
Vs (B (u, €)1) = Bur (u, €) (0, 05u) + Bro(u, €) (1, Vi) + By (u, ©)Van OV
VS (E2 (u7 5)77) = E21 (u7 f) (777 asu) + E22 (u’ 5) (77’ vsf) + E2 (u’ §)Vs77

These maps satisfy the symmetry properties

El?(uv g) (777 77,) = EQl(u’ §) (77/7 ’r]) ) EQQ(“? g) (777 77,) = E22(u’ g) (77/7 ’r]) ) (52)
and the identities
Eri(u,0) = Ei2(u,0) = Ea2(u,0) =0, Ei(u,0) = Ea(u,0) =1.  (53)

Alternatively E5 can be defined by

d
Es(u,&)n = . exp,, (§ +71n)
=0

for {,m € T,M and 7 € R. An explicit definition of F; and the maps F;; can
be given in local coordinates.

Proof of theorem 3.10. Fix ¢y and V and let p and §y be the constants of
lemma 3.12 and C be the constant of theorem 3.3 with this choice. Set § := dg
and suppose u, x, Ty, & satisfy the assumptions of the theorem. Then lemma 3.12
for v = us and vector fields n = 1y and & = £, asserts that

I€sN15 + INEES Il + Ve VaEsll < w2 14w &l = 12 IVREs I (54)

whenever s < —Tj. The last step uses the consequence Vi€, = FA,_ & of (49)
and (50). From now on we assume that s < —Tj. Observe that

Orus = E1(x,15)0:x + Ea(x,15) Vins
vtatus = E11($7 775) (aﬁl], 8t‘r) + 2E12($, 778) (at$7 ths) + El ($7 ns)vtatx
+ Ego(z,ms) (Vins, Vins) + Ea(x, 1) Vi Vins.

By the identities (53) we can choose § > 0 smaller, if necessary, such that
[0vuslly < [|E1(z,ns)llo [10ezlly 4+ ([ E2(@, 1) | oo [ Vemslly < 2co.

and, similarly, that ||V;0;us||y < 2co.
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CrLAM. Consider the function

1
F(s) =g 1605 = 5 [ leGnP ae

Then there is a sufficiently small constant 6 > 0 such that

F(s) > %F@)

whenever s < —1Ty.

Before proving the claim we show how it implies the conclusions of theorem 3.10.
Set p = p(co,V) = 1/u, then F”" > p?F on (—oo,Ty]. Hence lemma 3.13
proves the first conclusion of theorem 3.10. Use this conclusion, the fact that
l-ll2 < |I'loc on the domain S', and theorem 3.3 with constant C' = C(cg, V) to
obtain that

2 S 2 S 2
sy < PO flgm |5, < C2eP IO Y| Lo gy -1 —my) st

whenever s < —Tj. Fix 0 < —Tp and integrate this estimate over s € (—o0, g].
This proves the final conclusion of theorem 3.10.

It remains to prove the claim. In the following calculation we drop the
subindex s for simplicity and denote the L?(S!) inner product by (-,-). By
straightforward computation it follows that

F'(s) = | Vislly + (€, Vi Vit)
and
(& VaVi) = (&, Vs (VM Vig + R(E, 0u)Oru + Hy (w)€))
(& [Vs, eVAJE + ViV Vil + Vs (R(E, Opu) Oy + Ho (w)€))
(&, V[V, VUE + [Vs, ViIViE + Vi (R(E, Oru) Dyu + Hy (w)E))
(ViVi€, Visf)
(£Vi€ — R(&, Ou)Opu — Hy (u)€, Vié)
(& (ViR) (0su, Bpu)é + R(V,0su, Opu)€ + R(Osu, V;Opu)é
+ 2R(0su, Opu) Vi€ + (VSR) (&, Opu)Opu + R(Vi&, Oyu)Osu
+ R(&, VsOru)Opu + R(E, Opu) VsOpu + Vg’l-[v(u)§>
= IV€ll3 % (€ VHy (w)§ = H (u)Vi€)
+ <§, (VtR) (Osu, Opu)€ + 2R(E, Opu) Vi 0su + R(Osu, ViOru)€
+ 2R(0su, Opu) Vi€ + (VSR) (&, Btu)ﬁtu>.

+
+
+
+
+

To obtain the first and the fourth step we replaced £ according to (50). The
third step is by integration by parts. In the final step we used twice the first
Bianchi identity and lemma 3.14 on symmetry of the Hessian. Note that the
term V;0,u forces us to assume W12 and not only L> smallness of dyus.
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Abbreviate [|-[|1,2 := ||-|lw1.2(s1) and assume from now on that s < —Tp. Recall
that ||0us]lee < c1]|Ortus]l1,2 < 4cocr where ¢q is the Sobolev constant of the
embedding W2(S1) < C9(S'). Then the former two identities imply that

F(5) 2 2 IN&ll3 = Cr (1051, + INiBstis ) (16612 + €6 L 1611
> 2([V& 3 — G 194usll 2 16 7

for positive constants C; = Cy(co, c1, V, ||R||c2) and Cy = Ca(c1,C1). Choose
§ > 0 again smaller, if necessary, namely such that § < 1/(2u%Cs). Hence

1
[Osusly» <6 < 220,

where the first inequality is by assumption. Therefore

2 1 2 2
F(s) > 2| Vs&slly — e €517 2 = IVssllz

where the second inequality is by (54). But

1 2
IVe&sll3 > El\fsllg = EF(S)

again by (54) and definition of F. This proves the claim and theorem 3.10. O

Lemma 3.14 (Symmetry of the Hessian). Fiz a smooth map V : LM — R and
let z: 81— M be a smooth loop. Then

(Hy(2)€,n) = (& Hy(x)n)

for all smooth vector fields & and n along x.

Proof. Let h: R? — LM, (0,7) — h(o,7) be a smooth map such that

0 0
h(0,0)—[L % Oh(avo)_gv ﬁoh(oﬂ—)_n
Observe that
82
V(h(o, 7))
0tdo (0,0)
d 0
= E ay |h(0,7‘) (a ’0 h(O’, T))

o)

<gradV ‘h(O 7')7 I

cT
D| 0
= < gradV [n(0,7), > <gradV o . e Oh(a, 7')>
0
=quma+<gwww se| o).
0 9019

Now interchange the order of partial differentiation and use the fact that this is
still valid for two-parameter maps. O
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3.4 The Fredholm operator

Hypothesis 3.15. Throughout this section we fix a perturbation V that sat-
isfies (V0)—(V3) and two nondegenerate critical points 2+ of Sy. Fix a smooth
map u : R x S — M such that u, converges to & in W22(S') and O,u, con-
verges to zero in W12(S1), as s — +00. Moreover, assume that |V, V;0sus|2 is
bounded, uniformly in s € R; see footnote below. Set z = 2~ and y = z .

Note that by theorem 1.8, proved in section 4.4 below, these assumptions
are satisfied if Sy, is Morse and w is a finite energy solution of the heat equa-
tion (6). On the other hand, the hypothesis guarantees that the assumptions of
the exponential decay theorem 3.10 and the local regularity theorem 3.1 — only
here (V3) is needed — are satisfied. More precisely, set a = max{Sy(z),Sy(y)}.
Then (5) and (7) imply that

|e]2 = 20 +2V(2) < 200+ Co), [ Vidsall, = [grad V(@)]|, < Co.

Here Cy > 0 is the constant in axiom (V0). Similar estimates hold true for y.
Precisely as in the proof of theorem 3.10 it follows that T' = T'(u) > 0 can be
chosen sufficiently large such that

10vuslls < 20, [Videusll, = [lgrad V(a)], < 2¢o

whenever |s| > T and where ¢y = 2(]a| + Cp). Hence by smoothness of u and
compactness of the remaining domain [—T,7T] x S we conclude that

[0rus|l o < c1 10us]lprz < c2 (55)
for every s € R and where ¢o = co(x, y,u, V). Similarly it follows that
[0susll o < 1 [|0sus|lyre < c3 (56)

for every s € R and some constant ¢z = c3(x,y,u, V).
Now consider the linear operator D,, given by

Du§ = Vil = ViVi§ — R(E, Opu)Opu — Hy (u)g (57)

for smooth vector fields £ along u. Recall that R denotes the Riemannian
curvature tensor on M. The operator D,, arises, for instance, by linearizing the
heat equation (6) at a solution u; see [W99, app. A.2]. Recall the definition of
the Banach spaces £ and W.? and their norms in (12). The goal of this section
is to prove that D, : WP — LP is a Fredholm operator whenever p > 1 and
u satisfies nondegenerate asymptotic boundary conditions as in hypothesis 3.15.
By definition this means that D, is a bounded linear operator with closed range
and finite dimensional kernel and cokernel. The difference of these dimensions
is called the Fredholm index of D, and denoted by indexD,. The formal
adjoint operator D : WP — [P with respect to the L2-inner product has
the form

D¢ = =Vl — ViVi§ — R(€, Opu) 0w — Hy (u)é. (58)
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We proceed as follows. In the case p = 2 we show that our situation suits the
assumptions of [RS95] where the Fredholm property is proved. Then we reduce
the case p > 1 to the case p = 2 by proving that the kernel and the cokernel
do actually not depend on p. The argument is based on exponential decay and
local regularity, theorem 3.10 and theorem 3.1, respectively.

Fredholm property and index for p = 2

To prove that D,, is Fredholm it is useful to choose a representation with respect
to an orthonormal frame along u. However, since M is not necessarily orientable,
a frame which is periodic in the t-variable might not exist. Hence, given a
smooth map u : R x S' — M, we define

—1, else

)

{+1, if w*TM — R x S! is trivial
o=o(u):=

and E, := diag(o,1,...,1) € R"*™. The orthogonal group O(n) has two
connected components, one contains EF; = 1 and the other one £_;. Hence
there exists an orthonormal frame ¢ = ¢, : R x [0,1] — «*T'M such that
o(s,1) = ¢(s,0)E, for all s € R. The vector space of smooth sections of «*T' M
is isomorphic to the space C2° of all maps X € C*(R x [0,1],R™) such that
X(s,1) = E,X(s,0), for every s € R, and such that this condition also holds
for all derivatives of X with respect to the t-variable.

Denote by W the closure of C2° with respect to the Sobolev W22 norm and
by H its closure with respect to the L? norm. Then D, : W}? — L2 given
by (57) is represented by the Atiyah-Patodi-Singer type operator

DA+C = ¢_1Du¢ = % + A(S) + C(S) (59)

from WH2 .= L2(R,W) N W12(R, H) to L*(R, H). Here A(s) is the family of
symmetric second order operators on H with dense domain W given by

2

A(s) = a2

- B(s»t) - Q(Sat)
where
Q = ¢~ ' R(¢, 0u)dyu+ ¢~ Hy(u)o
and B = (0;P) + 2P9; + P2. The families of skew-symmetric matrices P(s,t)
and C(s,t) are determined by the identities
¢ Vi =0 + P, ¢ Ve = 05 + C.

Hypothesis 3.15 implies that dsus converges to zero in C°(S1), as s — +o0, and
therefore limg_, 1o, C(s,t) = 0, uniformly in ¢. It follows that the family C(s)
of bounded operators on H — defined pointwise by matrix multiplication with
C(s,t) — converges to zero in the norm topology as s — +0o. Hence the linear
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operator C : W2 — L? is a compact perturbation of D4 by [RS95, lem. 3.18].
Since the Fredholm property and the Fredholm index are invariant under com-
pact perturbations, it suffices to prove that D4 is Fredholm and compute its
index. By [RS95, thm. A] it remains to verify the following properties.

(i) The inclusion of Hilbert spaces W — H is compact with dense image.

(ii) The operator A(s) : H — H with dense domain W is unbounded and
self-adjoint for every s.

(iii) The norm of W is equivalent to the graph norm of A(s) for every s.

(iv) The map R — L(W,H) : s — A(s) is continuously differentiable with
respect to the weak operator topology.

(v) There exist invertible operators A* € L£(W, H) which are the limits of
A(s) in the norm topology, as s tends to £oo.

Statements (i) and (ii) follow by the Sobolev embedding theorem, the well known
fact that the 1-dimensional Laplacian —d?/dt? on [0, 1] with periodic boundary
conditions is self-adjoint, and by the Kato-Rellich Theorem since the perturba-
tion B+ @ is of relative bound zero; see [ReS75]. To prove (iii) one has to estab-
lish that the W norm is bounded above by a constant times the graph norm and
vice versa. The first inequality uses the elliptic estimate for the operator A(s)
and the second one follows since [|Oyus|loc and ||V;0:usll2 are bounded by (55)
and the Hessian Hy,(us) is a bounded linear operator on L?(S1, us*T M) by ax-
iom (V1). To prove (iv) we need to show that, given any £ € W and n € H, the
map s — (1, A(s)€) is in C*(R,R). This follows by the bounds in (55) and (56),
by the final estimate in axiom (V2), and the apparently unnatural® assumption
in hypothesis 3.15 that V;V;0sus be uniformly L? bounded. Statement (v) is
true, since the critical points % are nondegenerate and u, and dyu, converge
in CY to % and 0,27, respectively, and V,0,us converges in L? to V,0,z*, all
as s — Fo0.

The properties (i—v) are precisely the assumptions of theorem A in [RS95]
which asserts that the operator D4 : WY2 — L? is Fredholm and its index
is given by the spectral flow of the operator family A(s). The spectral flow
represents the net change in the number of negative eigenvalues of A(s) as s
runs from —oo to co. It is equal to ind(A~) — ind(AT) where ind(A*) denotes
the Morse index, i.e. the number of negative eigenvalues of the self-adjoint
operator A%. To see this observe that ind(AT) equals ind(A~) plus the number
of eigenvalues changing from positive to negative minus the number of those
changing sign in the opposite direction. Finally, the Fredholm indices of D4 and
Dayc are equal, since {Dayrc}rep,1] is an interpolating family of Fredholm
operators. This proves theorem 1.9 in the case p = 2.

31f in [RS95, thm.A], hence in (iv), continuously differentiable could be replaced by contin-
wous, then the assumption on [|V; V;dsus||2 can be dropped in hypothesis 3.15 and theorem 1.9.
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Remark 3.16 (The formal adjoint). If D, : W}? — L2 is represented with
respect to an orthonormal frame by the operator D¢ in (59), then Dj is
represented by —D_ 4_¢. Above we proved that A satisfies (i-v), hence so does
—A. Thus D_ 4 is a Fredholm operator again by [RS95, thm. A] and its index is
given by minus the spectral flow of the operator family A = A(s). But if D_4
is Fredholm, so is its negative —D_,4 and both Fredholm indices are equal,
since both kernels and both cokernels coincide. Now —D_ 4 and —D_ 4_¢ are
homotopic through the family {—D_4_rc}-c[o,1] of Fredholm operators. This
proves that the formal adjoint operator D} : W2 — L2 is Fredholm and
indexD; = —indexD,,.

Fredholm property and index for p > 1

Still assuming hypothesis 3.15 consider the vector space given by
Xy = {g € (R x SL,u*TM) | Dyé=0,3¢,6 >0Vs € R :
€l 19iull + [V + Wil < 51},

Define X by using D}, in the definition. Note that p does not enter.

Proposition 3.17. Let p > 1, then
ker [Du SWEP E{ﬂ = Xy, ker [DZ CWEP E{’J = X;.

Proof. The inclusion D is trivial. To prove the inclusion C assume that £ € W'
solves D,& = 0 almost everywhere. Being a local property smoothness of £
follows from theorem 3.1 using integration by parts. Exponential L* decay
follows by combining the apriori estimates theorem 3.3 and theorem 3.4 with
the L? exponential decay results theorem 3.10 and remark 3.11. The last two
results require nondegeneracy of the critical points 2+ and boundedness of the
map
s [|€sll2-

To see the latter use the Sobolev embedding theorem together with the fact that
the vector field ¢ along the cylinder w is of class W}P and satisfies D,& = 0.
This proves that Xy is the kernel of D,,. The result for D} follows by reflection
S —8. O

Proposition 3.18. The range of D, D : WhP — LP s closed whenever p > 1.

Proof. The structure of proof is standard; see e.g. [S99, sec. 2]. We sketch the
two key steps for D,,. Step one is the linear estimate

€lwrn < cp (IDull, + il )

for compactly supported vector fields £ along u. This follows immediately from
proposition 2.13, lemma 2.12, the L>° bound for d;u in (55) and axiom (V1).
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Step two is to prove bijectivity of D,, in the case of the constant cylinder u(s,t) =
x(t), whenever = is a nondegenerate critical point of Sy,. We give a proof for
p > 2 in the related situation of half cylinders in theorem 8.5 below. The case
1 < p < 2 follows by duality; see [S99, exc. 2.5]. Both steps are then combined
by a cutoff function argument; see [S99, thm 2.2]. O

Proposition 3.18 enables us to define the cokernels of D, : WLP — £P and
D; : WhP — [P as Banach space quotients, namely for p > 1 set
L3y
imD,’

£y

coker D = - .
Y im D

coker D, :=

The next result shows that these spaces are again independent of p.

Proposition 3.19. Let p > 1, then
coker [Dy, : WiP — L] = X, coker [D} : WP — LP] = X,.

Proof. We prove the second identity. The other one follows by reflection s — —s.
We identify the image of D in £P with its annihilator (im D)™ in £4 = (£P)*
where % + % =1, that is we identify

coker D ~ (imDf)* .
The inclusion D is trivial. To prove the inclusion C assume that £ € (im Dz)J‘.
This means that £ € £P and that (£, D;n) = 0 for all n € C§°(R x S*). Hence
£ is smooth by theorem 3.1. Integration by parts then shows that D, =
0. Exponential decay follows by combining theorem 3.3 and theorem 3.4 with
theorem 3.10 and remark 3.11 as explained in the proof of proposition 3.17. O

Remark 3.20. It is an easy but important consequence of proposition 3.19
that if D, : WP — LP is surjective for some p > 1, then it is surjective for all
p > 1. This justifies the phrase “D, is surjective” encountered occasionally.

Proof of theorem 1.9. The range of D, : WLP — LP is closed by proposi-
tion 3.18. Moreover, by proposition 3.17 and proposition 3.19 the kernel and
the cokernel of D, : WIP — LP are given by X, and X, respectively. Now
these vector spaces do not depend on p > 1. But for p = 2 we proved in the
previous subsection that they are finite dimensional and the difference of their
dimensions equals indy,(x~) —indy (zT). The claim for D} follows similarly. [
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4 Solutions of the nonlinear heat equation

4.1 Regularity and compactness

Throughout this subsection we embed the compact Riemannian manifold M
isometrically into some Euclidean space RY and view any continuous map w :
Z = (-T,0] x S* — M as a map into RY taking values in the embedded
manifold. We indicate this by the notation u : Z — M < R™. Then the heat
equation (6) is of the form

ﬁsu — 5‘t5‘tu = F(U) (atu, atu) + F. (60)

Here and throughout this section I' denotes the second fundamental form asso-
ciated to the embedding M < RY and the map F : Z — R is given by

F(s,t) := (gradV(us))(t). (61)
Recall the definition of the W*® and the C*¥ norm in (13) and (14), respectively.

Proposition 4.1. Fiz a perturbation V : LM — R that satisfies (V0)—(V3),
constants p > 2 and py > 0, and cylinders

Z = (=T,0] x S*, 7' = (-T',0] x S, T>T >0.

Then for every integer k > 1 there is a constant ¢, = cg(p, po, T, T, V) such
that the following is true. If u: Z — M < RY is a WP map such that

l[ull, + [19sull, + [0cull, + [[0:0ull, < po (62)
and which satisfies the heat equation (60) almost everywhere, then

HuHkaP(Z’,RN) S Ck.

Proposition 4.1 follows by induction from the bootstrap proposition 2.18
using all axioms (V0)—(V3) and a product estimate, lemma 4.4 below. By stan-
dard arguments proposition 4.1 immediately implies theorem 4.2 on regularity
and theorem 4.3 on compactness.

Theorem 4.2 (Regularity). Fiz a perturbationV : LM — R that satisfies (V0)—
(V3) and constants p > 2 and a < b. Let u be a map (a,b] x St — M —
RN which is of Sobolev class WP and solves the heat equation (60) almost
everywhere. Then u is smooth.

Theorem 4.3 (Compactness). Fiz a perturbation V : LM — R that satis-
fies (V0)~(V3) and constants p > 2 and a < b. Let u” : (a,b] x St — M — RY
be a sequence of smooth solutions of the heat equation (60) such that

sup [|0pu”|| , + sup [[Osu”|,, < oc.
v v

Then there is a smooth solution u : (a,b] x S* — M of (60) and a subsequence,
still denoted by u”, such that u” converges to u, uniformly with all derivatives
on every compact subset of (a,b] x S*.
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Lemma 4.4. Fiz a constant p > 2 and a bounded open subset Q C R? with area
|Q2. Then for every integer k > 1 there is a constant ¢ = c(k, |Q]) such that

105w - vllyyro < cllOsullyprs Vllo + ¢ Ululler + [10culler) ollyn.s
for all functions u,v € C*(Q).

Proof. The proof is by induction on k. By definition of the W*? norm

105t - 0llyyessn < 1105t - vllyyes + [0eDsu - v+ Dt - Brvllyyes
+ [|0:0:05u - v + 20,051 - O + Ostuu - 0 OpV||\ppe.p (63)
+ [|0505u - v + st - Dgv|yppe.r -

Step k = 1. Estimate (63) for £ = 0 shows that

105t Vi < (10sul, + 10:0sull, + 801Dt + 0050, ) 0]
+2(10:0sull o, [|00]],,
+ losullog (12501l + 1001l + 9s01,)

Since 0;0su = Js0;u this proves the lemma for k£ = 1.

Induction step k = k + 1. Consider estimate (63) for £ = k, then inspect the
right hand side term by term using the induction hypothesis for the appropriate
functions to conclude the proof. To illustrate this we give full details for the
last term in (63), namely

105w - Osvllyyrp < l|Osullyyrn (1050l + ¢ ([[ullen + [0uller) [Dsvllypr.n
< cer |9 [0suller [19svllwrp + ¢ ([ullen + [10culler) ol
< cer [Q[[ullgrss [[ollyen + ¢ (lullen + 10cullee) 0 llyyrsin -

The first step is by the induction hypothesis for the function d;v. In the second
step we pulled out the L* norms of all derivatives of d,u and for the term v
we applied the Sobolev embedding WP € WP «— CY with constant ¢;. Here
our assumptions p > 2 and €2 bounded enter. Step three is obvious. Note that
k > 1 implies that WF+LP <y W2P, O

Proof of proposition 4.1. Consider the family

T-T
T, =T + , r € [1,00),
r

and the corresponding nested sequence of cylinders Z,. := (—T,.,0] x S with
Z=71D>Z9D>7Z3>...07.

Denote by Cj the constant in (V0). More generally, for £ > 1 choose Cy larger
than Cy_1 and larger than all constants C'(k’, ¢',V) in (V3) for which 2k’ +¢" < £.
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CLAM. The map F given by (61) is in WP (Zy11) for every integer £ > 1.
Proposition 4.1 immediately follows: Given any integer k > 1, then F €

WHP(Z1 1) by the claim. Furthermore, by inclusion Z;,; C Z and (62)
Fellyorozassy < llyprnzy < to.
Hence by theorem 2.1 for the pair Zy1o C Ziy1 there is a constant cx4q de-
pending on p, o, Zk+2, Zk+1, |Ullc2r+2, and ||[F'[|yyr.p(z,,,) such that
||U||Wk+1.,p(zf) < Hu||Wk+1;P(Zk+2) < Chti-

It remains to prove the claim. The proof is by induction.

Step £ = 1. We need to prove that F, O;F, O,F, and 0;0;F are in LP(Zs).
The domain of all norms of I' and its derivatives is the compact manifold M.
The domain of all other norms is the cylinder Z unless indicated differently. By
axiom (VO0) with constant Cy it follows (even on the larger domain Z) that

[Fllo = sup ]ngadv(us)||L°°(Sl) < Co (64)

se(—=T,0

and therefore
1P, < |IF]l. (Vol 2)/? < CoT/?.

Next we use axiom (V1) with constant C; > Cy to obtain that
10:F1, < [VegradV(w)]|,, + [IT'(w) (9ru, gradV(w))],,
< G (1+ 110wl ) + I 9l 1P
< Ci(1+ po) + |11 o £0Co.

Here we used the assumption (62) in the last step. Now by the bootstrap
proposition 2.18 (i) for £ = 1 and the pair Z,,3 C Z there is a constant a;
depending on p, o, Zy/3, Z, |T||c4, and the LP(Z) norms of F' and 0;F such
that [|Opullwir(z,,,) < a1. Then by the Sobolev embedding WP — CY with
constant ¢’ = ¢/(p, Z5/3) it follows that dyu is continuous on Z4/5 and

||atu||co(z5/3) g cl ||atu||W1=P(Z5/3) S alc/, (65)
Again using axiom (V1) we obtain similarly that
10s F'll,, < [IVsgradV(u)ll,, + [|T'(w) (9su, gradV(u))||,
< 2C1 |0sull, + 1Tl oo sl 1o
< o (2C1 + [T Co) -
In order to estimate 0;0;F observe first that
1900l 2, 0y < 100l o,y + T 110l 190l oz,
< 0+ [0l 190l oz ) 1000l o 7, o
< o + [Tl ax¢’po.
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Here the last step uses assumption (62) and the C? estimate (65) for d;u which
requires shrinking of the domain. Now by axiom (V3) for k = 0 and ¢ = 2 there
is a constant still denoted by C; = C1(V) such that

V| < C1 (14 [0l + [Vidru] (66)
pointwise for every (s,t). Integrating this inequality to the power p implies that

1% oz, ) < Ct (1 100l oz, ) + 1 NiBetil o, )
< C1 (14 2p0 + |IT]| o a1 pt0) -
Straightforward calculation shows that
100 10z, 1y < INiGF s + 1T [l 90l 1 F o
+ I 19:0eutll Lo [ F'll co + 2Tl oo I0rull oo |06 F | Lo
+ ITIZ 19l o I9eeal o 1 F o
is bounded by a constant ¢ = ¢(p, po, ¢, C1, ||T||c1). Here all C® and LP norms

are on the domain Z5,3. We used again assumption (62), the estimates for F°
and its derivatives obtained earlier, and (65).

Induction step £ = € + 1. Let £ > 1 and assume that the claim is true for £.
This means that F is in W%P(Z,1, hence

a[ = ||F||WZYP(Z[+1) < Q.

Therefore by theorem 2.1 for the integer £ and the pair of sets Zs1 O Zyy3/2
there is a constant ¢, = c¢(p, po, Tr41, Ty43/2, |I'l|c2e+2, o) such that

lllysnzyam <t lullerz,. . < e (67)

The second inequality follows from the first by the Sobolev embedding WP <
C° applied to each term in the C* norm. Then choose ¢, larger, if necessary. It
remains to prove that the W“’(Zug) norms of 0, F, 0,F, and 0,0, F are finite.
Similarly as in step £ = 1 we obtain that

10cF lyew(z,g,5) < INVF [lyyer + 1T (w) (Bews, F)[lyyes
< Cr(lyes + 100ullyyes)
+ ¢llce (leullyyer [Flloe + llullce [1Fllyyer)
< Oy (TY? 4 ¢0) + E||T| e (ceCo + coewe) -
Here the domain of all norms, except the one of I', is Zy,3/5. The first step
is by definition of the covariant derivative and the triangle inequality. Step
two uses axiom (V1) and lemma 2.21 with constant ¢. The last step uses the

estimates (64), (67), and the definition of oy in the induction hypothesis. Now
by the refined bootstrap proposition 2.18 there is a constant a,41 such that

HatUHWHLp(ZHZ) < agy, ||3tu||cf(z”2) < Gpgr- (68)
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Next observe that

“asF“Wé’p(Zg+2)

S AIVsFllyes + I (w) Osu, F)[lyye.n

< 2C1 [|0sullyyer + C" [Tl ce (10sullyyen 1Flloo + (lullee + 10sullce) 1 Fllyyen)
< 2Cice + C' ||FHCg (ceCo + (co + apy1) ) .

Here the domain of all norms, except the one of I', is Zy19. Again the first
step is by definition of the covariant derivative and the triangle inequality. Step
two uses axiom (V1) and lemma 4.4 with constant C’. The last step uses the
estimates (64), (67), (68), and the definition of oy in the induction hypothesis.
Similarly as in step £ = 1 we obtain that

100 F llypron 2,
< [VViF e + 14T (u) (Drtt, Dy, F) e
T ) (@udrt, F) e + 2 T () (811, 0F) e,
+ |7 () (B, D) (Bre, ) e,

< C1 (TV7 4+ 0uulyye + 10:D0tlyes + [Tl N00llee 100l )

+ [|dTlee [[BcullEe | Fllypens

+ &[Tl ee (100l | Flloo + [18sttllce | Fllype.s)
+ 20l e 10eullee 10:F [yye.

|72 18sull e [1F Nl e -

Here the domain of all norms, except the one of I, is Zy ;5. In the second step we
used axiom (V2) with constant C to estimate the term V;V,F and we spelled
out the covariant derivative arising in V,0;u. Moreover, crudely pulling out C*
norms worked for all terms but the third one, the one involving 9;0;u, here we
used lemma 4.4 with constant ¢ for the functions 9;0;u and F. Now all terms
appearing on the right hand side have been estimated earlier. This proves the
induction step and therefore the claim and proposition 4.1. O

Proof of theorem 4.2. Fix any point z € Z = (a,b] x S' and a subcylinder
Z' = (a’,b] x S' that contains z and where a’ € (a,b). Set po = [Jullyyrr(zrm),
then proposition 4.1 for the function @(s,t) := u(s + b,t) and the constants
T=b—aand T =b— da implies that

we (YWH(z',RN) = (| Whr(Z/,RN) = C=(Z",RN).
k>0 k>0

See [MS04, app. B.1] for the last step. Hence w is locally smooth.
Proof of theorem 1.5. Theorem 4.2.
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Proof of theorem 4.3. Shifting the s variable by b and setting T" = b — a, if
necessary, we may assume without loss of generality that the maps u” are de-
fined on (=T, 0] and, furthermore, by composition with the isometric embedding
M < RY that they take values in RV. All norms are taken on the domain
(—=T,0] x S, unless indicated otherwise. To apply proposition 4.1 we need to
verify that the maps u” : (—7,0] x S* — R¥ satisfy the four apriori estimates
in (62) for some constant yo independent of v. To see this observe that

||, < [lu” ]l VoL ((=T0] x 8') < e TP

for some constant ¢; depending only on the isometric embedding M < RY and
the diameter of the compact manifold M. By assumption there is a constant c;
independent of v such that

loa”ll, < ol TV < a7

and
0.1, < 2.

Then it follows by the heat equation (60) that
IV 0|l < 1|0l + llgradV ()|, < ez + CoT/7.

In the second step we used (VO0) to estimate gradV(u”) in L™ from above by a
constant Cy = Cy(V). By definition of the covariant derivative

[0:0u” ||, < IMOeu” |, + [Tl coary 100" || o (10w ||
< ey + CoTHP 4 3T/P 1Tl cogary -

p

Now set jig := ¢y + CoTP 4 3TV/P Tl cocary + (c1 + c2)T*/P. Then proposi-
tion 4.1 asserts that for every constant T” € (0,T) and every integer k > 2 there
is a constant ¢ = ¢k (p, po, T, T7, V) such that

”uV”Wk,p(QRm < Ck

where Q = [~T",0] x S'. Recall that the inclusion W*P(Q) — C*~1(Q) is
compact; see e.g. [MS04, B.1.11]. Hence there is a subsequence which converges
on @ in the C* topology. We denote the limit by u € C*(Q). Since this is true
for every k > 2 there is a subsequence, still denoted by u”, converging on @ to u,
uniformly with all derivatives. Since this is true for every compact subcylinder
Q of (=T,0] x S, the theorem follows by choosing a diagonal subsequence
associated to an exhausting sequence by such @’s. Because, in particular, the
convergence is in C° and the u” take values in M, so does the limit u. By C*
convergence with k > 2 the limit u satisfies the heat equation (60). O
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4.2 An apriori estimate

Theorem 4.5. Fiz a perturbation V : LM — R that satisfies (VO)—(V1) and
a constant ¢g > 0. Then there is a constant C = C(co,V) > 0 such that the
following holds. If u : R x S — M is a smooth solution of (6) such that

sup Sy (u(s,-)) < co (69)
seR

then ||0pul|, < C.

The proof of theorem 4.5 is based on the following mean value inequality.
For r > 0 define the open parabolic rectangle P, C R? by

P, = (=r%,0) x (=r,7).

Lemma 4.6 ([SW03, lemma B.1]). There is a constant ¢y > 0 such that the
following holds for all v € (0,1] and a > 0. If w: P, — R, (s,t) — w(s,t), is
C' in the s-variable and C? in the t-variable such that

(0:0y — O5)w > —aw, w >0,

then

w(0) < ac / w.
Pr.

Corollary 4.7. Fiz two constants r € (0,1] and p > 0. Let ¢ be the constant
of lemma 4.6. If F : [-r%,0] — R is a C? function satisfying

—F +uF >0, F>0,

then -
2c1e!”
F(0) < =22 / F(s) ds.
r _r2
Proof. This follows immediately from lemma 4.6 with w(s,t) := f(s). O

Proof of theorem 4.5. The idea is to first derive slicewise L? bounds, then verify
the differential inequality in lemma 4.6 and apply the lemma using the slicewise
bounds on the right hand side. The slicewise bound for d;u follows easily from
the assumption

0 2 S(us) = g |0 (s, — V(us)
where ug(t) := u(s,t). Let Cy denote the constant in (VO0), then this implies
10rus]|72 (1) < 2¢0 + 2V (us) < 2¢0 + 2Co (70)
for every s € R. Consider the pointwise differential inequality given by
(00, — 05) [0vul? = 2|V0ul” + 2((ViVs — Vi) Oyu, Oyu)

= 2|V,dyul” — 2(VigradV(u), dyu)

> —2C4 (1 4 |0ul) |Orul

> —Cy —3C [Oul®.
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To obtain the second step we replaced V;0;u according to the heat equation (6)
and used the fact that V,0s,u = V;0;u. The third step is by condition (V1) with
constant C7. Choose (sp,t9) € R x S and apply lemma 4.6 in the case r = 1
and with

1
w(s,t) = 3 + |Osu(so + s, to +1)|?

and a = 3C4 to obtain

0 +1 1
w(0) < clea/ / <3 + |Oru(so + s,t0 + t)|2) dtds
—1J-1

2 O
=3 (3 + 2/1 10sttsq 45ll72 51 ds) :

Theorem 4.5 then follows from the slicewise estimate (70). O

Lemma 4.8. Fiz a constant ¢ > 0 and a perturbation V : LM — R that
satisfies (V0) with constant C > 0. If u: R x St — M is a solution of (6) then

supSy(u(s, ) <c¢ = Eu)<c+C.
s€R

Proof. Let us(t) := u(s,t) and choose T > 0, then
T 1
Ei_r.r)(u) = / / |0,u(s, t|? dtds
-7 .J0
T
== [ VS, ) s

-T
T d

__ /_T Sy (u,) ds

= Sy (u_r) — Sy(ur).

Here we used the fact that the heat equation (6) is the negative L? gradient
flow equation for the action functional. Now the crucial property of the action
functional is its boundedness from below, namely Sy, (z) > —C for every © € LM
by (V0). Hence Sy(u_r) — Sy(ur) < ¢+ C and this proves the lemma. O

4.3 Gradient bounds

Theorem 4.9. Fiz a perturbation V : LM — R that satisfies (VO)—(V2) and
a constant c¢g > 0. Then there is a constant C = C(co,V) > 0 such that the
following holds. Ifu: R xS — M is a smooth solution of (6) that satisfies (69),
i.e. sup,ep Sy(u(s,-)) < co, then

Du(s, t)” + [Vdsu(s,t)|* < CEjo_1 g(u)
|VSaSu(Sat)|2 + |vtvtasu(s7t)|2 S CE[572,5] (U)

for every (s,t) € Rx S'. Here Er(u) denotes the energy of u over the set I x S*.
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Proof. By theorem 4.5 there is a constant Cy = Cy(cg, V) > 0 such that
10rull o < Co.

Let C' = C(Cy, V) be the constant of theorem 3.3 with this choice of Cy. Observe
that £ := Jdsu solves the linearized heat equation. Hence theorem 3.3 shows that

|05u(s,t)]> < C2 By 4 (u) < C*(co +¢)

for every (s,t) € R x S'. Here the last step is by lemma 4.8 and axiom (VO0)
with constant ¢/. Use that u solves (6) and satisfies axiom (V0) to obtain that

V.0l < [|0sull, + lgradV(u)]| . < Cv/co + ¢ + ¢’

Now choose Cy larger than 2C\/co + ¢ + ¢’ and let C = C(Cp, V) be the con-
stant of theorem 3.3 with this new choice of Cjy. Theorem 3.3 then proves the
desired estimate for |V;0su|. It follows that |V;O0sul/s is bounded. Therefore
IV Vi0ru]| oo is bounded by (6) and axiom (V1). Hence theorem 3.4 applies with
a new choice of C and proves the remaining two estimates of theorem 4.9. [J

Proof of theorem 1.7. Theorem 4.5, theorem 4.9 and lemma 4.8. Only (V0)-
(V1) are used. Use (6) and (VO) to obtain the estimate for V,0,u. O

4.4 Exponential decay

Theorem 4.10. Fiz a perturbation V : LM — R that satisfies (V0)-(V2).
Suppose Sy is Morse and let a € R be a reqular value of Sy. Then there exist
constants 0,c,p > 0 such that the following holds. If u : R x S' — M is a
smooth solution of (6) that satisfies (69), i.e. sup,cg Sy(u(s,-)) < a, and

B\ (-1, 1) (1) <0 (71)
for some Ty > 0, then
Ery—17)(w) < ce” T Bgy gy 1y (w)
for every T > Ty + 1.

Corollary 4.11. Fizx a perturbation ¥V : LM — R that satisfies (V0)—(V2).
Suppose Sy is Morse and let = € P(V). Then there exist constants 6, ¢, p > 0
such that the following holds. Suppose that u € M(x~,x";V) satisfies (71) for
some Ty > 0. Then

|05u(s, t)|* + [Vidsu(s, t)]* < ce =T By gy 1 (w)
for every s > Ty + 2.
Proof. Theorem 4.9 and theorem 4.10. O
The proof of theorem 4.10 is based on the following lemma which asserts

existence of a true critical point nearby an approximate one.
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Lemma 4.12 (Critical point nearby approximate one). Fiz a perturbation V :
LM — R that satisfies (VO) and let a € R be a regular value of Sy. Then, for
every dg > 0, there is a constant 61 > 0 such that the following is true. Suppose
x: St — M is a smooth loop such that

Sy(x) < a, V0 + gradV(z)]|, < 1.

Then there is a critical point o € P*(V) and a vector field & along xo such
that x = exp, (o) and

1€0lloe + 1Ve€oll oo + [V Viboll oo < o-

Proof. First note that
1
|0pz])5 = / |Ovx ()| dt = 28y () + 2V(x) < 2(a + C)
0
where C' is the constant in (V0). Now, assuming J; < 1, we have

d
‘dt |0,a]?| = 2|(0yx, Vi0px + gradV(z)) — (Opx, gradV(z))|

<2(6,+C) |9l < (1+C)* + |dual’.

Integrate this inequality to obtain that
2 2 2 2
|0 (t1)]” = [0 (to)|” < (14 C) + [|pxl;

for to,t1 € [0,1]. Integrating again over the interval 0 < ¢y < 1 gives

100zl <4/ (1+C)° + 2|05 < (72)

where ¢2 := (14 C)* +4(a+C).
Now suppose that the assertion is wrong. Then there is a constant §; > 0
and a sequence of smooth loops x, : S* — M satisfying

Sy(z,) < a, ILm (||Vt8txl, + gradV(xl,)Hoo) =0,

but not the conclusion of the lemma for the given constant §y. By (VO0) we
have sup, ||V;0;z,||, < oo and (72) implies sup,, ||0;z,|, < co. Hence, by
the Arzela—Ascoli theorem, there exists a subsequence, still denoted by x,,, that
converges in the C'l-topology. Let zg € C'(S', M) be the limit. We claim
that this subsequence actually converges in the C2-topology. Then V,0;x¢ +
gradV(z¢) = 0. Hence x¢ € P%(V) and z, converges to zg in the C?-topology.
This contradicts our assumption on the sequence x, and proves the lemma.

It remains to prove the claim. For simplicity let us assume that M is iso-
metrically embedded in Euclidean space RY for some sufficiently large integer
N. Since sup, ||V;0sx, ||, < oo, the Banach-Alaoglu Theorem asserts existence
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of a subsequence, still denoted by z,, and an element v € L? such that V.0,
converges to v weakly in L2. In fact v equals the weak ¢-derivative of 9;z. Now
gradV(z,) converges to grad)(zg) in L? and to —v weakly in L?. But the weak
limit equals the strong limit, hence v = —gradV(zg) € C!. Therefore d;z¢ € C*
and V;0.z¢ equals the weak t-derivative v of Orxg. Now xo € C? satisfies

Vi0:zo + gradV(zg) = 0, (73)

because V,0,x, converges to v = V,0.x¢ weakly in L? and to —gradV(xg)
strongly in L?. By induction (73) implies that xo € C°°. Moreover, it follows
using (73) that V;0;x, converges to V;0;z0 in C° and this proves the claim. [

Proof of theorem 4.10. Given a and V, let C' = C(a, V) be the constant of the-
orem 1.7 and theorem 4.9 with this choice. Let Cy > 1 be the constant in (VO0).
Then E(u) < a + Cp by lemma 4.8 and ||0sullec < CE(u) < C(a + Cy) by
theorem 4.9. Hence

10l + IVl < co

by theorem 1.7 and by replacing V;0;u according to the heat equation (6). Here
co = C(a+ 2Cy) 4+ Cy. Let dp and pg be the positive constants of theorem 3.10
with this choice of ¢y. Choose dp smaller than one quarter the minimal C°
distance k = k(a) of any two elements of P%(V). Let d; > 0 be the constant of
lemma 4.12 associated to a and d§y and set

52 8
§:=min{ —, L},
H { 4C7 4C }
Note that dg, pg, 41, and & depend only on a, V, and the constant Cj of ax-
iom (VO0). Note furthermore that the vector field along u given by £ := 9su solves
the linear heat equation (43) and that the continuous function s > [|Osus||£2(s1)

is bounded.
If |s| > To + 1, then Ej,_ g(u) < Egr\[—1,,1,)(2) and it follows that

10sts| o, + Vit oy < \/CEs—1.(u) < VT3 < min {0, 61}.  (74)

Here we used theorem 4.9 in step one, assumption (71) in step two, and the
definition of § in the last step. Hence, by lemma 4.12, there are critical points
z* € P*(V) such that

us = expys (7). nslleasty < do

whenever +s > Ty + 1. Although the critical points z* apriori depend on s they
are in fact independent, because dyp < /4 and P%(V) is a finite set by the Morse
condition. Moreover, injectivity of the operators A,+ is equivalent to nonde-
generacy of the critical points & and this is true again by the Morse condition.
Now theorem 3.10 and remark 3.11 conclude the proof of theorem 4.10. O
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Proof of theorem 1.8. We prove exponential decay in three steps.

I) Firstly, the energy of w is finite. In the case (B) this is part of the
assumptions. In the case (F) it follows as in the proof of lemma 4.8 for u :
[0,00) x St — R. Namely, let Cy > 0 be the constant in (V0) and set ug(t) :=
u(0,t), then E(u) < Sy(ug) + Co.

IT) Secondly, we establish the existence of asymptotic limits. Consider the
forward case (F). We claim that Osu(s,t) — 0 as s — oo, uniformly in ¢. Let
C' > 0 be the constant in theorem 4.9 and let s > 1, then

|85U(S,t)‘ < CE[sfl,s](u) = C/ 1||8sug||%2(51)d0' Sﬁ 0.

Here the last step follows by finite energy of v and this proves the claim. Because
dsus converges to zero in L°°(S1) so does V;0;us + gradV(us) by (6). Hence it
follows from lemma 4.12 that there is a critical point z+ € P(V) and, for every
sufficiently large s, there is a smooth vector field &, along T such that

us =exp (&), [&llso + [Vidslloo + |V Vids]loo =3 0.

(Here we used the fact that — since Sy is Morse — there are only finitely many
elements in P(V) below any fixed action level.) This and the identities for the
maps F;; in (51) imply that

10sulloe + [10ctlloc + [[ViOrulloo < oo (75)

The same arguments apply in case (B) with corresponding asymptotic limit 2.

III) The third step is to prove exponential decay of the C* norm of J,u.
Consider the forward case (F). We prove by induction that for every k € N
there is a constant ¢j, > 0 such that

[0sullyyrz((s,00)x 51) < €k 1058l L2((5—k,00)x 51

for every s > k. This estimate, the definition of the energy in (9), and theo-
rem 4.10 with constants 6, ¢, p, Ty > 0, where Tj is chosen sufficiently large such
that (71) holds true, then show that

[0sullyyr.2((s,00)x 51) < Chr/ Els—k,00) (1) < &V edePs—k=To)/2
whenever s > k + Ty + 1. The Sobolev embedding W#2? — C*=2 e.g. on the

compact set [s,s+1] x S1, concludes the proof of forward exponential decay (F).
It remains to carry out the induction argument. It is based on the identity

(Vs = Vi) Osu = R(9su, Opu)Opu + Hy (u)dsu (76)

— which follows by linearizing the heat equation (6) in the s-direction to obtain
that dsu € ker D,, in the notation of section 3.4 — and the subsequent estimate.
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Proposition 2.13 with p = 2 applies* by (75) and shows that there is a constant
¢ > 0 with the following significance. If so > 1 then

IVl L2 [s0,00) x 51) F I1VEE N L2 ([s0,00) x 51) T I1VEVEE Nl 2[5, 00) x 51)
< ¢ (1% = V¥Rl L2(gap 1,001 50) + 102 a0 10y )

for every £ € Q°([0,00) x S!) of compact support. To see this fix a smooth
nondecreasing cutoff function 8 : R — [0, 1] which equals zero for s < sg — 1
and one for s > sy and whose slope is at most two. Via extension by zero we
interpret 8¢ as a smooth compactly supported vector field along the extended
cylinder u : R x S* — M. Now proposition 2.13 applies to 8¢ and proves (77).
Note that ¢’ depends on the L* norms of 953, 9;3, and 0;0;8. We also used
lemma 2.12 to deal with the term V,¢ which appears on the right hand side.
We prove the induction hypothesis in the case k = 1. Let s > 1 and denote
by C1 > 0 the constant in (V1). By (77) with £ = 9su and (76) it follows that

(77)

Vs 0stll 12 (s o0y 51) F 1 VD5l 12 (s 0y 51) + IV Vestll L2 (5 00y 51)

< (H(Vs = ViVi)Osull p2((s-1,00)x 51y T ||83u||L2([sfl,oo)><Sl))

=d (HR(&su, )0y + Hy (W) Osull p2((5—1,00)x51) T ||5SUHL2([571,00)x51)>
< (IRllsol|Opull, +2C1 + 1) 10sull L2((s—1,00) x 51) -

We prove the induction hypothesis for k = 2. Assume s > 2. Then by (77)
with £ = V,0su and (76) it follows that

IVaVisOsull 12 15,00y x 51y + IV Va0sull 125,00y x 51y T IVEVEVaOsul 2 (4 o) 51)
< (HVS (R(Osu, Opu)Opu + Hy (u)dsu) + [V, Vtvt]asunL2([571,oo)><51)

+ ||VsasuHL2([s—1,oo)><Sl)>'

Now use s > 2, the apriori estimates (75), axiom (V2), and the case k = 1
to bound the right hand side by a constant times |[Osul12([s—2,00)x51). An L?
bound for V,V,0,u was obtained earlier in the case k = 1 and the identity
VsVi0su = V;Vs0su — R(Dpu, Osu)dsu implies one for V;V,dsu.

Proving the induction hypothesis in the case k& = 3 requires additional in-
formation: Theorem 4.5 and theorem 4.9 only assume an upper action bound
for the heat flow solution. In the case at hand this is provided by Sy (u(0,-)).
This reproves (75) and in addition shows that ||V;0su||cc < oo. This estimate is
crucial, since (77) with & = V,V,0,u and (76) lead to terms of the form

||R(vsasua vtasu)az‘/uHL2([s,oo)><Sl)7

but our induction hypothesis in the case k = 2 only provides a C° bound for
Osu. The remaining part of proof follows the same pattern as in the case k = 2.
Here we use axiom (V3).

4Formally add to u any smooth half cylinder imposing a uniform limit as s — —oo.
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Fix an integer k > 3 and assume the induction hypothesis is true for every
¢ € {1,...,k}. In particular, we have W*?2 and C*~2 bounds for d,u on the
appropriate domains. Apply (77) with £ = V.k8,u and (76) to obtain L? bounds
for Vsk 'Hasu and vtvs’f Osu. Here we use axiom (V3) and the induction hypoth-
esis for £ € {1,...,k}. A problem of the type encountered in the case k = 3 does
not arise, since we have C*~2 bounds for d,u with k > 3. To obtain L? estimates
for the remaining terms of the form thvskfjasu with j > 2 use (76) to treat
any V;V; for one V;. This reduces the order of the term, hence the induction
hypothesis can be applied. This completes the induction step and proves (F).
The backward case (B) follows similarly. This proves theorem 1.8. O

Lemma 4.13. Fiz a perturbation V : LM — R that satisfies (V0)-(V3), a con-
stant p > 1, and nondegenerate critical points x+ of Sy. If u € M(z~;z%;V),
then the operators Dy, Dy : WLP — LP are Fredholm and

index D,, = indy(z~) — indy (") = —index D;.

Proof. By theorem 1.8 on exponential decay u satisfies the assumptions of the
Fredholm theorem 1.9. O

4.5 Compactness up to broken trajectories

Proposition 4.14 (Convergence on compact sets). Assume that the perturba-
tion V : LM — R satisfies (V0)—(V3) and that Sy is Morse. Fix critical points
T € P(V) and a sequence of connecting trajectories u¥ € M(x~,z7;V). Then
there is a pair xo,x1 € P(V), a connecting trajectory u € M(xg,x1;V), and a
subsequence, still denoted by u”, such that the following hold:

(1) The subsequence u” converges to u, uniformly with all derivatives on every
compact subset of R x S*.

(ii) ForallseR andT >0
Sy (u(s,-)) = lim Sy (u”(s,))

vV—00

Erry(u) = lim Ep_qry(u”).

Proof. Since the flow lines u” connect x~ to 7 and the action Sy decreases
along flow lines, it follows that

sup Sy (u”(s,-)) = Sy(x™) =: co.
seR

Hence by the apriori estimates theorem 4.5 and theorem 4.9 there is a constant
C = C(cp, V) such that

B’ (5,1)| < O, |0su”(5,1)] < OV/Sp(a™) = S(a™),

for every (s,t) € R x S'. To obtain the second estimate we used the energy
identity (9) for connecting orbits. Now fix a constant p > 2 and pick an integer
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¢ > 2. Then the assumptions of theorem 4.3 are satisfied for the sequence u”
restricted to the cylinder Z, = (—/¢,¢] x S'. Hence there is a smooth solution
w: Zy — M of the heat equation (6) and a subsequence, still denoted by u”, such
that 4" converges to u, uniformly with all derivatives on the compact subset
[0+ 1, x St of Z,. Now (i) follows by choosing a diagonal subsequence
associated to the exhausting sequence Zo C Z3 C ... of R x S*.

To prove (ii) note that

T 1
Ei_77)(u) = lim / / |6Su”|2 dtds
~rJo

V—00

= Vll}rglo E[—T,T] (UV)

< Sy(x7) = Sy(z™)

for every T > 0. Here the first step uses that, by (i), the sequence d;u” converges
to Osu, uniformly on compact sets. The second step is by definition of the
energy and the last step is again by the energy identity (9). Hence the limit
u: R x S* — M has finite energy and so, by theorem 1.8, belongs to the moduli
space M(xg,z1; V) for some xg, 21 € P(V). To prove convergence of the action
at time s note that
: v
V(u(s,)) = VILHC}OV(U (s,7)),

because V is continuous with respect to the C° topology on LM by axiom (V0).
Convergence of the action at time s then follows from the fact that dyu”(s,-)
converges to dyu(s,-) in L>(Sh). O

Lemma 4.15 (Compactness up to broken trajectories). Assume that the per-
turbation V : LM — R satisfies (V0)—~(V3) and that Sy is Morse. Fix distinct
critical points = € P(V) and let v’ € M(x~,z%; V) be a sequence of connecting
trajectories. Then there exist a subsequence, still denoted by u”, finitely many
critical points xg,. . .,xm with xo = 27 and x,, = x~, finitely many solutions

up € M(zg, xr-1;V), Osug, Z 0, k=1,...,m,

and finitely many sequences sy, such that the shifted sequence u” (s}, + s,t) con-
verges to ug(s,t), uniformly with all derivatives on every compact subset of
R x S*. Moreover, these limit solutions satisfy > -, E(ur) = Sy(z™) =Sy (z™).

Proof. In [SW03, Proof of lemma 10.3] replace lemma 10.2 by prop. 4.14. O
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5 The implicit function theorem

Throughout this section we fix a smooth perturbation V : LM — R that satis-

fies (V0)—(V3) and two nondegenerate critical points % of S,. The idea to prove

the manifold property and the dimension formula in theorem 1.10 is to construct

a smooth Banach manifold which contains the moduli space M(z~,z";)) and

then prove these statements locally near each element of the moduli space.
Fix a real number p > 2 and denote by

BYP =BYP(z7 2™ (78)

the space of continuous maps u : R x S' — M, which satisfy the limit con-
ditions (8), are locally of class WP, and satisfy the asymptotic conditions
£ € WhP((—o0, —T] x SY,u*TM) and ¢+ € WHP([T,0) x SY,u*TM) for
some sufficiently large T > 0. Here ¢* are defined pointwise by the identity
€XPg:t (1) ¢*(s,t) = u(s,t). For p > 2 the space BMP carries the structure of a
smooth infinite dimensional Banach manifold. The tangent space T}, 8" is given
by the Banach space W}P whose norm is defined in (12). Around any smooth
map u local coordinates are provided by the inverse of the map ¢, ! : V,, — B
given by & = [(s,t) = exp, (s E(s,t)] where V,, C W, P is a sufficiently small
neighborhood of zero. By abuse of notation we shall denote this map again by
¢ — exp,, & Moreover, note that if some u € BYP satisfies the heat equation (6)
almost everywhere, then u is smooth by theorem 1.5, hence u € M(z~,27; V).

For x € M and ¢ € T, M denote parallel transport with respect to the
Levi-Civita connection along the geodesic 7 — exp, (7€) by

<I>(:c,§) : TxM — Texpm(f)M-
For u € BY? the map F, : W-P — LP defined by

Ful€) = (u,€)™" (0s(exp,, €) — Vi (exp, €) — gradV(exp,, €)) (79)

is induced by pointwise evaluation at (s,t). Its significance lies in the following
three facts. Firstly, it is a smooth map between Banach spaces, hence the
implicit function theorem for Banach spaces applies. Secondly, the differential
dF.(0) : WhP — [P is given by the linear operator D, ; see [W99, app. A.3].
Thirdly, the map £ — exp,, £ identifies a neighorhood V' of zero in F, ~*(0) with
a neigborhood of u in M(z~,27;V). Now theorem 1.10 follows immediately.

Proof of theorem 1.10. Fix p > 2. Then the operator dF,(0) = D, : WP — P
is Fredholm by theorem 1.9 and surjective by assumption. Since every surjective
Fredholm operator admits a right inverse, the implicit function theorem for
Banach spaces, see e.g. [MS04, thm A.3.3|, applies to JF, restricted to a small
neighborhood V' of zero. It asserts that F, ~*(0)NV is a smooth manifold whose
tangent space at zero is given by the kernel of D,. Since D, is onto, it follows
that dimker D,, = index D,, by definition of the Fredholm index. On the other
hand, the Fredholm index equals indy (2~ ) — indy/(z™) by theorem 1.9. O
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Proof of proposition 1.11. Set ¢, = 1(Sy(z~) — Sy(2™)) and identify
Mz, 2t V) = M* = {ue Mz, 2+ V) | Sy(u(0,)) = ¢, }.

Here we use that the action Sy is strictly decreasing along nonconstant (in the
s-variable) heat flow trajectories. This is standard and follows from the first
variation formula for the functional Sy; see e.g. [M69, sec. 12]. Now choose a
sequence u” in M*. By lemma 4.15 there is a subsequence, still denoted by u”,
finitely many critical points g = 2%, z1,...,2,, = £, finitely many connecting
trajectories ux € M(xg,zi—1;V) and sequences sy where k = 1,...,m, such
that each shifted sequence u” (s} + s,t) converges to ug(s,t) in Cys.. Note that

m > 1. By the Morse-Smale assumption theorem 1.10 applies to all moduli
spaces. Since Jsuy Z 0 and the heat equation (6) is s-shift invariant this implies

indy(zy) — indy(xg—1) = dim M (g, 2513 V) > 1, Vke{l,...,m}.

Use these inequalities to obtain that indy (2~ ) —indy () > m > 1. But by as-
sumption the index difference is one and therefore m = 1. Now this means that
the subsequence u” converges in C7°, to u :=u; € M(z~,z";V). In fact, con-
vergence of the action functional for fixed time s = 0, see proposition 4.14 (ii),
shows that u € M*. Hence M* is compact in the C}, topology. On the other
hand, the moduli space M (z~,2%;)) is a manifold of dimension one by theo-
rem 1.10. Now the R action is free and therefore the quotient, hence M*, is a
manifold of dimension zero. But a zero dimensional compact manifold consists

of finitely many points. O

The refined implicit function theorem

Proposition 5.1 (The estimate for the right inverse). Fiz a perturbation V :
LM — R that satisfies (V0)—~(V3) and nondegenerate critical points x* of Sy.
Assume u € M(z7;2%;V) and D, is onto. Then, for every p > 1, there is a
positive constant ¢ = ¢(p,u) invariant under s-shifts of u such that

1€ e < el Du”ll, (80)
for every £* € im (D : W2P — WLP). Here W2P .= {£ € WP | D& € WP},

Proof of proposition 5.1. The proof of [DS94, lemma 4.5] carries over. We in-
clude it for the sake of completeness. Fix p > 1 and let 1/¢+ 1/p = 1. By
lemma 4.13 the operators D,, and D;, are Fredholm. Since D,, is onto, the op-
erator D} is injective by proposition 3.17 and proposition 3.19 (hypothesis 3.15
is satisfied by theorem 1.8 on exponential decay). Hence by the open mapping
theorem D satisfies the injectivity estimate

nllq + [Vsnllg + [[V:Vinllq < 1 ”Dz*ﬂ?Hq (81)

for every n € W4 and with shift invariant constant ¢; = c1(q,u) > 0. Next
observe that

(D;¢,Dim)  (DuDy&,m) .
= < [[DuDll,

1Dl IDznllq

[l
IDinllg

< a1 |DuDll, (82)
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for all £ € W2P and n € W9, Here the first step is by definition of the formal
adjoint and the second one by Holder’s inequality. The third step is by (81).
Now there is a shift invariant constant ¢ = ca(p,u) > 0 such that

* Die, Dt
IDsEl, < sup \DubDum)

- (83)
newbe [1Panllq

for every ¢ € W2P. The argument uses that D, is onto and dim ker D,, < oco.
The constant ¢, depends also on the choice of an L? orthonormal basis of ker D,,.
Full details are given in step 2 of the proof of lemma 4.5 in [DS94]. Now the
linear estimate proposition 2.13 for £* := D;¢ shows that

€ e < es (IPug"ll, + €71,

where the constant cs(p, u) is again shift invariant. To estimate the second term
in the sum apply (83) and (82) to obtain that [|£*]|, < c1e2||Du&*|lp- O

Proposition 5.2 (Quadratic estimate). Fix a perturbation V : LM — R that
satisfies (VO)—(V1). Let v > 0 be the injectivity radius of M and fix constants
1 <p<ooandcy>0. Then there is a constant C = C(p,co) > 0 such that
the following is true. If u: R x S* — M 1is a smooth map and € is a compactly
supported smooth vector field along u such that

1Bty + 100l + [Videtdl, < o, JiElle <.
then

1Fu(€) = Ful0) = dFu(0)¢]l, < C lllog ez (14 Elyer ) -
Proof. Recall the definition (51) of the maps E; and E;; and write

d

fu(g) _‘Fu(o) - E

Fu(r8) = f(&) —9(&) — h(§)

7=0

where

O(u, 7€) Osu
7=0

F(E) = B(u, &)~ 0, E(u, €) — Dyu — diT

- 5 OSE(U, T{)

7=0

9(&) = ®(u, &) "V, E(u, &) — ViOyu + (V% ®(u, 0)€) Vidyu
- — V1O E(u, 7€)

h(€) := ®(u, &) tgrad V(E(u, €)) — grad V(u) + (Va®(u, 0)¢) grad V(u)

- — grad V(E(u, 7§)).
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Here we used that ®(u,0) = 1. Straightforward calculation using the identi-
ties (53) shows that f(&) = f1(§)Vs€ + f2(€) where

fl(g)vsg = ((I)(u7 f)_1E2(u7£) - ﬂ) Vi€
f2(8)0su = (®(u, &) ' Er(u,&) — 1+ V%®(u, 0)£) dsu,

that

g = g1 0 VO + g2 o (Oyu, Opu) + g3 © Vi Vi€ + ga o (Oyu, Vi€) + g5 o (Vi€ Vi)

where
91(6) = (u, &) Er(u, &) — 1+ V@ (u, 0)¢
92(6) = B0, Ena(0,€) ~ | Bu(ure)
7=0
93(6) = ®(u, &) Ey(u, ) — 1
94(&) = 2®(u, &)~ E1a(u, §)
95(5) = (I)(uvg)_lEQQ(uvg)v
and that

h(€) = ®(u, &)~ grad V(E(u, €)) — (1 - (V@ (u, 0)€)) grad V(u) — Hy(u)é.

Here Hy denotes the covariant Hessian of V given by (4). It follows by inspection
using the identities (53) that the maps fa, g1, g2, and h together with their first
derivative are zero at & = 0. Therefore there exists a constant ¢ > 0 which
depends continuously on |¢| and the constant in (V1) such that

(2 g1+ g2+ W)(E)] < el (10sul + [Videul + Ol +1)

pointwise at every (s,t¢). Similarly, it follows that the remaining functions are
zero at & = 0 and therefore

1+ 95+ 91+ 95)(E)] < clé] (IV6€] + ViVt + Vi€ 9ol + [ig?)

Take these pointwise estimates to the power p, integrate them over R x S' and
pull out L* norms of dsu, dyu, and V,0;u to obtain the conclusion of proposi-
tion 5.2. The term |¢] - |V;¢|* involving a product of first order terms is taken
care of by the product estimate lemma 2.14 and remark 2.15. Here we use the
fact that the (compact) support of ¢ is contained in some set (a,b] x S*. O

Proof of the refined implicit function theorem 1.12

Assume the result is false. Then there exist constants p > 2 and ¢y > 0 and a
sequence of smooth maps u, : R x ST — M such that lim,_,+ o0 u,(s,-) = 2%(*)
exists, uniformly in ¢, and
Co

881/ ;t <77
O, (s, 1)] < 10

10y |l oo < cos [MiOrun[l oo <o,  (84)
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for all (s,t) € R x S* and

1
[0suy — ViOpu, — grad V(w,)|l, < —, (85)

14

but which does not satisfy the conclusion of theorem 1.12 for ¢ = v. This means
that for every u, € M(z~,2";V) and every {¥ € im D NW,, the following
holds. If u, = exp, (") then

[0st, — Vi, — grad V), < - Iy (36)
The time shift of a smooth map u: R x S! by ¢ € R is defined pointwise by
u?(s,t) == u(s + o,t).
Set ag := 2c¢2 and observe that

. 1
Su(a™) = Tim S (s,)) = 5 10w (s, )3 = V0 (5,)) < 56+ Co < ao.

S—r— 00

M| —

Here we used the assumption on asymptotic W12 convergence, estimate (84),
and our choice of the constant ¢y > 1 larger than the constant Cp in (V0). Now
fix a regular value ¢, of Sy between Sy (zT) and Sy (x~). Here we use that the
set P2 (V) is finite, because Sy is Morse—Smale below level ag. Applying time
shifts, if necessary, we may assume without loss of generality that

Sy (u,(0,)) = e, (87)

Furthermore we set ¢y = a and let Cp = Cy(a,V) > 0 be the constant in
theorem 1.7 with that choice. Then we have the apriori estimates

185l + [[0rull oo + [IVeOrull o < Co (88)

for all u € M(z,y; V) and z,y € P(V).

Claim. There is a subsequence, still denoted by u,, a constant C > 0, a
trajectory u € M(x~,xT; V), and a sequence of times o, such that the sequence
1, determined by the identity

Uy = eXPyo, (1)

satisfies m, € im D}y, N Wyor and

tim (Il + Inll,) =0, il < C. (89)

V—r 00

Before we prove the claim we show how it leads to a contradiction. Consider
the trajectories u?» € M(z~,x";V) and vector fields n, provided by the claim.
They satisfy the assumptions of the quadratic estimate, proposition 5.2, by (88)

79



and by choosing a further subsequence, if necessary, to achieve that |7, || < ¢-
Set ¢f = Co(a,V) and let Co = Ca(p,c) be the constant in proposition 5.2
with that choice. Furthermore, since M(z~,z";V)/R is a finite set by propo-
sition 1.11 (and P*(V) is a finite set as well) the estimate for the right inverse,
proposition 5.1, applies with constant C; depending only on p, a, and V. Now
by the definition (79) of the map F; and the fact that parallel transport is an
isometry we obtain the first step in the following estimate, namely

105w, — VeOyuy, — gradV(wy)|l,, = [[Fa(n.)ll,,
Z [Danul, = 1 Fa(m) — Fa(0) — dFa(0)n.|l,,

1
by (g = Co e 1+ )

o
201 771/ w "

Step two uses that F5(0) = 050 — V;0pti — grad V(@) = 0 and dF3(0) = Dy. Step
three is by proposition 5.1 and proposition 5.2. By (89) the last step holds for
sufficiently large v. For v > 2C the estimate contradicts (86) and this proves
theorem 1.12. It only remains to prove the claim. This takes four steps.

Step 1. There is a subsequence of u,, still denoted by w,, and a trajectory
u € M(z~,z7;V) such that

w=ep, (). Jim (I6).+lIg,) =o. (90)

v—00

Proof. We embed the compact Riemannian manifold M isometrically into some
Euclidean space RV and view any continuous map to M as a map into RV
taking values in the embedded manifold. By translation we may assume that
the embedded M contains the origin. Now LP and L°° norms of w, are provided
by the ambient Euclidean space. By compactness of M and, in particular,
the L* bounds in (84) we obtain on every compact cylindrical domain Zp :=
[~T,T] x S* the estimates

1 1
lwll oz < RT)» diam M, [Opunl| 1o 7,y + IVOwuw || 1o 7,y < 2¢0(2T)7,

and
0suy ]|, < 4deco  Vr e (1,00]. (91)

The latter follows by the estimate

o 1\ oo 4
ds<2+2 | —ds= 4
/_w<1+s2> sSot /1 EE S Y

whenever r > 1. Hence the sequence u,, is uniformly bounded in W?(Zr).
Thus by the Arzela-Ascoli and the Banach-Alaoglu theorem a suitable subse-
quence, still denoted by u,, converges strongly in C° and weakly in W? on
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every compact cylindrical domain Zr to some continuous map u : R x S' — M
which is locally of class W', Hence 0,u,, —V,0yu, —gradV(u,, ) converges weakly
in L? to Osu — ViOyu — gradV(u). On the other hand, by (85) it converges to
zero in LP. By uniqueness of limits u satisfies the heat equation (6) almost
everywhere. Thus u is smooth by theorem 1.5.

Fix s € R and observe that by (84) there are uniform C*(S*) bounds for the
sequence Ozu, (s, ). Hence by Arzela-Ascoli a suitable subsequence, still denoted
by dyu,(s,-), converges in C(S') to dyu(s,-). Thus

Tim Sy (uy(s,)) = Su(u(s, )

and therefore Sy(u(0,-)) = ¢ by (87). Recall that dsu = V,oyu + grad V(u).
When restricted to s = 0 this means that the vector field dsu(0,-) is equal to
the L? gradient of Sy at the loop (0, -). But Sy(u(0,-)) = ¢, and ¢, is a regular
value. Hence 9;u(0, -) cannot vanish identically.

On the other hand, by (84) and axiom (VO0) with constant Cj it follows
exactly as above that

1
up Sy (5. ) = sup 3 0, (5,-) [~ V(w) < a.

This shows that all relevant trajectories including relevant limits over s or v
lie in the sublevel set L% M on which Sy is Morse—-Smale by assumption. In
particular, we have that sup,cp Sy(u(s,-)) < ao and therefore the energy of
u is finite by lemma 4.8. Hence by the exponential decay theorem 1.8 there
are critical points y* € P% (V) such that u(s,-) converges to y* in C?(S1), as
s — +00. Moreover, the limits ¥y~ and y* are distinct, because the action along
a nonconstant trajectory is strictly decreasing and the trajectory is nonconstant
because Jsu is not identically zero as observed above.

More generally, a standard argument shows the following, see e.g. [SWO03,
lemma 10.3]. There exist critical points 2~ = 20, 21,... 2t = 27 € P (V) and
trajectories u¥ € M(zF=1 2%; V), d,uF £ 0, for k € {1,...,/4}, a subsequence,
still denoted by wu,,, and sequences s* € R, k € {1,..., ¢}, such that the shifted
sequence u,,(sl’f—i—s, t) converges to uk (s,t) in an appropriate topology. The point
here is that O,u” # 0 and therefore the Morse index strictly decreases along the
sequence z~ = 20, 2',...,2* = z*. Namely, by the Morse-Smale condition
each Fredholm operator D, is onto, hence its Fredholm index is equal to the
dimension of its kernel. But this is strictly positive because the kernel contains
the nonzero element d,u*. On the other hand, by lemma 4.13 the Fredholm
index is given by the difference of Morse indices indy (z*~!) — indy(z¥). Our
assumption that the pair #* has Morse index difference one then implies that
£ =1 and this proves that v € M(x~,2™; V). The first assertion of step 1.

It remains to prove the second assertion, that is (90). The key fact to
prove (90) is that u,(s,-) not only converges in W12(S1) to 2%, as s — oo,
but that the rate of convergence is independent of v. More precisely, we prove
that for every € > 0 there is a time T' = T'(¢) > 1 such that

s>T = d(uy(s,t), 2" (1)) <e (92)
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for all t € S* and v € N. Recall that M is embedded isometrically in RY. By
the fundamental theorem of calculus and uniform decay (84) we have that

& Co Co

forallt € S', v € N, and ¢ > 1 sufficiently large. The Riemannian distance d in
M and the restriction of the Euclidean distance in RV to the compact manifold
M are locally equivalent. Hence (93) implies (92). Let Z := [T, 00) x S* denote
the positive end of the cylinder Rx S* and Zr the negative end. Let ¢ > 0 be the
injectivity radius of M. Now fix € € (0,¢/2) and choose T' = T'(¢) > 0 such that
the ends u(Z%) and u, (ZZ) for all v are contained in the (£/6)-neighborhood
of x*(S1). Such T exists by (92). Since u, converges to u uniformly on Zr,
there exists 19 = vo(T'(¢)) € N such that [|§,][z~(z,) < /3 for every v > 1p.
Hence

’er(t) —u, (o, t)|RN =

/ Osuy (s,t) ds

RN

€0 lloe = €0l oo (22 ) + 1€l Lo 27y + €0l Lo (2

< suP (d(uy,xf) + d(xf, U)) + ||fu||L<x>(ZT)
Zy (94)
+ sup (d(uy, z") + d(z*, u))

+
Zr

<e

for every v > 1. This proves that the L limit in (90) is zero. To prove that
the LP limit is zero one uses again the decomposition of R x S* into the compact
part Zr and the two ends Z7. The left hand side of (93) is p-integrable over
the ends Z%. The key fact is that the value of this integral does not depend on
v and converges to zero as |T| — oo. A similar integral is needed in the case of
u. Here the exponential decay theorem 1.8 shows that the integral exists and
converges to zero as |T'| — oco. This concludes the proof of step 1. O

Step 2. Sete, := ||€|loo+ 160 |lp and let Co be the constant in (88). Then there
is a constant oo > 0 and integer vy > 1 such that n = n(o,v) is determined by
the identity w, = exp,.n and satisfies |n]|cc < t/2 for all o € [—09,00] and
v > vy. Furthermore, there is a constant co = ca(ag,00) > 0 such that

Il <ev+Colol,  lnll, <2 + c2o]

and
[Vsnll, < c2, [Vinlle < c2s INA

for all o € [—00,00] and v > vy.

Proof. Existence of o and v follows from the fact that n(v,0) = &,, continuity
of time shift, and the L*° limit in (90). Now denote by L the length functional.
Then for every o € R and (r) := u(s + ro, t) for r € [0,1] we have that

d(u(s,t),u(s+0,t)) < L(y) = |U|/0 |0su(s + ro,t)|dr < |o| ||0sull . (95)
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Since d (uy (s,t),u(s,t)) = [£.(s,t)| < &,, the first estimate of step 2 follows from
[n(s,t)| = d (uy(s,t),u(s + o,t)), the triangle inequality, and (88). To prove the
second estimate note that the triangle inequality also implies that

(') 1
Inll? < 27 e, | + 20 / / d (u(s,8), u(s + 0,6))" dids.

By theorem 1.8 on exponential decay there are constants p, cs > 2 such that for
all (3,t) € R x S* we have that

|0,u(3,t)| < cge™ P, |0sul|, < e Vr>1. (96)

Note that the constants p and ¢3 depend only on ayg, since the set P (V) is finite
and there are only finitely many elements of M(z~,x";V) which satisfy (87).
By the first inequality in (95) and the first estimate in (96) with § = s+ ro

1
d(u(s,t),u(s +0,1)) < |a|/ 105u(s + ro,t)| dr < |o| cse”70e P15,
0

Hence the left hand side is L? integrable. This concludes the proof of the second
estimate of step 2. To prove the next two estimates we differentiate the identity
exp,- 1 = U, with respect to s and ¢ to obtain that

Ey (Uga 77)83“0 + E2(Ugv U)VsTl = Osuy (97)
Eq(u?,m)0su’ + Ea(u®,n)Vin = Opuy,. (98)

Here the maps E; are defined by (51). Since ||0su’]l, < ¢z by (96) and
10suvllp < 4co by (91), the L? norm of V,n is uniformly bounded as well.
Similarly, since ||Oyu”||c < Co by (88) and ||0suy||co < ¢o by (84), the L norm
of V;n is uniformly bounded. To prove the last estimate of step 2 differentiate
(98) covariantly with respect to ¢t and abbreviate E;; = E;;(u”,n) to obtain

Eri(u”,m) (0pu?, 0pu”) + Era(u?,n) (Opu”, Vi) + Ex(u”, n) V,Oru”

+ E21(uaa 77) (tha 8tuo) + E22 (uo, 77) (vtn) th) + E2 (ugv 77) Vtvtn

+ grad V(u, ) — Osu,

= V;Oru, + grad V(u,) — Osu,.
This identity implies a uniform LP bound for V;V;n as follows. The right hand
side is bounded in L? by 1/v and the last term of the left hand side by 4c¢q
according to (91). Since E;;(u”,0) = 0 and we have uniform L> bounds for
each of the two linear terms to which E;;(u?,n) is applied, we can estimate the

LP norm by a constant times ||n||,. The only terms left are term three and term
seven of the left hand side. By the heat equation (6) their sum equals

Ey(u?,n) Osu® — Ey(u?,n) grad V(u?) 4 gradV(u,).

Since ||0su”]|p < ¢ by (96), the LP norm of the first term is uniformly bounded.
Consider the remaining two terms as a function f of . Then f(0) = 0, because
Ey(u?,0) = 1 and n = 0 means u, = u’. Hence || f||, is uniformly bounded by
a constant times ||n]|,. Here we used axiom (V0). This proves step 2. O
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Step 3. For o € [—0g,00] consider the function 0,(c) := —(0su’,n) where
n = n(o,v) has been defined in step 2 by the identity u, = exp,.n and where
(-,-) denotes the L*(R x S1) inner product. This function has the property that

0,(0) =0 <= neimD,.

Moreover, there exist new constants og > 0 and vg € N such that

d
0,0 < s bul0) 2,

for all o € [—0¢,00] and v > vy where = Sy(z~) — Sy(z™) > 0.

Proof. ‘<=’ follows by definition of the formal adjoint operator using that 0,u” €
ker D,-. We prove ‘=’. The kernel of the linear operator D, is 1-dimensional:
It is Fredholm of index one by theorem 1.9 and it is onto by the Morse—
Smale condition. This kernel is spanned by the (nonzero) element dsu”. Now
consider D}, on the domain W?P? and apply proposition 3.19 to obtain that
WP = ker Do @ imD},. The implication =" now follows immediately by
contradiction.

Set 1/¢g+ 1/p = 1. By (96) and the definition of the sequence ¢, — 0 in
step 2 it follows that

10, (0)] = [{Osu, &) 12| < ||85“Hq H5u||p < c3gp.

Abbreviate FE; = E;(u’,n). Then straightforward calculation using the iden-
tity (97) for Vsn shows that

d
%01,(0) = —(Vi0su?, )2 — (Osu®, —0su’ 4+ Osu® — E;lElasu”>Lz

Y

2
— %0507, Il + 12, 15 = 105, 197 e [,
2
0sull3 = il (15050l + e l0sull, l10,ull.,)

> [|0sull3 — (2e0 + eslol)(es + cea)

for some constant ¢4 = ¢4(ag,09) > 0. The last step is by (96) with constant cs.
We also used that ||Vi0sull,; < ¢5 for some positive constant ¢s = c5(ao), which
follows from exponential decay of V;dsu according to theorem 1.8. The energy
identity (9) shows that ||Osul|3 = u > 0. Now choose o¢ > 0 sufficiently small
and v sufficiently large to conclude the proof of step 3. O

Step 4. We prove the claim.

Proof. By step 3 there exists, for every sufficiently large v, an element o, €
[—00,00] such that 6,(c,) =0 and |o,| < €,(2¢3/u). Set n, := n(o,,v). Then
1, € im D}, again by step 3 and

1]l oo + llmull, < ev (34 (2 + Co)2es/p), llmlly < C,

by step 2. This proves (89), hence the claim, and therefore theorem 1.12. O
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6 Unique Continuation

To prove unique continuation for the nonlinear heat equation we slightly extend
a result of Agmon and Nirenberg [ANG7] (to the case C; # 0). This generaliza-
tion is needed to deal with the nonlinear heat equation (6), since here nonzero
order terms appear on the right hand side of (99). For the linear heat equation
the original result for C; = 0 is sufficient.

Theorem 6.1. Let H be a real Hilbert space and let A(s) : dom A(s) — H be a
family of symmetric linear operators. Assume that ¢ : [0,T] — H is continuously
differentiable in the weak topology such that ((s) € dom A(s) and

I6'(s) = AS)C()| < eallS(s)I] + Cr [(A)¢(s), ()] (99)

for every s € [0,T] and two constants c¢1,Cy > 0. Here ('(s) € H denotes
the derivative of  with respect to s. Assume further that the function s +—
(C(s), A(s)C(s)) is also continuously differentiable and satisfies

@ 16,40 ~2¢', A0 2 —es |ACH €] - s ) (100)

pointwise for every s € [0,T] and constants ca,c3 > 0. Then the following holds.
(1) If ¢(0) = 0 then ¢(s) =0 for all s € [0,T].
(2) If ¢(0) # 0 then ((s) # 0 for all s € [0,T] and, moreover,

Z_ M é e — 1
- (R )

where a = 2012 4 ¢5 and b = 4¢12 + 22 /2 + 2c3.

log [[¢(s)II* > log [|¢(0) — 215

Proof. A beautyful exposition in the case C; = 0 was given by Salamon in [S97,
appendix E] in the case C; = 0. It generalizes easily. A key step is to prove
that the function

o(s) = loglo(o)|? - [ DDA

a

satisfies the differential inequality
¢ +ale|+b>0 (101)

for two constants a,b > 0.
In [S97] it is shown that assumption (100) implies the inequality

211¢" = ACI?
S W ~2e, [l - 2¢;
where
£ e < - Ac
Tk H
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Now it follows by assumption (99) that

A
<ae? 4402801 o2 ge2 i g

lI®

2|¢’ — A¢|?
I¢II?

and therefore

" = 2| — (&)1 — 4er® — 4012 (0, €)] — 205 [In]] — 2¢5.

To obtain the inequality (101) it remains to prove that

2|l — (0, €| — 4er® = 4C12 [(n, )] = 2¢2 ||nl| - 2¢5 > —a|¢'| —b.

Since ¢’ = 2(&, n) this is equivalent to

calnll < lln—= (m, &I + (@ —2C1%) [(n, )] + (/2 = 2¢1° = c).

Abbreviate
U= Hn_<na£>£”2a V= |<777§>|,

then ||n]|? = u? + v? and the desired inequality has the form

covVu? 402 <u? + (a— 2013w + (/2 — 2¢12 — ¢3).
Since covVuZ + v2 < cou + cov < u? + cov + 22 /4 this is satisfies with
a=2012—|—02, b:4612+622/2+203.

This proves the inequality (101). The remaining part of the proof of theorem 6.1
carries over from [S97] unchanged. O

6.1 Linear equation

Unique continuation for the linearized heat equation is used to prove propo-
sition 7.5 on transversality of the universal section and the unstable manifold
theorem 8.1.

Proposition 6.2. Fix a perturbation V : LM — R that satisfies (V0)—(V2)
and two constants a < b. Let u : [a,b] x S* — M be a smooth map and let
& = £(s,t) be a smooth vector field along u such that D,§ = 0 or DiEE = 0,
where the operators are defined by (57) and (58), respectively. Abbreviate £(s,-)
by £(s). Then the following is true.

(a) If &(s4) = 0 for some sy, then &(s) =0 for all s € [a,b].
(b) If &(sx) # 0 for some s, then £(s) # 0 for all s € [a, b].

Proof. We represent D,, by the operator Dy ¢ = % +A(s)+C(s) given by (59).
Here the family A(s) consists of self-adjoint operators on the Hilbert space H :=
L?(S',R") with dense domain W; see (i) and (iv) in section 3.4. The space
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W has been defined prior to (59). Recall that if the vector bundle v*TM —
[a,b] x St is trivial then W = W22(S!1,R") and otherwise some boundary
condition enters. In either case W =: dom A(s) is independent of s.

(b) Let & € ker Dy satisfy £(s«) # 0. Assume by contradiction that
&(s9) = 0 for some sg € [a,b]. Now if sg > s, then replace £(s) by £(s+ s.) and
set T =b— s, and s1 = $p — S, otherwise replace £(s) by £(—s + s.) and set
T = —a+s, and s1 = —sg+5.. Hence we may assume without loss of generality
that € € ker Dayc maps [0,T] to H and satisfies £(0) # 0 and &(s1) = 0 for
some s1 € (0,77].

Next we check that the conditions in theorem 6.1 are satisfied: Firstly,
the vector field £ is smooth by assumption. Secondly, the family A(s) con-
sists of self-adjoint operators by (ii) in section 3.4. Thirdly, the function s +—
(&(s), A(s)&(s)) is continuously differentiable. Here we use the first condition in
axiom (V2), which tells that the Hessian #Hy is a zeroth order operator, and the
fact that by compactness of the domain the vector fields diu, 0su, V;0su, and
V;Vi0su are bounded in L>([0,T] x S!) by a constant ¢z > 0. Next assump-
tion (99) is satisfied with Cy = 0, because

1€'(s) = A()E(s)ll = IC(s)E(s)l < e ()

where the constant ¢ = supp 71« s11C(8,t)| c(rn) is finite by compactness of
the domain. To verify the inequality (100) note that its left hand side is given
by (£(s), A'(s)&(s)); see [AN67, Rmk. in sec. 1] and [S97, Rmk. F.3]. Now

(€(s), A'()€(9)) = = lIE() I 1A ()€ (sl
> =7 €6 (€I + 110:E(s)])) -

where the second step is by straightforward calculation of A’(s). Replacing
|10:£(s)|| according to the elliptic estimate for A(s) yields (100).

Now the Agmon-Nirenberg theorem 6.1 applies and part (2) tells that £(s) #
0 for all s € [0, T]. This contradiction proves (b) for elements in the kernel of D,,.
The same argument covers the case of the operator D, since it is represented
by —D_4_¢ according to remark 3.16.

(a) This follows either by a time reversing argument (see proof of the Agmon-
Nirenberg Theorem in [S97]) and application of (b) or by a line of argument
analoguous to the proof of (b) given above, where in the final step part (2) of
theorem 6.1 is replaced by part (1). O

6.2 Nonlinear equation

Unique continuation for the nonlinear heat equation is used to prove the unstable
manifold theorem 8.1.

Theorem 6.3 (Unique Continuation for compact cylindrical domains). Fiz two
constants a < b and a perturbation V : LM — R that satisfies (V0) and (V1).
If two smooth solutions u,v : [a,b] x S* — M of the heat equation (6) coincide
along one loop, then u = v.
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Proof. Abbreviate us = u(s,-) and assume u, = v, : S* — M for some o €
[a, b]. Moreover, we may assume without loss of generality that dsu is nonzero
at some point (s,t). Otherwise u coincides with a critical point = of the action
functional Sy and, since v, = u, = x, so does v and we are done. It follows
similarly that Osv is nonzero somewhere. Hence

5 ‘

= € (0,1/2). (102)
2+ [|0sull o + 11050l

Here ¢ > 0 denotes the injectivity radius of our compact Riemannian manifold.

The first step is to prove that the restrictions of u and v to [0 —§, 0 +4] x St are
equal. (In fact we should take the intersection with [a, b] x ST, but suppress this
throughout for simplicity of notation.) The key idea is to express the difference
of u and v near ¢ with respect to geodesic normal coordinates based at u, and
show that this difference { and a suitable operator A satisfy the requirements
of theorem 6.1 (with nonzero constant C7). Then, since ((o) = 0, part (1) of
the theorem shows that ¢ = 0 and therefore u = v on [0 — §,0 + ] x S1.

Once the above has been achieved we successively restrict v and v to cylinders
of the form [0+ (2k — 1)d, 0 + (2k + 1)4] x St, where k € Z, and use that u and
v coincide along one of the two boundary components to conclude by the same
argument as above that u = v on each of these cylinders. Due to compactness
of Z the same constants ¢; and C} can be chosen in (99) for all cylinders. After
finitely many steps the union of these cylinders covers [a, b] x S and this proves
the theorem.

It remains to carry out the first step. Consider the interval I = [0 —§, 0 + d]
and the cylinder

Z=1Ix8"=[o—0d,0+03 xS

From now on u and v are restricted to the domain Z. Note that the Riemannian
distance between u(o,t) and u(s,t) is less than half the injectivity radius ¢ for
every (s,t) € Z. Hence the identities

u(s,t) = CXPy(o,t) &(s,1), v(s, t) = C€XPuy(o,t) n(s,t)

for (s,t) € Z uniquely determine smooth families of vector fields £ and 7 along
the loop u,. The domain of £ and n is Z, they satisfy the estimates

L L

lele <20 Mol < 5

and £(o,t) = 0 = n(o,t) for every t € S1. Moreover, since £(s,t) and (s, t) live
in the same tangent space T, )M their difference ¢ = § — 7 is well defined.

Now consider the Hilbert space H = L?(S', u,*TM) and the symmetric differ-

ential operator A = V;V}, with domain W = W22(St u,*TM). Here V; denotes

the covariant derivative along the loop u,. Hence the operator A is independent

of s and condition (100) in the Agmon-Nirenberg theorem 6.1 is vacuous. If we

can verify condition (99) as well, then {(c) = 0 implies that {(s) = 0 for every

s € I by theorem 6.1 (1). Since ¢ is smooth, this means that on Z we have
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¢ = n pointwise and therefore u = v.
It remains to verify (99). Use (51) to obtain the identities

Osu = EQ(ucrvf)asf
ViOiu = E11 (g, &) (Ostie, Oruo ) + 2E12(tg, £) (8its, Vi€) (103)
+ El (u07 g)vtatua + E22<u0'a 5) (vtga Vté-) + EQ(Uovg)vtvtf

pointwise for (s,t) € Z and similarly for v and 7. To obtain the second identity
we used the symmetry property (52) of F15. Now consider the heat equation (6)
and replace dsu and V,0;u according to (103), then solve for 9;§ — V,V;£. Do
the same for v and 7 to obtain a similar expression for —9sn+ V; Vin. Add both
expressions to get the pointwise identity

(95 —VaV) (€ —n)
= (Eg(ua,f)flEn(uo,ﬁ) — EQ(uo,n)flEH(ua,n)) (6tua,5‘tu0)
+ (B2(ue, )7 B1 (g, ) = Ea(uq,n) " E1(ue, 1)) Vidstg
+ 2 (Ba(ug, €)' Bai (g, ) Vi€ — Ea(uo, 1) ™' Ba1 (g, n)Vin) Opus
+ B (uq, §) " gradV(exp,, €) — Ba(us, 1)~ gradV(exp,, n)
+ By (uo, &)™ Exa(uo, &) (Vi€, Vi€) — Ba(ug,n) ™ Eaz(uo, ) (Vin, Vin).
Now by compactness of the domain Z there is a constant C' > 0 such that
[0kt || Lo (s1) < 10Ul Lo (zy < Cs MOkt || Lo (s1) < C-

Moreover, since the maps E; and E;; are uniformly continuous on the radius ¢/2
disk tangent bundle O C T'M in which £ and 7 take their values, there exists a
constant ¢; > 0 such that

05(€ = n) = ViVi (€ — )
< (a1C? +¢1C) € — 1
+2C | By (ug, £) ™ B (g, ) Vi€ — Ea(ug,n) ™" Eay (g, 1) Vin|
+ | B2 (uo, )~ 'gradV(exp, €) — Ex(uq,n)” ' gradV(exp,, n)|
+ | B2 (tg, &) Eaa(ug, &) (Vi€ Vi€) — Ea(ug,n) ™" Bz (g, ) (Vin, Vin) |

pointwise for (s,t) € Z. It remains to estimate the last three terms in the sum.
First we estimate term three. Use linearity and the symmetry property (52) of
FE55 to obtain the first identity in the pointwise estimate

| B (uo, &) Eaa (g, £) (Vi€, Vi) — Ea(uq, )~ Eaa(us,n) (Vin, Vin)|
= |Ea(ug, &)~ Bz (uq, §) (Vi€ — Vi, Vi€)
+ By (ug,n) " Ess(ug,n) (Vi€ — Vi, Vin)
+ (Ba2(ug, &) " Eao(ug, &) — Ea(ug,n) " Eas(uq,n)) (Vi€, Vin)|
< ||E2’1E22||Loc(o) ([IVi€ll oo + IVinll o) [V (E = m)
+ 1 [|Vi€ll oo Vil o 1€ — 7]
< V(€= m)]+ p2 [€ =]
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where p11 = 2¢22C(1 + ¢3), p2 = c1622C?(1 + ¢2)?, and the constant co > 0 is
chosen sufficiently large such that for j = 0,1 we have

-1 -1 -1
1Bl Lo 0y + | 2 HL°¢((’)) + |2 E22HL°°(O) + (| B E21HL°°(O) < o2
Moreover, we used that by the first identity in (51)
Vi€ = B (uq, &)™ (Oyu — Er(u,, €)dsu,) -

Hence ||Vi€]|oo < c2C(1+ ¢2) and similarly for Vin. Next we estimate term one.
Replace V¢ by Vi€ — Vin + Vin, then similarly as above we obtain that

2C | Ex(ug, &) Eai (o, £) Vi€ — Ba(ug, 1) " Ea1 (ue, n)Vin|
< 262C [V4(€ = )| + 2c1¢2C%(1 + e2) € — 1]

pointwise for (s,t) € Z. Next rewrite term two setting X := n— ¢ and replacing
7 accordingly to obtain pointwise at (s,t) € Z the identity

E2 (uov g)ilgrad)}(expu,7 6) - E2 (uoa 5 + X)ilgradv(expu(, 6 + X)
=: f(X)

= F(0) + - F(rX)

d
= (Ez(um &+ TX)_lgradV(expug £+ TX))

for some 7 € [0,1]. Since f(0) = 0, this implies that
(X)) < HEz_lEzzHLoo(o) | X1 - HE2_1HL00(O) |grad V(exp,,, (£ + 7X))|
+ ||E271||Loo(0) |VTgradV(expu6(f + TX))’
< ACo1X| + B0 (1X]+ X, 1))

pointwise at (s,t) € Z. Here Cp and C; denote the constants in axiom (VO0)
and (V1), respectively. To obtain the final step we applied the first estimate
in axiom (V1) to the curve 7+ exp,, (&s + 7X,) in the loop space LM. Now
replace X by n — &.

Putting things together we have proved that due to compactness of the
domain Z there exists a positive constant yu = u(Z, g) such that for every s € T

1€ (s) = AC(s) Il < (IS()| + [IVEC(s)]) -
Here the norm is in L?(S*, u,*TM). Now by integration by parts
IVeCl” = (%, Vi) = —(AC.¢) < [{AC. Q)1
Hence (99) is satisfied and this concludes the proof of theorem 6.3. O

In the proof of the unstable manifold theorem 8.1 we use backward unique
continuation for the nonlinear heat equation.
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Theorem 6.4 (Forward and backward unique continuation). Fiz a perturbation
V: LM — R that satisfies (V0)—(V1).

(F) Let u and v be smooth solutions of the heat equation (6) defined on the
forward halfcylinder [0,00) x SY. If u and v agree along the loop at s = 0,
then v = v.

(B) Let u and v be smooth solutions of the heat equation (6) defined on the
backward halfcylinder (—oo, 0] x S*. Assume further that
sup Sy (u(s,-)) < co, sup Sy (v(s,")) < co,
$E€(—00,0] s€(—00,0]
for some constant co > 0. Then the following is true. If u and v agree
along the loop at s =0, then u = v.

Proof. The idea is the same as in the proof of theorem 6.3, namely to decompose
the halfcylinder into small cylinders of width § and then show u = v on each
piece (by the method developed in the first step of the proof of theorem 6.3).
The only additional problem is noncompactness of the domain. One way to deal
with this is to choose the same width for each piece (in order to arrive at any
given time s in finitely many steps). Here we need uniform bounds for |0su| and
|0sv|. Once we have these we can define 0 again by (102). Check the proof of
theorem 6.3 to see that the only further ingredients in proving v = v on each
small cylinder are uniform bounds for the first two ¢-derivatives of v and of v.
Hence to complete the proof it remains to show that

10sullo + 10rull o + [Mirullo + 1050l + 100l + [ViOev]l o < C

for some constant C' > 0.
ad (F) Let Cy be the constant in axiom (V0) and observe that Sy > —Cj,.
Now by theorem 4.9 with constant C7, more precisely, by checking its proof

0,u(s, t)]> < C1Ejs—1,4(u)

=C1 (Sy(us—1) — Sy(us))
< C1 (Sv(uo) + Co)

for (s,t) € [1,00) x S'. In the second and the last step we used that u is a
negative gradient flow line and the action decreases along u. Note that the
proof of theorem 4.9 shows that the estimate at a point depends on its past.
This is why we get the above estimate only on [1, 00) x S'. However, the missing
part [0,1] x S1 is compact and u is smooth. Hence [|0su|/o < C and

INidhull, < 00ull, + leradV(w)ll, < C + Co.

Here we used the heat equation (6) and axiom (V0) with constant Cy. It follows
similarly by (checking the proof of) theorem 4.5 that |Oyu(s,t)| is uniformly
bounded on [1,00) x S*. The corresponding estimates for v are analoguous.
ad (B) The proof of the L™ estimates follows the same steps as in (F). We
even get all estimates right away on the whole backward halfcylinder, because
this halfcylinder contains the past of each of its points. O
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7 Transversality

In section 7.1 we construct a separable Banach space Y of abstract perturba-
tions satisfying axioms (V0)—(V3). In section 7.2 we fix a perturbation V such
that (V0)—(V3) hold and Sy is Morse. Then we choose a closed L? neighborhood
U of the critical points of the function Sy and — given a regular value a — we
define a separable Banach manifold O% = O*(V, U) of admissible perturbations
v. They have the property that their support lies in the sublevel set £*M and is
disjoint to U. Furthermore, the functions Sy and Sy, do have the same critical
points on the whole loop space LM and their sublevel sets with respect to a
coincide. For such a triple (V, a,U) we prove in section 7.3 that there is a resid-
ual subset Of,, C O of regular perturbations v. They have the property that
Sy4v is Morse-Smale below level a and this proves theorem 1.13. The crucial
step is to prove proposition 7.5 on surjectivity of the universal section F. Here
unique continuation for the linear heat equation enters. A further key ingredi-
ent in the no return’ part of the proof is the (negative) gradient flow property
which implies that the functional is strictly decreasing along nonconstant heat
flow solutions.

7.1 The universal Banach space of perturbations
We fix, once and for all, the following data.

a) A dense sequence (z;),  in LM = C>(S*, M).

b) For every x; a dense sequence (nij)jeN in C*°(SY,2:TM).

c) A smooth cutoff function p : R — [0, 1] such that p = 1 on [-1,1] and
p = 0 outside [—4,4] and such that ||p'[|oc < 1. Then set py/(r) = p(rk?)
for k € N (Figure 1).

Moreover, let ¢+ > 0 denote the injectivity radius of the closed Riemannian man-
ifold M and fix a smooth cutoff function 3 such that 8 =1 on [—(:/2)?, (¢/2)?]
and 3 = 1 outside [—:2,:?] (Figure 2).

Py O)=ptk?) B

14 14
\ r=[1l5 \ r=|
0

K2 (2K 0 (V27 2

Figure 1: The cutoff function p; Figure 2: The cutoff function 3

Then for any choice of i, j,k € N there is a smooth function on the loop space
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given by

1
Vi) = Vign(o) = puge (o = aillz) [ Vilea®)a (o
0
where V¥ is the smooth function on S' x M defined by

V(1) = {§(|£é<t>|2) (G00) 650l <

Here the vector §é(t) is determined by the identity

q= expzi(t) f;(t)

whenever the Riemannian distance between g and x;(¢) is less than ¢. To simplify
notation we fixed a bijection ¢ : N> — Ny. Observe that the support of V;jy, is
contained in the L? ball of radius 2/k about x;. Each function V, : LM — R is
uniformly continuous with respect to the C° topology and satisfies (V0)—(V3).
This follows by compactness of M, smoothness of the potential V', and by the
identity

(gradV(u), Osu) ;2 = %V(u)

=29/ (- aoll) ( 1 Vilu(o, )t ) (u = an,Dua)
0 (llu = oll3) (VY (w), 0)

which determines gradV. Here R — LM : s — u(s, ) is any smooth map.

Given Vy, we fix a constant C{ > 1 which is greater than its constant of
uniform continuity and for which (V0) holds true. Then we fix a constant
Cél > Cg for which both estimates in (V1) hold true and a constant 042 > C}
to cover the three estimates of (V2). Furthermore, for every integer ¢ > 3, we
choose a constant C} > Cz_l that covers all estimates in (V3) with &' + ¢ =
(here k" and ¢’ denote the integers k and ¢ that appear in (V3)). To summarize,
for each integer £ > 0 we have fixed a sequence of constants

1<CP<C}<..<Cf<.. VLEN,. (105)
The universal space of perturbations is the normed linear space
Y = {’U)\ = ZA@V@ ‘ A= (M) CRand |jvy] := Z|)\g|C’f < oo} . (106)
£=0 £=0

Proposition 7.1. The universal spaceY of perturbations is a separable Banach
space and every vy €Y satisfies the axioms (V0)—(V3).

93



Proof. The map vy — (A\C§)sen, provides an isomorphism from Y to the sepa-
rable Banach space ¢! of absolutely summable real sequences. This proves that
Y is a separable Banach space. That every element vy = > AV of Y satis-
fies (V0)—(V3) follows readily from the corresponding property of the generators
V;. To explain the idea we give the proof of the second estimate in (V2), namely

|V, Vsgraduy (u |<Z|)\g |V, VsgradVe(u)|
=0

< <|A0| Co+IMICT+ ) I c,?) f(u)

=2

< (ol G + M1 CF + luall) £(u)

for every smooth map R — LM : s + u(s,-) and every (s,t) € R x S*. We
abbreviated f(u) = (|Vi0su| + (1 + |Opu])(|0su| + ||Osul|r1)). Step two uses the
second estimate in (V2) for each V; with constant C7. Step three follows from
Ck < Cf whenever £ > k, see (105). The remaining estimates in (V0)—(V3)
follow by the same argument. Continuity of vy with respect to the C° topology
follows similarly using uniform continuity of the functions V. 0

7.2 Admissible perturbations

Throughout we fix a perturbation V that satisfies (V0)—(V3) and such that
Sy : LM — R is Morse. The idea to prove the transversality theorem 1.13 is
to perturb Sy outside some neigborhood U of its critical points in such a way
that no new critical points arise. To achieve this we fix for every critical point
z a closed L? neighborhood U, such that U, N U, = @) whenever = # y. This is
possible, because on any sublevel set there are only finitely many critical points
(Sy is Morse and satisfies the Palais-Smale condition; see e.g. [W02, app. A]).
Set
U=UWV):= |J U
zeP (V)

and consider the Banach space of perturbations Y given by (106). We are
interested in the subset of those perturbations supported away from U, namely

Y(V,U):—{UA—Z)%VEGY ’suppVgﬂU7é(Z) = /\2_0}.
(=0

Lemma 7.2. Y(V,U) is a closed subspace of the separable Banach space Y .

Proof. Let a, 8 € R and let vy and v5 be elements of Y'(V,U). By definition of

Y (V,U) the following is true for every £ € No. If suppV, N U # 0, then Ay =0
and A\, = 0. Hence a\; + S\ = 0 and therefore avy + Bus € Y(V,U). To see
that the subspace Y (V,U) is closed let vi = >~ A)V; be a sequence in Y (V,U)
which converges to some element vy = > AV, of Y. This means that )\} oy
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as i — oo, for every £. Now assume suppV, N U # 0. It follows that \; = 0,
because v§ € Y(V,U), and this is true for all i. Hence the limit )\, is zero and
therefore vy € Y(V,U). O

Given a constant b, we denote by ¢, the largest critical value of Sy, which is
smaller or equal to b; that is

cp = (V) = zen;)%z(v) Sy(x). (107)

Now we consider those perturbations supported in {Sy < ¢} but not in U,
namely

Y'W,U) == {Z AVe e YV, U) | suppVeN{Sy >} #0 = N = 0} .
=0

Lemma 7.3. Y*(V,U) is a closed subspace of the separable Banach space Y .
Proof. Same arguments as in proof of lemma 7.2. O

Now fix a regular value a of Sy and consider the positive constant given by

— —— H a —
ke = ka(V,U) := ze,clzljfw\U |lgradSy(z)|, >0, L*M ={Sy <a}.
To prove the strict inequality assume by contradiction that x, = 0. Then by
Palais-Smale there exists a sequence (z;) C LM \ U converging in the W12
and therefore in the L? topology to a critical point « € £L*M. Hence z € U and
U is a neighborhood of z, both by definition of U. But this contradicts the fact
that xj ¢ U for every k € N.

Our next step is to avoid creating new critical points outside U by admitting
only perturbations supported in £2M \ U with sufficiently small L? gradient.
Simultaneously we achieve that the sublevel set {Sy < a} will not change under
these perturbations. More precisely, the set of admissible perturbations is given
by the open ball of radius

1
rq =r,(V,U) = imin{/@a,a —cat >0
in the Banach space Y¢(V,U), namely
0 =0'W,U) :={vy € Y*WV,U) : |Jual| < 74} (108)

This is a separable Banach manifold by lemma 7.3. The following lemma asserts
that Sy and Sy4,, have the same sublevel sets with respect to a and the same
critical points on the whole loop space, whenever vy € O%. This proves the first
part of theorem 1.13.

Lemma 7.4. For V, U, and a as above the following is true. If vy € O%, then

PV)=PV+wv), {Sv <a}={Sv4u, <a}.
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Proof. Fix a perturbation vy € O® To prove the first assertion of the lemma
we show that on the set U = U(V) the functionals Sy and Sy, coincide and
that outside U they have no critical points at all. To see this observe that
Sy4vy, = Sy — vy and that vy lies in Y*(V,U). In particular, the support of vy
is disjoint to U and therefore Sy4,, = Sy on U. Now recall that by definition
of U there are no critical points of Sy outside U. Moreover, since the support
of vy is contained in £*M \ U, it remains to prove that the perturbed functional
Sy 4v, does not admit any critical point on £*M \ U. Assume by contradiction
that it does admit a critical point = € L*M \ U. Then

0 = gradSy 4, (z) = gradSy (z) — gradva(z).

Hence ||gradvy(z)|l2 = |lgradSy(x)|l2 > ke by definition of x,. On the other
hand, since vy = > AV it follows that

|lgradvy (z)||, < Z |Ael [lgradVe(@)]]

=0
o0
<> |alC?
=0
K
< |11)\H < 7(1.

Here we used ||l < ||/|oo, axiom (VO) for V, and the fact that CY < Cf
by (105). The last line is by definition of the norm and O%.

We prove the second assertion of the lemma. First we prove the inclusion D.
Tt is easy to see that Sy, () < a implies Sy (z) < a. Assume by contradiction
that Sy(xz) > a, then vy(x) = 0, because suppvy C L°M. Hence Sy(x) =
Sy(@) — vaA(2) = Sy, (7) < @
To prove the inclusion C assume that Sy(z) < a. Now there are two cases,
namely Sy(x) > ¢, and Sp(z) < c¢,. In the first case vy(z) = 0, because
supp vy C {Sy < ¢}, and therefore Sy 1, () = Sy(x) —vr(z) = Sy(z) < a. In
the second case observe that

oa(@)] < Y AVe(@)] < Y0 Il CF <D el CF = Jluall < a = ca.
£=0 £=0 £=0

Here we used axiom (VO0) for V, the fact that C9 < Cf by (105), the definition
of the norm in (106) and the assumption that vy € O Hence Syt (x) =
Sy(z) —va(x) < ¢q + |va(x)] < a. This concludes the proof of lemma 7.4. O

7.3 Surjectivity

Proof of theorem 1.13. Assume that the perturbation V satisfies (V0)—(V3) and
the function Sy : LM — R is Morse. Fix a neighborhood U of the critical points
of Sy as in the previous section and a regular value a. For O* = O%(V, U) given
by (108) the first part of theorem 1.13 is true by lemma 7.4. To prove the second
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part fix in addition two distinct critical points z,y € P%(V) and a constant
p > 2. We denote by B}E:g the smooth Banach manifold of cylinders between x
and y defined near (78) in section 5. This manifold is separable and admits a
countable atlas. For O = O*(V,U) given by (108) consider the smooth Banach
space bundle
EP — Byh x O°

whose fibre over (u,v)) are the LP vector fields along u. The formula

F(u,vx) = 0su — Vioyu — grad (Y + vy) (u) (109)
defines a smooth section of this bundle. Its zero set

Z = Z(z,y,a) = F1(0)

is called the universal moduli space. It does not depend on p > 2, since all
solutions of the heat equation (6) are smooth by theorem 1.5. We claim that
zero is a regular value of F. This means, by definition, that dF(u,vy) is onto
and ker dF(u,vy) admits a topological complement, whenever F(u,vy) = 0.
Surjectivity is the content of proposition 7.5 below and existence of a topological
complement follows (see e.g. [W02, prop. 3.3]) from surjectivity and the fact that
by theorem 1.9 and theorem 1.8 the operator D, is Fredholm. Hence Z is a
smooth Banach manifold by the implicit function theorem. Now consider the
projection onto the second factor

T Z— O%

By standard Thom-Smale transversality theory (see e.g. [MS04, lemma A.3.6])
7 is a smooth Fredholm map whose index is given by the Fredholm index of D,,.
This index is equal to the difference of the Morse indices of x and y again by
theorem 1.9. Since Z is separable and admits a countable atlas, we can apply
the Sard-Smale theorem [Sm73] to countably many coordinate representations
of 7. It follows that the set of regular values of 7 is residual in O®. We denote
this set by 0% (z,y) = 0%, (z,y; V,U) and observe that

reg reg
Oreg(,y) = {vr € O | D, onto Vu € M(z,y;V + )}
again by standard transversality theory; see e.g. [W02, prop. 3.4]. Then
Ofeg = OtV U) =[] Ofeyl@,y)
z,yeP+(V)

is a residual subset of 0%, since it consists of a finite intersection of residual
subsets. This proves theorem 1.13 up to proposition 7.5. O

Proposition 7.5 (Surjectivity). Let V, U, a, x, y, and p > 2 be as in the proof
of theorem 1.18 and consider the section F given by (109). Then the following
is true. The linearization

dF (u,vy) : WP x YOV, U) — LP

is onto at every zero (u,vy) of F.
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Proof. Fix ¢ > 1 such that 1/p+ 1/q = 1. By the regularity theorem 1.5 the
map u is smooth and by theorem 1.8 on exponential decay all derivatives of Jsu
are bounded. Now the linearized operator is given by

dF (u,vy) (€,V) = dFy, (u) € + dFu(va) V
= D,¢ — gradV(u)

where F,, (u) := F(u,vy) =: Fy(vy). By theorem 1.8 the Fredholm theorem 1.9
applies and shows that the operator D, is Fredholm. Moreover, the second
operator

YV, U) = LP : Vs —gradV(u)

is bounded (for each V, use the last condition in (V0) with constant C < Cf).
Hence the range of dF(u,v)) is closed by standard arguments; see e.g. [W02,
proposition 3.3]. It remains to prove that it is dense. We use that density of
the range is equivalent to triviality of its annihilator: By definition this means
that, given n € L2, then

(n,Du&) =0,  VEe WP, (110)

and . R
(n, gradV(u)) = 0, YV eve*w,U), (111)

imply that n = 0.

Assume by contradiction that n € L2 satisfies (110) and n # 0. In five
steps we derive a contradiction to (111). Steps 1-3 are preparatory, in step 4 we
construct a model perturbation V, violating (111) and in step 5 we approximate
V. by the fundamental perturbations V;j; of the form (104). To start with
observe that n is smooth by (110) and theorem 3.1. Furthermore, integration
by parts shows that D;n = 0 pointwise. Throughout we use the notation
ns(t) = n(s,t), hence ns € Q(ST, urTM).

STEP 1. (UNIQUE CONTINUATION) 75 # 0 and Osus # 0 for every s € R.
Because 7 is smooth, nonzero, and D};n = 0, proposition 6.2 on unique contin-
uation shows that s # 0 for every s € R. Next observe that dsu is smooth,
because u is smooth, and that 0 = d%]:vx (u) = DyOsu. Since u connects dif-
ferent critical points, the derivative dsu cannot vanish everywhere on R x S*.
Hence £(s) := Osus # 0 for every s € R by proposition 6.2. This proves step 1.
STEP 2. (SLICEWISE ORTHOGONAL) (ns,0sus) = 0 for every s € R.

Straightforward calculation shows that

d
7(”57asus> = <V57]S,65U3> + <77$7 Vsasus>

ds
= <*Vtvt7]s - R(nsa atus)atus - HV—H))\ (us)nsa asus>
+ (s, ViViOsus — R(Osus, Opus) Opus — Hy o, (Us)Osus)
=0.
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In the second equality we replaced V7, according to the identity D)n = 0
and (58) and V;dsus according to D,dsu = 0 and (57). The last step is by
integration by parts, symmetry of the Hessian H, and the first Bianchi identity
for the curvature operator R. It follows that (ns, dsus) is constant in s. Now
this constant, say ¢, must be zero since

/ cds = / (ns, Osus) ds = (n, Osu)

— 00 — 00

and the inner product on the right hand side is finite, because n € £ and
Osu € LP where 1/p+ 1/q = 1. This proves step 2.

Observe that 1, and dsus are linearly independent for every s € R as a conse-
quence of step 1 and step 2.

STEP 3. (NO RETURN) Assume the loop us, is different from the asymptotic
limits x and y and let § > 0. Then there exists € > 0 such that for every s € R

lus —usyll, <38 = s € (sog—0,50 +9).

In words, once s leaves a given §-interval about sq the loops ug cannot return to
some L? e-neighborhood of s, .

Key ingredients in the proof are smoothness of u, existence of asymptotic limits,
and the gradient flow property. Recall the footnote in remark 1.3 concerning
the difference of loops us — us,. Now assume by contradiction that there is
a sequence of positive reals ¢; — 0 and a sequence of reals s; which satisfy
lus, — usy|l2 < 3e; and s; ¢ (so — 9, so + 9). In particular, it follows that
L? .

Us, — Ug, a8 1 — 00. (112)
Assume first that the sequence s; is unbounded. Hence we can choose a subse-
quence, without changing notation, such that s; converges to +o0o0 or —oco. In
either case ug, converges to one of the critical points x or y and the convergence
is in C°(S') by theorem 1.8. By (112) and uniqueness of limits it follows that
us, equals one of the critical points x,y, but this contradicts our assumption.
Assume now that the sequence s; is bounded. Then we can choose a sub-
sequence, without changing notation, such that s; converges to some element
s1 ¢ (so — 8,80+ 0). Since u is smooth, it follows that us, converges to us, in
C°(S1). Again by uniqueness of limits us, = ug,. On the other hand, the action
functional is strictly decreasing along nonconstant negative gradient flow lines.
Therefore s; = sg and this contradiction concludes the proof of step 3.

STEP 4. There exists a time so such that Sy(us,) < cq, where ¢, is the largest
critical value below a. Furthermore there exist a positive constant € and a smooth
function Vo : LM — R supported in the L? ball of radius 2¢ about us, such that

VO(USO) = 01 dVo (uso)nSo = ||7750 Hg ) (gradVo(u), 77> 75 0.
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Recall that the asymptotic limits = and y are different and the closed L? neigh-
borhoods U, and U, were chosen in the first paragraph of section 7 to be disjoint.
Moreover, both  and y are not above level ¢, and Sy (us) is strictly decreasing
in s. Therefore there exists a time sg such that ug, lies not in U and strictly
below level c,.

Observe that the graph ¢ — (¢, us, (t)) of the loop us, is embedded in S x M.
Now we define a smooth function V on S! x M supported near the graph
as follows. Denote by ¢ > 0 the injectivity radius of the closed Riemannian
manifold M. Pick a smooth cutoff function 5 : R — [0, 1] such that 3 =1 on
[—(¢/2)2,(/2)?] and 8 = 0 outside [—:2,:?]; see Figure 2. Then define

B(1& ) (&(1)nse (1)) [&@®)] <,

113
0 , else, (113)

Vi(g) ==V (t,q) := {

where the vector £,(t) is determined by the identity
4 = €XPy, () &q(t)

whenever the Riemannian distance between ¢ and wus,(¢) is less than ¢. Note
that the function V' vanishes on the graph of the loop wus,.
Since all maps involved are smooth, we can choose a constant § > 0 suffi-

ciently small such that for every s € (sg — d, 5o + ) it holds
i) deo(us, tsy) = €5l < %L, where & is uniquely determined by the iden-
tity us = exp,,, ¢, pointwise for every t € S*,

11) <E2(u307gs)71nsa7780> > %p“ov where Ho = ”7780”3 > 07

””57“50

1 < 2 < 3y, where py = [|Ous, ||, > 0.

=

iii) s

Let s € (sg — d, 80 + 9), then

dVi(us)ns = 4| _ Vi(exp,, rns)
=26/ (|&1%) (sr Ba(tisg, ) ns) - (€6, ms0)
+ B(I&1?) (Ba(usg, &) s, Ms0)
= (B2 (usy; &) s, sy

(114)

pointwise for every t € S*. The final step uses i) and the definition of 3. Note
that dV;(us,) ns, = |1s,|* pointwise.

Integrating V' along a loop defines a smooth function on the loop space which
vanishes on us,. Next we cut it off with respect to the L? distance. Fix a smooth
cutoff function p : R — [0,1] such that p = 1 on [—1,1], p = 0 outside [—4,4],
and ||p'lcc < 1. Then, for the constant ¢ fixed above, choose € > 0 according
to step 3 (No Return) and set p(r) = p(r/e?); see Figure 1 with e = 1/k. Note
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that ||pL]l < e72. Observe that we can choose € > 0 smaller and the assertion
of step 3 remains true. Now define a smooth function on LM by

1
2
(@)= pe (o= ug ) [ Vieao)a
where V' is given by (113). The function V, vanishes on the loop us, and satisfies
dVo(us)ns = % |r=0V0(expuS T0s)

1
— 90! ([[ths — g 12) {2t — g 70) / Vi(ua (1)) dt
+ e (s — s 12) / AV, (s (1)) 1) d.

Hence dVO(uSU)nso = ||7750||§'
To prove the final assertion of step 4 observe that s ¢ (sg —d, so + d) implies
lus — us,ll2 > 3e, by step 3, and therefore us ¢ supp Vy. It follows that

80+6
(grad Vo(u),n) = / dVo(us)ns ds

80—5

so+o / 2
= / 2,05(”“5 _USOH2)<U’S _U507775><§S77750>d3 (115)

S0

So+5 9 1
+/ s PE(HUS _USOH2)<E2(USOa€s)_ Nss Nsy) ds.

S0

We shall estimate the two terms in the sum separately. Let so > sy be such
that [Jus, —us,|l2 = € and |Jus —us, ||2 < € whenever s € (s, s2). In other words
sy is the forward exit time of u, with respect to the L? ball of radius £ about
Us,. Let s1 < sg be the corresponding backward exit time; see Figure 3. Then,
by ii) and p. > 0, it holds that

So+6
2 _
/ (s = ) (i €0) ) s
So—

S2
2/ 1~@ds:@(82—80+30—51)
& 2 2

Ho )
> 37 (HU52 - USOH2 + Huso - u81H2) =3 &
H1

Here the second inequality uses iii). To estimate the other term in (115) let oy
be the time of first entry into the L? ball of radius 2¢ starting from sq — ¢ and
let o5 be the corresponding time when time runs backwards and we start from
so + 9; see Figure 3. Then
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Figure 3: Exit times s1, s2 and entry times o1, 09

so+0
2
/ 20 = ) s = ) ) s

S0

o2
> =2 [ ot e = ey (€l ds
o1 o
> —261026_2/ (s — s0)*ds
o1
28102 5 2618285 3
= — 552 (0'2—80+80—O'1) Z— 5#?

It remains to explain the second and the final inequality. In the final one we
use that by iii) there is the estimate oo — so < 2||uyy — us,||l2/11 = 4¢/p1 and
similarly for sg — o1. The second inequality is based on the geometric fact that
Osu and 7 are slicewise orthogonal by step 2: Let f(s) = (us — us,,ns) and
h(S) = <€S7nso>7 then f(SO) = h(SO) =0 and

f/(s) = <8susa 7]5> + <us - usoa vsns> = <Us - usoa V57]s>
h/(S) = <E2(usoa§s)_1asusanso>-

Hence f'(sg) = h'(sop) = 0 and there exist constants ¢; = c¢1(f) > 0 and
co = co(h) > 0 depending continuously on § such that for every s € (so—9, so+9)

[f($) < erls —s0)*, |h(s)] < cals — s0)*.

This proves the second inequality. Now choose € > 0 sufficiently small such
that €2 < pouj/cica. This implies that (grad Vo(u),n) > 0. Choosing ¢ again
smaller we may assume without loss of generality that the L? ball of radius 3¢
about us, is disjoint from U and contained in {Sy < ¢,}, that 3¢ is smaller than
the injectivity radius ¢ of M, and that ¢ = 1/k for some integer k. This proves
step 4.

STEP 5. Guen k as in the line above, there exist positive integers i and j such
that the function V := Viji, given by (104) is element of Y*(V,U) and satisfies

(grad V;jx(u),n) > 0.
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This contradicts (111) and thereby proves proposition 7.5.

Denote e = 1/k and let so be the time determined in step 4. In section 7.1 we
have fixed a dense sequence (z;) in C°°(S!, M) and for each i a dense sequence
(n) in C°°(S1, 23T M). Choose a subsequence, still denoted by (z;), such that

Ti — U, as v — 00.

Now we may assume without loss of generality that every z; lies in B, (us,) the
L? ball of radius £ about Us, - Hence Ba(w;) C Bsc(us,). Let & be defined
by the identity us, = exp,, § pointwise for every t € S L. Choose a diagonal
subsequence, denoted by (n*), such that

D, ( io)n“ — Nso as ¢ — 00.

Here ®@,(€) is parallel transport from z to exp, £ along 7 — exp, 7€ pointwise
for every t € S1. Let (Viir)ien be the corresponding sequence of functions where
each Vi1, is given by (104). The sequence is contained in Y*(V,U), because

suppViix C Bayi (i) = Bac(2;) C Bae(us,) C {Sy < ca} (116)

and Bsc(us,) NU = 0. This uses our choice of € right before step 5.

Now recall that the constant 6 > 0 has been chosen in the proof of step 4
in order to exclude any return of the trajectory s — us to the ball Bs.(us,)
once s has left the interval (sg — J, so + ). Together with (116) this shows that
Viik(us) = 0, whenever s ¢ (sg — d, 89 + d). Therefore

(grad Vig(u), n) = / S 20 e (s = ill3) (s — i ms) (€0, 0™) ds

S0

+ / ol = ) Bala ) ) ds

S0

where £! is determined by ug = exp,, &L Now the right hand side converges, as
i — 00, to the right hand side of (115), which equals (grad Vy(u),n) > 0. This
proves step 5 and proposition 7.5. O
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8 Heat flow homology

In section 8.1 we define the unstable manifold of a critical point = of the action
functional Sy : LM — R as the set of endpoints at time zero of all backward
halfcylinders solving the heat equation (6) and emanating from x at —oco. The
main result is theorem 8.1 saying that if x is nondegenerate, then this is a
submanifold of the loop space and its dimension equals the Morse index of z.
Section 8.2 puts together the results proved so far to construct the Morse
complex for the negative L? gradient of the action functional on the loop space.

8.1 The unstable manifold theorem

Fix a perturbation V : LM — R that satisfies (V0)—(V3) and let Z~ be the
backward halfcylinder (—oc,0] x S*. Given a critical point = of the action
functional Sy the moduli space

M~ (V) (117)

is, by definition, the set of all smooth solutions v~ : Z— — M of the heat
equation (6) such that u=(s,t) — x(t) as s — —oo, uniformly in ¢t € S*. Note
that the moduli space is not empty, since it contains the stationary solution
u~(s,t) = x(t). The unstable manifold of x is defined by

W@ V) ={u"(0,-) [u~ € M~ (z;V)}.

Theorem 8.1. Let V : LM — R be a perturbation that satisfies (V0)—(V3). If
x is a nondegenerate critical point of the action functional Sy, then the unstable
manifold W"(x;V) is a smooth contractible embedded submanifold of the loop
space and its dimension is equal to the Morse index of x.

The idea to prove theorem 8.1 is to first show in proposition 8.2 that non-
degeneracy of x implies that the moduli space M~ (z;V) is a smooth manifold
of the desired dimension. A crucial ingredient is proposition 8.3 on surjectivity
of the operator D,- : WY'P — LP whenever u~ € M~ (z;V) and p > 2. Here
the operator D,- given by (57) arises by linearizing the heat equation at the
backward trajectory uw~. A further key result to prove theorem 8.1 is unique
continuation for the linear and the nonlinear heat equation, proposition 6.2 and
theorem 6.4. Namely, unique continuation implies that the evaluation map

evg: M~ (x;V) = LM, u” —u (0,-)
is an injective immersion. It is even an embedding by the gradient flow property.

Proposition 8.2 (Moduli space). Let V : LM — R be a perturbation sat-
isfying (V0)—(V3) and suppose that x is a nondegenerate critical point of Sy.
Then the moduli space M~ (x; V) is a smooth contractible manifold of dimension
indy(z). Its tangent space at u™ is equal to the vector space X~ given by (118).
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Proposition 8.3 (Surjectivity). Fiz a constantp > 2, a perturbationV that sat-
isfies (V0)—(V3), and a nondegenerate critical point x of Sy. Ifu™ € M~ (z;V),
then the operator D,— : WP — LP is onto and its kernel is given by

X = {g €C®(Z ,u""TM) | Dy-£=0,3¢,6 >0Vs<0:
(118)
€]l + Iulloe + VB0 g + Vel < ce™ ).

Moreover, the dimension of X~ is equal to the Morse index of x.

Proposition 8.3 is in fact a corollary of theorem 8.5 below which asserts sur-
jectivity in the special case of a stationary solution u~(s,t) = z(t), where x is
a nondegenerate critical point of Sy,. The idea is that if a solution u™ is nearby
the stationary solution z in the W' topology, then the corresponding lineariza-
tions D,- and D, are close in the operator norm topology. But surjectivity is
an open condition with respect to the norm topology. The case of a general
solution reduces to the nearby case by shifting the s-variable.

Remark 8.4. Abbreviate H = L?(S',R") and W = W2?2(S1, R") and consider
the operator
d2
Ag = R S:H—H

with dense domain W. Here we assume that S : W — H is a symmetric and
compact linear operator. Under these assumptions it is well known (see (ii) in
section 3.4) that Ag is self-adjoint and that its Morse index ind(Ag), that is the
dimension of the negative eigenspace E~ of Ag, is finite.

Theorem 8.5. Let S and Ag be as in remark 8.4. Fix p > 2 and assume that
the linear operator S : WHP(S1 R") — LP(SY R") is bounded with bound cg.
Then the following is true. If Ag is injective, then the operator

D=0, — 0,0, — S:W"(Z~ R") — LP(Z~,R")
is onto. In the case p =2 the map E~ — ker D, v — e 450 is an isomorpism.

Proof of theorem 8.5. The proof takes four steps. Step 1 proves the theorem for
p = 2. The proof by Salamon [S99, lemma 2.4 step 1] of the corresponding result
in Floer theory carries over with minor but important modifications. These are
due to the fact that our domain Z~ does have a boundary. The proof uses
the theory of semigroups. We recall the details for convenience of the reader.
The generalization of surjectivity in step 4 to p > 2 follows an argument due to
Donaldson [Do02]. Tt uses the case p = 2 and the estimates provided by step 2
and step 3. Again we follow the presentation in [S99, lemma 2.4 steps 2—4]
up to minor but subtle modifications. One subtlety is related to the parabolic
estimate of step 2. Here in contrast to the elliptic case the domain needs to be
increased only towards the past. Hence the estimates of step 3 work precisely for
the backward halfcylinder. Throughout the proof, unless indicated differently,
the domain of all spaces is the backward halfcylinder Z~ and the target is R"™.
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Step 1. The theorem is true for p = 2.

The operator Ag is unbounded and self-adjoint on the Hilbert space H with
dense domain W. Denote the negative and positive eigenspaces of Ag by £~ and
ET, respectively. Note that dim E~ < oo by remark 8.4. By assumption Ag is
injective, hence zero is not an eigenvalue and there is a splitting H = E- ® E™.
Denote by P* : H — E* the orthogonal projections and set A* = Ag|g+.
The self-adjoint negative semidefinite operators A~ and —A™ generate contrac-
tion semigroups on E~ and E™T, respectively, by the Hille-Yosida theorem; see
e.g. [ReST75, sec. X.8 ex. 1]. We denote them by s — ¢4 and s — e—4"
respectively. Both are defined for s > 0. Define the map K : R — L(H) by

—e~ 4" P~ fors<0
K(s) = ’ -7
(s) {e‘“ﬁP‘*‘7 for s > 0.

This function is strongly continuous for s # 0 and satisfies
HK(S)HL‘(H) < e (119)

where § = min{—A",AT} > 0. Here A\~ denotes the largest eigenvalue of
A~ and AT the smallest eigenvalue of AT. Abbreviate R~ = (—o00,0]. For
n € L?>(R~, H) consider the operator

0
(@Qn) (5) == / K(s — 0)n(o) do.

Now the operator @ maps L?(R™, H) to the intersection of Banach spaces
WL2(R=, H) N L2(R~, W) and it is a right inverse of D. To prove the lat-
ter set £ :== @Qn. Then & = £~ + £+, where

s 0

)= [ NP0 o, (== [ eI Pio) don

Calculation shows that DEF = P*+y pointwise for every s € R™. It follows that
DQn=D¢=DE +DET =P n+ Pty=n.

Since the space W12(R~, H) N L?(R~, W) agrees with W%2  this proves that
@ is a right inverse of D. Hence @ is injective and D is onto. To calculate the
kernel of D fix £ € W'2 and set 1 := D¢. Then by straightforward calculation

(QDE) (s) = (Qn) (5) = &1 (s) + & ()
= /S d (e_(s_”)"ﬁP’Lf(U)) do — /O % (e_(s_”)AfP_§(0)> do

—0o0 do s

= P*¢(s) — e PTE(0) + PE(s)
=&(s) — e PTE(0).
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To obtain the third identity replace n(c) in £+ (s) by &' (o) + Asé (o) and use the
fact that A*P* = P*Ag. Now observe that ¢ € ker D is equivalent to D¢ €
ker @, because Q is injective. But QD¢ = 0 means that £(s) = e™*4 P~£(0)
for every s € R™. This shows that the map

E™ = ker [D: W2 — L?] 1 vy 5 e My, (120)
induces an isomorphism. Here vy, ..., vy is an orthonormal basis of F~ consist-
ing of eigenvectors of Ag with eigenvalues A1, ..., Ay and where N = ind(Ag).

Step 2. Fiz a constant p > 2. Then there is a constant ¢y = ¢1(p, cs) such that

€l -roixs) < &1 (IDEl s gxsny + 1l za-s.omsn))
for & € C>=([—3,0]x S*). Moreover, if ¢ € W2 and D¢ € LY, then € € Wllo’f.
Choose a smooth compactly supported cutoff function p : (—2,0] — [0, 1] such
that p = 1 on [—1,0] and ||0sp|lec < 2. Now apply proposition 2.13 for the
backward halfcylinder Z—, Euclidean space R™, covariant derivatives replaced
by partial derivatives, and with constant ¢ to the function p§ to obtain that

||£||W1,p([_1,0]><51) <c (2 H(as - atat)fHLp([—Q,o]xsl) + ||£||Lp([—2,o]><sl))

for every £ € C*([—2,0] x S1). To obtain the first estimate in step 3 for the
backward halfcylinder it will be crucial that the domain on the right hand side
does not extend to the future. Now write 95 — 9;0; = D + S and use that the
operator S : WHP(S1) — LP(S') is bounded to obtain that

1€llwre (—1,0x51) < C(||D§||Lp([—2,o]xsl) + (14 cs) €l o(2,0x51)

+cs ||8t§||Lp([_2,o]x51)>

for every £ € C*°([-2,0] x S1) and some constant ¢ = &(p, ¢, cs). Now integrate
the estimate in lemma 2.12 over s € [—2,0] and chose § > 0 sufficiently small in
order to throw the arising term 0;0;£ to the left hand side. It follows that

€l ropesty < E(IDENoagsty + 1€lloaopesny)  (121)

for every ¢ € C*°([-2,0] x S!) and some constant é = &(p,c,cg). It remains
to replace the LP norm of ¢ by the L? norm. Since p > 2, there is the Sobolev
inequality |¢]|zr < ¢p|€llwr2 for € € W2 see e.g. [LL97, theorem 8.5 (ii)] for
the domain R2. The first step is to replace the last term in (121) according to
the Sobolev inequality. Then use (121) with p = 2 and on increased domains to
complete the proof of the estimate in step 2 (use Holder’s inequality to estimate
the L? norm of D¢ by the LP norm).

To conclude the proof of step 2 assume & € W2, then of course ¢ € L? and
D¢ € L2 If in addition D¢ is locally LP integrable, then the estimate of step 2
which we just proved shows that & € Wllo’f .
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Step 3. Fiz a constant p > 2 and consider the norm

0 1/p
|2§P = </oo Hf(s, )”122(51) dS) .

Then there exist constants co and c3 both depending on p and cg such that the
following is true. If ¢ € WY?2 and D¢ € LP, then £ € WP and

1€

l€lwis < e (1D€ o+ [Ellay) s 1@DEly, < e IDEl -

Fix ¢ € W12 such that D¢ € LP. Then £ € Wllo’f by step 2. Moreover, the
estimate of step 2 implies that

k+1

||£||§V1,p([k7k+1]xsl) < 3[)/2*12[)0117/ (HDgnip(Sl) + ||§‘|€2(Sl)> ds

k—2

for every integer k < 0; see [S99, lemma 2.4 step 3] for details. Now take the
sum over all such k to obtain the first estimate of step 3.

Next observe that n := D¢ lies in L?(R™, H) and in LP(R~, H). Here H =
L?(S') and we used that by Holder’s inequality

[l Lzcsy < llpesy - (122)
Since 7 is in the domain L?(R~, H) of the operator @ from step 1, we obtain
QDS = Qn = K *1.
Now Young’s inequality applies to K 7, because n € LP(R™, H). Hence
[ K * 77”2;;) < HKHLl(R—,L(H)) ||77||LP(R—,H) < C| D¢l s (123)

where C' depends on the constant § in estimate (119) for the norm of K; see [S99].
The last step uses (122) again. This proves the second estimate of step 3.
It remains to prove that & € W'P. The two estimates of step 3 imply that

I€llyin < ez ((1+es) 1Dl o + 1€ = QDE L) -

To see that the right hand side is finite recall that D € LP by assumption and
&€ —QDE lies in the kernel of D : W12 — L2 by (the proof of) step 1. Moreover,
by (120) every element of this kernel is a finite sum of functions of the form
& = e~y and [|€g||2;p < 0o by calculation.

Step 4. The theorem is true for p > 2.

Fix p > 2 and set X~ := ker[D : W12 — L?]. Then the linear operator

T W = (X7 o) » £ &= QDE,
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is well defined, bounded and of finite rank, hence compact. To prove this observe
that m is well defined on the dense subset C§°(Z~) of WP, Since C§°(Z7) is
also dense in W12, step 1 shows that £ — QD¢ € X . To see that 7 is bounded
on Cg°(Z7) let £ € Cg°(Z~). Then

7€l = 11§ — QDL

by definition of 7, the triangle inequality, the estimate (122), and the second
estimate of step 3. The last inequality follows from the estimate

[1D€l|e < [[0s€l o + [[0:06€ll e + 1S€llr < callEllprs

with suitable constant ¢4 = ca(p,cg). Here we used that ||S|, < cs(||¢|l, +
|0:¢||p) by boundedness of S. Now being bounded on a dense subset the operator
7 extends to a bounded linear operator on W', The rank of r is finite, because
the dimension of its target X~ is equal to the Morse index of Ag by step 1.

To prove that D : WP — LP is onto we show first that the range is closed
and then that it is dense. By the two estimates of step 3 we have that

a.p < €N, + es (D€, < (14 czea) (€l

€llywrs < ez ((1+cs) IDEN L, + 7€l

for every £ € C§°, hence for every ¢ € W'P by density. Since 7 is compact,
the range of D is closed by the abstract closed range lemma. To prove density
of the range fix n € LP N L? and note that the subset LP N L? is dense in L7,
because it contains the dense subset C§° of L. Now by surjectivity of D in the
case p = 2 (step 1) and since 7 € L?, there exists an element ¢ € W2 such that
D¢ = 1. But then £ € WP by step 3, because DE = 1 € LP by the choice of 7.
Hence 7 is in the range of D : WP — LP. This proves theorem 8.5. O

Proof of proposition 8.3. The arguments in the proof of proposition 3.17 show
that the kernel of D,— : WP — £P is equal to X~ and X~ does not depend
on p. On the other hand, for p = 2 the dimension of the kernel is equal to the
Morse index of x by theorem 8.5. Surjectivity of D,- follows in three stages.

THE STATIONARY CASE. Consider the stationary solution u ™ (s,t) = x(t), then
D, is onto by theorem 8.5. To see this represent D, with respect to an orthonor-
mal frame along x; see section 3.4.

THE NEARBY CASE. Surjectivity is preserved under small perturbations with
respect to the operator norm. Moreover, the operator family D,- depends
continuously on u~ with respect to the W' topology (here we use p > 2).
Hence, if u= € M~ (z;V) satisfies v~ = exp,(n) and ||n|y.» is sufficiently
small, it follows that D,,- is onto.

THE GENERAL CASE. Given u € M~ (z;V) and o < 0, consider the shifted
solution u?(s,t) := u(s + o,t). Then (D,&)° = D,-£° by shift invariance of
the linear heat equation. This means that surjectivity of D, is equivalent to
surjectivity of D,-. But the latter is true by the nearby case above, because
u® converges to x in the WP topology as 0 — —oo. To see this apply theo-
rem 4.10 (B) on exponential decay to u and note that u?(0,t) = u(o,t). O
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Proof of proposition 8.2. The proof follows the same (standard) pattern as the
proof of theorem 1.10; see also the introduction to section 5. The first key
step is the definition of a Banach manifold B = BL? of backward halfcylinders
emanating from z such that B contains the moduli space M~ (z;V) whenever
p > 2. The second key step is to define a smooth map F,- between Banach
spaces as in (79). Its significance lies in the fact that its zeroes correspond
precisely to the elements of the moduli space near v~ and that dF,-(0) = D,,-.
By proposition 8.3 this operator is surjective and the dimension of its kernel
is equal to the Morse index of x. Hence M~ (x;V) is locally near u~ modeled
on ker D,- by the implicit function theorem for Banach spaces. To see that
the moduli space is a contractible manifold observe that backward time shift
provides a contraction

h: M7 (z;V) x[0,1] = M~ (z;V)
(u,r) = u(-—+/r/(1—71),")

onto the stationary solution x. This means that A is continuous and satisfies
h(u,0) = u and h(u,1) = x for every u € M~ (x; V). O

Proof of theorem 8.1. We abbreviate M~ = M~ (z;V) and W* = W"(z; V).
Recall that the moduli space M~ is a smooth manifold of dimension equal to
indy (z) by proposition 8.2 and, furthermore, by definition the unstable manifold
W is equal to the image of the evaluation map evy : M~ — LM. We use the
notation evy(u) =: ug, hence ug(t) = u(0,t). It remains to prove that evy and
its linearization are injective and that evq is a homeomorphism onto W*™.

To prove that evy is injective let u,v € M~ and assume that evy(u) = evy(v),
that is ug = vg. Hence u = v by theorem 6.4 on backward unique continuation.

We prove that the linearization d(evp), of evy at u € M~ is injective. Let
&n e TyuM~. Hence D¢ = 0 = Dyn by proposition 8.2. Now assume that
d(evo)u& = d(evp)yn. This means that { = ny. Therefore £ = n by application
of proposition 6.2 (a) on linear unique continuation to the vector field & — 7.

We prove that evg : M~ — LM is a homeomorphism onto its image. Fix
u € M~ and recall that every immersion is locally an embedding. Hence there is
an open disk D in M~ containing u such that evy|p : D — LM is an embedding.
It remains to prove that there is an open neighborhood U of uy = evyp(u) in LM
such that

UNW* =Uneuvy(D). (124)

Now there are two cases. In case one w is constant in s and therefore u = x. Here
we exploit the (negative) gradient flow property that the restricted function
Sy|ww takes on its maximum precisely at the critical point xz. Case two is
the complementary case in which u depends on s. Here we use a convergence
argument based on the compactness theorem 4.3.

CASE 1: u=x. Set ¢ = Sy(x), then a set U having the desired property (124)
is given by
U:i={c—e<S <c+e},
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where
2¢ := i S -& .
= i (Sv(@) = Svlw))
Here the compact set clD \ D is the topological boundary of the open disc D.
Note that the elements of W™ \ evo(D) have action at most ¢ — 2e.

CASE 2: u # x. Assume by contradiction that there is no U which satis-
fies (124). Then there is a sequence v € W™ \ evp(D) that converges to ug in
LM as v — oo. Note that v = evg(u”) where u¥ € M~ \ D. In particular,
each heat trajectory u” converges in backward time asymptotically to x. Thus
we obtain that
sup  Sy(ug) < Sp(x) =i ¢
s€(—00,0]

for every v. Together with the energy identity this implies that

E(u”) = Sy(z) — Sv(ug)
=c—3 Hatugniz(sw + V(ug)

<c+Cy

where Cy > 1 is the constant in axiom (V0). Adapting the proofs of the apriori
theorem 4.5 and the gradient bound theorem 4.9 to cover the case of backward
half cylinders it follows that there is a constant C' = C(¢,V) > 0 such that

10su”[l o < C,

and
[0su”]l o < CVE([u) < C(c+ Co)

for every v. Here the norms are taken on the domain (—o00,0] x S'. Adapting
also the proof of the compactness theorem 4.3 we obtain — in view of the uniform
apriori L* bounds for d;u” and Osu” just derived —the existence of a smooth
heat flow solution v : (—o0,0] x S — M and a subsequence, still denoted by
u”, such that u” converges to v in C}... In particular, this implies that ug = vg
and that J;uY converges to 0yvs, as v — oo, uniformly with all derivatives on

St and for each s. This and our earlier uniform action bound for u% show that

Sy(vs) = lim Sy(u?) <c¢

vV—00
for every s. To summarize,we have two backward flow lines v and v defined
on (—o00,0] x S along which the action is bounded from above by ¢ and which
coincide along the loop ug = vg. Hence theorem 6.4 (B) on backward unique
continuation asserts that u = v. Because u” converges to v in C}%., this means

that v¥ € D whenever v is sufficiently large. For such v we arrive at the
contradiction v” = evg(u”) € evo(D) and this proves theorem 8.1. O
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8.2 The Morse complex

Assume that the action Sy is a Morse function on the loop space. This is true
for a generic potential V € C°°(S! x M) by [W02]. Fix a regular value a of Sy
and, furthermore, for each critical point € P*(V) fix an orientation (z) of
the tangent space at x to the (finite dimensional) unstable manifold W*(x; V).
By v = v(V,a) we denote a choice of orientations for all z € P*(V). The
Morse chain groups are the Z-modules

CMj =CMR(V,v):= €P Z(x), kel

zeP*(V)
indy (z)=Fk

These modules are finitely generated and graded by the Morse index. We set
Cf = {0} whenever the direct sum is taken over the empty set. We define

N
oM? = CMy,
k=0

where N is the largest Morse index of an element of the finite set P*(V).

Set V(z) = fol Vi(x(t)) dt and note that V satisfies (V0)—(V3). Now consider
the associated set of admissible perturbations O% of V defined by (108) and
the dense subset Oy, of regular perturbations provided by theorem 1.13. (The
ambient Banach space Y given by (106) provides the metric on O*.) Now for
any v € Oy,, we have the following key facts: The functionals Sy and Sy,
coincide near their critical points and have the same sublevel set with respect
to a. Moreover, the perturbed functional Sy, is Morse-Smale below level a.
Here and throughout we sometimes denote V + v in abuse of notation by V 4 v
to emphasize that we are actually perturbing a geometric potential.

To define the Morse boundary operator @ on CM? it suffices to define it on
the set of generators P%(V') and then extend linearly. Fix a regular perturbation
v € Oy, Note that each chosen orientation (z) orients the perturbed unstable
manifold W*(x;V + v). This is because the tangent spaces at x to W*(z; V)
and W"(z; V + v) coincide (v is not supported near =) and unstable manifolds
are finite dimensional and contractible, hence orientable, by theorem 8.1. Now
given two critical points 2* of action less than a, consider the heat moduli space
M(z™,zT;V + v) of solutions u of the heat equation (6) with V replaced by
V + v and subject to the boundary condition (8). Jointly with D. Salamon we
proved in [SWO03, ch. 11] that a choice of orientations for all unstable manifolds
determines a system of coherent orientations on the heat moduli spaces in
the sense of Floer—Hofer [FH93].

From now on we assume that z& are of Morse index difference one. In this
case M(z~,27;V 4 v) is a smooth 1-dimensional manifold by theorem 1.10
and its quotient M(z~,2z";V 4 v)/R by the (free) time shift action consists
of finitely many points by proposition 1.11. For [u] € M(x~,z7;V + v)/R
time shift naturally induces an orientation of the corresponding component of
M(z~,27;V +v); compare [SW03] and note that dsu € ker D,, = det(D,,). We
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set n,, = +1, if the time shift orientation coincides with the coherent orientation,
and we set n, = —1 otherwise. One calls n, the characteristic sign of the
heat trajectory u. It depends on the orientations (z~) and (x*). Consider the
(finite) sum of characteristic signs corresponding to all heat trajectories from

x~ to x T, namely

n(x™,zT) = Z Ny

[uleM(z— ,zt;V4v)/R

If the sum runs over the empty set, we set n(z~,2%) = 0. For x € P*(V) define
the Morse boundary operator & = 8(V, a, v, v) by the (finite) sum

Ox = Z n(x,y)y.
yeP*(V)
indy (z)—indy (y)=1

Set Ox = 0, if the sum runs over the empty set.

Theorem 8.6 (Boundary operator and homology). Let V € C*°(S' x M) be
a potential such that Sy is Morse and let a be a reqular value of Sy. Take a
choice of orientations v = v(V,a) and fix a regular perturbation v € Oy, ;. Then

0 = 0(V,a,v,v) satisfies 9 o @ = 0 and Morse or heat flow homology is

defined by
ker O(V, a,v,v)
HMS (LM ="
“(EM, Sv) imo(V,a,v,v)

The right hand side is independent of v(V,a) and the regular perturbation v.

Proof. The main result of [SWO03] is that for each heat flow line u between critical
points of Morse index difference one there is precisely one Floer trajectory in
the loop space of the cotangent bundle between corresponding critical points
of the symplectic action functional; see [SW03, cor. 10.4 (ii)]. Moreover, we
proved that the characteristic sign of u coincides with the characteristic sign of
the corresponding Floer trajectory. In other words, both chain complexes are
equal (up to natural identification). Hence 9 o 9 = 0 follows immediately from
the well known analogue for the Floer boundary operator; see e.g. [F89b, S99].
(The required, but in case of our nongeometric potentials V slightly nonstandard
apriori C° estimate is provided by [SWO03, thm. 5.1] with ¢ = 1.)

The fact that heat flow homology is independent of the choice of orientations
v(V,a) and the regular perturbation v follows from the homotopy argument
which is standard in Floer theory; see again e.g. [F89b, S99]. Here it is crucial
to observe that our admissible perturbations v € O® are supported away from
the level set {Sy = a} on which the L? gradient of Sy (hence of Sy,,) is
nonvanishing and inward pointing with respect to L*M. Likewise independence
follows by theorem 1.14. O
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9 Homology of the loop space

9.1 The forward semiflow

Consider the Hilbert manifold of loops in M given by
AM = WH3(St, M).

In this section we prove that the Cauchy problem for the heat equation is solv-
able in forward time for any initial value in AM. This gives rise to a C! semiflow
v :(0,00) x AM — AM which is continuous on [0,00) x AM.

It is convenient to fix an isometric embedding of the Riemannian manifold
M into some Euclidean space RV using Nash’s theorem. We denote by P the
corresponding second fundamental form. From now on we view loops in M
as loops in RY taking values in M. Given a smooth such loop z, recall that
the covariant derivative V,0,x is given by taking the derivative 0,0;x in the
ambient vector space RV and subtracting the component normal to M. This
normal component is pointwise given by P(z) (Opx, 0;x). In these terms the heat
equation (6) reads

Osu — 0 Opu = —P(u) (Opu, Opu) + grad V(u) =: ¢(u) (125)

for maps v : R x S' — R taking values in M. Changing perspective and
abusing notation we interpret this pde as a Cauchy problem

%u = Au+ ¢(u), u(0) =y € AM, (126)

for maps u : [0,00) = AM and where A := 9,9;. The case V = 0 is the harmonic
map flow introduced by Eells and Sampson [ES64] in 1964. To prove short time
existence they applied the method of successive approximation. However, in the
mean time the elegant theory of abstract evolution equations in Banach spaces
has been developed; an excellent reference is the book by Henry [He81]. We will
use this theory to construct the semiflow.

Hence the next step is to interpret the pde above as an evolution equation
for maps s — u(s) from an interval [0, 7] to some Banach space X. We set

X = Wh2(S1 RY), Y := L' (SY,RY).

Note that according to our convention X contains AM. Note also that the
perturbation grad) is defined only on the subset of smooth loops LM C X.
Since LM is dense in AM we extend V continuously to AM. Next we identify a
compact neighborhood U of M in RV with a neighborhood of the zero section
of the normal bundle pr : vyy — M of M in RY. Now fix a sufficiently small
neighborhood U of AM in X such that the following is true. If z € U, then
2(t) € U for every t € S*. Hence the projection

U =AM, (m2)(t) := pr(z(t)), Vte St (127)
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is well defined. It provides a canonical means to define the desired extensions.
Namely, these are given for z € U by grad V(mz) and P(7z) (Oy(nz), 0y (72)).
Now the task at hand is to prove that the Cauchy problem

%U:Au—l—f(u), fi=¢om, u(0) =v € AM, (128)

admits a unique short time solution w : [0,7] — U C X. Note that f: U — Y.

Definition 9.1. A solution of the Cauchy problem (128) is a continuous map u :
[0,T] — Y with u(0) = v such that for s € (0,7] we have u(s) € U N W?1(S1),
du

the derivative 5%(s) exists in Y, the differential equation is satisfied, and the

map fou: (0,7] =Y is locally Holder continuous and bounded.

It is convenient to reformulate (128) as an integral equation, namely

uls) = ey + [ T f (o)) do = () (s). (129)
0

Definition 9.2. A solution of the integral equation with initial value v € AM
is a continuous map wu : (0,7] — U satisfying (129) such that the map fou :
(0,7] =Y is continuous and bounded.

Both notions of solution are equivalent by lemma 9.11. (See the following
subsection for more information on the analytic semigroup e*?.) To prove
theorem 9.3 on local existence und uniqueness of a solution to (129) we set
up a complete metric space Z on which ¥, acts as a strict contraction. Now ¥,
admits a unique fixed point by the Banach contraction mapping principle. But
fixed points of ¥, correspond precisely to solutions of the integral equation.

The next task, theorem 9.12, is to establish higher regularity of u. Here we
exploit the integral representation (129) of u in combination with the fact that
analytic semigroups are extremely regularizing. By the method of bootstrapping
we improve regularity step by step. Once we arrive at the point where v — now
viewed again as a map from (0,7] x S! to RY — is locally of class WP for
some p > 2 we are done. Namely, this implies that u takes values in M and
therefore satisfies the earnest heat equation (125). But in this case our previous
regularity theorem 4.2 asserts smoothness. To summarize, if u(0) = v is in AM,
then all existing future loops u(s) remain in the set LM of smooth loops in M.
In particular, we don’t need to worry any more that u(s) might leave U.

Certainly this good news greatly enhances chances that solutions actually
exist globally, that is for all positive times. This is the content of theorem 9.13.
In theorem 9.14 we analyze the asymptotic behavior of u(s) as s — co. The-
orem 9.15 asserts that the dependence of the solution u of (126) on the initial
value v € AM is of class C'. Then

@:(0,00) x AM — AM, (s,7) — u(s), (130)

provides the desired C*! semiflow. It extends continuously to 0 by theorem 9.3.

In the main proofs below we follow the line of argument presented in [He81]
for fractional power spaces. We provide details in our setting for completeness.
Certain facts concerning semigroups are collected in remark 9.6 without proof.
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9.1.1 Local existence and uniqueness

Theorem 9.3. Fiz a perturbation V that satisfies (V0)—(V1) and a loop v €
AM. Then there exists a time T = T(vy) € (0,1] and a unique solution u €
C°([0,T7], X) taking values inU of the integral equation (129) such that u(0) = ~.
This solution is continuously differentiable as a map u: (0,T] = Y and satisfies

u(s) € W(s!,RY), %u(s) — Au(s) + f(u(s)) in Y,

for every s € (0,T] and where f = ¢ om; see (125) and (127).

The proof of this and subsequent results rests on the fact that the operator
—A generates an analytic semigroup on LP(S1).? First we define this notion and
recall a key proposition. Then we collect further relevant facts in remark 9.6.

Definition 9.4. A strongly continuous semigroup on a Banach space Z is a
family T = {T'(s)}s>0 of continuous linear operators on Z satisfying

$,t>0 = T(0)=1, T(s+0)=T(s)T(0), (131)
2€Z = T(s)z—zass—0". (132)

The infinitesimal generator L of this semigroup is defined as follows Lz :=

lim, o+ 2 (T(s)z — 2), its domain dom L consisting of all z € Z for which this

limit exists in Z. One usually writes T(s) = L. If T satisfies in addition
z€Z = s+ T(s)z is real analytic on (0, 00) (133)

we call it an analytic semigroup.

Proposition 9.5. Let {eSL}SZO be an analytic semigroup on a Banach space Z
with infinitesimal generator L. Then

X d . X
$>0,z€eZ = etzedomlL, d—eéLz = Le®tz, (134)
s
and there is a constant C such that
C
|[Le*tz]|, < ~ Izl ;. forse€(0,1]. (135)

A strongly continuous semigroup still shares similar properties when re-
stricted to the domain of L. Namely, for z € dom L the map (0,00) — Z :
s — ez is continuously differentiable and

d ,
5>0,z€domL = d—eSLz = Lel2. (136)
s

Moreover, there are constants ¢ > 1 and w € R such that

HeSLH[:(z) < pe®, Vs > 0. (137)

5We abbreviate LP := LP(S!) := LP(S1,RN) and similarly for Sobolev spaces.

116



Remark 9.6 (The semigroup e*2). Fix constants p € [1,00) and ¢ € (1, 00).

(a) The Laplacian A = 9,0; on LP(S!) with dense domain W?? generates an
analytic semigroup on LP(S1).

(b) There is a constant C' = C(p) > 0 such that

Ml 2wy < Cs~(=%) vse (0,1 (138)

The estimate continues to hold on a larger interval (0,7] on the expense
that C in addition depends on T

(c) There is a constant g = g > 1 such that

e ooy <1 ¥s20. (139)

(d) The Laplacian A = 9;0; on W*:4(S1) with dense domain W*+24 generates
a strongly continuous semigroup on W#4(S') for each integer k > 0.

(e) Suppose p > ¢ and fix integers k > ¢ > 0, then

e | penn gy < Cs7 27972070 s € (0,1] (140)
for some constant C' = C(p,q,k,£) > 0. The estimate holds on a larger
interval (0, 7] on the expense that C' in addition depends on T

Some comments are in order. For (136) and (137) see section I.1 in [DK92].
Concerning part (a) of remark 9.6 see chapter 13 in [Ta96]. The estimate in
part (b) follows by applying Gagliardo-Nirenberg interpolation, see e.g. [MS04,
prop. B.1.18], to (135) for X = L! and (139) for p = 1. In case of the larger
interval (0,7 use that e(k+9)A equals the composition of bounded operators
e?...efe® for k € N. Part (c) follows from the fact that for an analytic
semigroup the constant w in (137) equals the spectral bound of the infinitesimal
generator. Hence in the case at hand we obtain that w = sup spec A = 0. For
part (d) and (e) see table (1.1.15) in [Ta96, ch. 15]. Alternatively to see (d)
observe that by continuity of e*2 and strong continuity (132) the operators d;
and e*2 commute, then use (a).

Lemma 9.7. Fiz a constant T > 0 and a continuous bounded map f : 0,7 —
LY(SY). For s €0,T) set

F(s)= /OS =2 f (o) do. (141)

Then the following is true.
(a) Ifp>1, then F € C°([0,T]), WtP(S1)) and F(0) = 0.
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(b) Ifg>1 and f is, in addition, locally Hélder continuous as a map (0, 7] —
L4(SY), then F € C1((0,T), L1(S")) and

d

F(s) e w=o(sh), -

F(s) = AF(s) + f(s) in LI(S"),

for every s € (0,T].

Proof. The proof in Henry [He81, lemma 3.2.1] carries over step by step. Never-
theless, we provide full details in our situation, because the result is fundamental
for all aspects of the construction of the C'! forward semiflow (130).

ad (a) The trouble with the integral F' is that the integrand has a singu-
larity at ¢ = s. The key idea is to define a family of maps Fs avoiding the
singularity and for which continuity is easy to see. Then it suffices to prove
uniform convergence of Fs to F' as § — 0.

The whole argument is based on the estimate (138) whose right hand side
is integrable over (0, T, since the exponent of s is strictly larger than —1. Now
we choose § € (0,T) and define Fs : [0,7] — WP by

- 0 ,5€1[0,6],
Fs(s) = {fos—é eI f(g) do s €[5,T).

Set K := sup||f|l;. By (138) the integrand of Fj takes values in W? and is
integrable. Hence Fj is well defined and takes values in W1 itself. Next choose
6 <s<s+h<T, then the difference

s+h—§

Fs(s+h) — Fs(s) = (ehA — 1) Fs(s) + /76 eTh=a)A f(5) do

converges to zero in WP as h — 0. This proves continuity of F5. Here we used
that {e"®},>0 is a strongly continuous semigroup on W? by remark 9.6 (d)
and a short calculation to see that the WP norm of the second term is bounded
above by 2pCK1((h + 6)'/?? — §'/2P). Now another calculation shows that

s?r s € 0,6],
s s € [5,TY,

< 2pCK,6Y/?P,

|F(s) — F3(s)],, < 20CK, {

and the right hand tends to zero as § — 0, uniformly in s € [0,7]. Continuity

of each map Fjs : [0,7] — WP with F5(0) = 0 and uniform convergence of Fjs

to F in WP show that the limit F' : [0, 7] — WP is continuous and F(0) = 0.
ad (b) The proof has four steps. Fix ¢ > 1.

Step 1. Fiz § € (0,T). If s € [0,T], then Fs(s) € W% and
s—0
AF. _ A (s—o)A NO_ _F do SA _ 6AN F )
() = [ A (o) = Fo)) do (e = e52) fo
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Throughout the proof of step 1 we set L := A. For s = § the statement is trivial,
since F5(0) = 0. Hence fix s € (0,T]. Now recall that L generates an analytic
semigroup on L4 by remark 9.6 (a). Hence e("=) f(¢) lies in the domain W24
of L for all 0 < o < 7 by (134). Therefore the Riemann sums for Fs(s) which
we denote by

Z C(S_Uj)Lf(Jj) AUj

0j<s5—6

are in LY. Now in L9 the following limit exists and is given by

s—0
lim L eI (o) Ao = / Let=L f(5) do. (142)
0

Aoc—0
o<s—§
To see this pull L through the finite sum and then observe that

[zee=r o], <[ ], < e
2,q

q

L(LY,W2.a) ’f(U)H1'

Hence by (140) with constant C' we obtain the bound

Jeee55io

< CK1<5 — 0->_3/2—1/2(1 < CK16—3/2—1/2q
q

for all o € (0,s — ). This proves (142). Now since the operator L is closed it
follows by (142) that Fj(s) is in the domain W24 of L and

s—0 _
LFs(s) = /0 LeC= L f(5) do
(143)

s—0 - ~ s
- / L= (f(0) = f(5)) do + (e — &) f(s).

To obtain the last step we used the identity —Le(*=?)L = %e(‘s_")L and the
fundamental theorem of calculus. This proves step 1.

Step 2. If s € (0,T), then F(s) € W9 and

AF(s) = /O T Aels—)a ( f(o) — f(s)) do + (e*® — 1) f(s).

Moreover, on each closed subinterval [a,b] C (0,T] we have uniform convergence

in L1 of AFs to AF, as 6 — 0.
Again by (140) with constant C’ we obtain that

|act=22 (fo) ~ )| < |let=7* (7o) = ()]

[l

2,q

|(Fo) = 7))

L(L9,W29)
<cC'(s—o) e

q
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where ¢ > 0 and « > 0 are, respectively, the Holder constant and the Holder
exponent for f whenever o is sufficiently close to s. This estimate shows that
the left hand side is integrable over o € (0,s). Hence by the formula in step 1
we obtain that the following limit exists in L7, namely

AFs(s) = | Aels—a ( Flo) - f(s)) do + (e — 1) f(s), asd— 0,
0

where for the last term we used (132) with Z = L9. Recall that Fjs(s) converges
in L? to F(s), as 6 — 0, by part (a). Thus again by closedness of the operator
A it follows that F(s) is in the domain W27 of A and AFs(s) — AF(s) in LY,
as § — 0. This proves the formula in step 2. 3

Now fix a closed subinterval [a, b] of (0, T]. By local Hélder continuity of f there
are positive constants K and g such that

|7 = 7o) < Kls—ol’

for all s,0 € [a,b]. Use the formulae in step 1 and step 2 to obtain that

S

|AFs(s) — AF(s)], = \

Aels—0)A (f(g) — f(s)) do + (€6A - ﬂ) f(s)

s—0 q
< KC' /:5(8 — o) g+ H (e*2 — 1) f(s)Hq
<K%, (™ = 1) f(s)Hq.

Here the first inequality follows by the calculation carried out earlier. Now the
right hand side converges to zero, as § — 0, uniformly in s € [a,b]. This follows
from the fact that the map e’® — 1 : L9 — L9 is continuous by definition 9.4
and by (132) it converges pointwise to zero. Hence restricted to the compact
set f([a,b]) we obtain uniform convergence.

Step 3. Fiz 6 € (0,T), then Fs: (6,T] — L% is continuously differentiable and

%Fs(s) = AFj(s) + € f(s = 0).

Fix § < s < s+ h <T. By definition of Fjy it follows that
Fs(s+h) — Fs(s) /S‘S e(BTMA _g5A
0

(s—5$—0)A F
W o e flo)do

1 S—5+h -
+ 7 / S eTh=a)Af(5) do.

Note that all exponents stay away from the singular value zero as they are
bounded below by %. Hence the fraction inside the first integral converges to

d

a hA _ A L3A
ah e Aez?,

h=%
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as h — 0, by (134) and the second integral to e’ f(s — §). Using the first
identity in (143) we obtain that the limit h~* (F5(s + h) — Fs(s)) exists in L9,
as h — 0, and equals AFj(s) + €2 f(s — 6).

Step 4. We prove part (b) of lemma 9.7.

Fix a closed interval [a,b] C (0,7] and suppose 0 < ¢ < a. Then %Fg converges
to AF + f in L9, as § — 0, uniformly in s € [a,b]. Here we used step 3, step 2,
and the fact that the continuous map e9% . L9 — L9 converges pointwise, hence
uniformly on the compact set f([a/2,b]), to the identity, as 6 — 0. O

Lemma 9.8. Fiz a constant ¢ > 1 and an integer £ > 0. Then the following is
true. If h € (0,1) and x € L'(SY) UW59(SY), then

h
(ehA - ]1) eSBy = / AelTH9)2 2 qr
0

for every s € (0,1).

Proof. Assume x € W% Then we know by remark 9.6 (d) that {e*2} is
a strongly continuous semigroup on W4, Now fix s € (0,1). Then it fol-
lows by (140) that ez € W24 = dom A. Hence Ae(T+9)2g = Le(r+s)2y
by (136). Now the assertion follows by the fundamental theorem of calculus —
provided the integral exists. To see this apply (140) with constant C’ to get
that

s |

ta < He(T-ﬁ-s)AH HxHLq < ||$He,q- (144)

L(Wa Wet2.q) T+s

Integrating the right hand side over 7 € (0, k) gives C'||z||¢,q In(1 + %) < o0.
The case € L' follows by the same arguments using proposition 9.5 which
applies to L = A and Z = L' by remark 9.6 (a) for p = 1. O

Lemma 9.9. Fiz constants p > q > 1 and integers k > £ > 1. Suppose
v € W54(SY). Then the map (0,1] — WkP(S1) : s 52 is continuous.

Proof. Fix 0 < s < s+ h <1, then

h
e %y = e, < /0 [aeTT92y ), , dr

h
S/O He(H_S)AHL(WLq,Wtc+2,p) ||’Y||£,q dr

ST CET)
=Cll,, oth ’
In (2th) k=0,

S

where # € [0,00) is given by x = 3(; — 3) + 3(k — £). In step one and four we
applied lemma 9.8 and (140) with constant C, respectively. The right hand side

of the estimate tends to zero as h — 0. This proves continuity at s. O
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Lemma 9.10. Fiz a perturbation V that satisfies (VO-V1). Then the map
f=¢om: XDU—-Y
where ¢ and w are given by (125) and (127) is locally Lipschitz continuous.

Proof. Given v € U we have to show that there are constants p, L > 0 such that

() = FWlly < Lllz =yl ,

for all z,y € B:={z € X : ||z — 7|12 < p}. Fix p > 0 sufficiently small such
that B C U. Recall that U is a fixed compact neighborhood of M in RY used
implicitely in the definition (127) of the projection m. Consider the constants

— — 2
F1i= max Hdpr(q)HL(RN,Tm(q)M) A |d pT(Q)Hﬁ(RNXN,TMq)M)
and
Br = max | POl e, anazpany s B2 = maxIdP@l e, <oz -

Choose z,y € B and set v = y—x. Now themap h: U — Y, z — (grad V)on(x)
is composed of two C? maps. Hence there exists 7 € (0, 1) such that

grad V (m(z)) — grad V (7(z + v))
= % grad V (7(z + 7v))

= Vegrad V (m(z + 7v)) + Plr(atro) (3T (m(x + Tv)), grad V (m(z + 7'11)))

pointwise at ¢t € S'. Here we used that the covariant derivative in M equals the
extrinsic derivative minus its normal component. From this we obtain that

[grad V (m(z)) — grad V (w(z + v))||;

< [IVrgrad V (m(z + 7v)) |y + B |07 (w(z 4+ Tv)) |y [[grad V (w(z + 70))|| o
< 20 [|0- (w(z + 7v))[l; + B1Co |07 (m(2 + Tv)) |

= (2C1 + £1Cy) ||dm (2 + Tv) vl

< k1(2C1 + £1Co) vl -

This estimate means that grad V(n-) is globally Lipschitz on U even with respect
to the L' norm on the domain. To obtain the second inequality we used ax-
ioms (V0) and (V1) with constants Cy = Cp(V) and Cy = C1(V), respectively.
Now fix t € S1. By abuse of notation we denote the point z(t) by x and v(¢) by
v. Moreover, we abbreviate & = 0;x. Since all maps involved are C! and take
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values in the ambient RY, there exists 7 = 7(¢) € (0, 1) such that

‘P|pr(3:) (dpﬂzftv dpr|zft> - P|pr(gc+v) (dpr|z+v (1' + '[))a de‘m+U($ + U)) ‘

d . . . .
Ep|pr(ac+‘rv) (dpr‘er‘rv (LL’ + TU)? dpr‘erTv (LL' + TU)) ‘

= [@Plpyeruy (AP Larot, ADT oo+ 7). Ay (3 4+ 70))
2Py (APTlsro i+ 70), 0 prlisra (0, +70) + dprlasrud) |
< 2(B2k] + 2B11k2) (|8 + [017) [o] + 2613 (] + [9]) 0]
Now integrate this pointwise inequality over ¢t € S* to obtain that
[P (mx) (O (mx), Oy (mx)) — Pmy) (9:(my), O (my)) 4

12 .12 . . .
< 2(B27 + 2B1m1m2) ([|2115 + [19115) 0]l + 28153 (|2l + [[0ll,) 0]l
<pllz =yl .-

Here o > 0 depends on the constants k1, ko, 51, 2, p, the Sobolev constant
associated to the embedding W12(S1) < L>°(S1), and on ||y||12. Note that

[Elle < flzllie <[Vlha+p, (ol < vz =lle =7+ —ylli2 < 2p. (145)

We also used Holder’s inequality || fh|l1 < || f]l2]|%]l2- O

Lemma 9.11. A map u defined on the interval [0, T] is a solution of the Cauchy
problem (128) if and only if it is a solution of the integral equation (129).

Proof. “=" Suppose u is a solution of the Cauchy problem (128). In particular,
this means by definition 9.1 that f := fow : (0,7] — Y is locally Holder
continuous and bounded and u solves the linear inhomogeneous problem

%’U(S) — Au(s) = f(s), v(0) =7 €Y.

By [He81, thm. 3.2.2] this problem has a unique solution which is given by

v(s) = ey + / e+9)A f(0) do.
0

Now v = u by uniqueness. Moreover, the first term in the sum is a continuous
map (0,7] — X by lemma 9.9 with r = g = 1 and p = ¢ = 2 and the second
term is continuous even on [0, 7] by lemma 9.7 with p = 2.

“<” Now suppose u is a solution of the integral equation (129). Hence
u(s) = e*2y 4 F(s) where F is given by (141) with f := fou : (0,7] = Y
being continuous and bounded by assumption. Then lemma 9.7 (a) asserts
that F(0) = 0 and F € C°([0,T],Wh?). Hence F € C°([0,7],Y). Now A
generates an analytic semigroup on Y by remark 9.6 a). Therefore the map
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(0,00) — Y : s+ €52y is continuously differentiable by (133). Furthermore

it extends continuously to zero, taking on the value + at zero, by the strong
continuity property (132). To summarize we proved that the map u : [0,7] = Y
is continuous and satisfies u(0) = . Also when restricted to (0,7] the map u
takes values in U by assumption.
We prove the yet missing properties of v on the interval (0,7]. As mentioned
above the map s — e**y is continuously differentiable in Y. Moreover, this
map takes values in W21 and satisfies d%eSA'y = Ae*®y by (134). Assume we
knew that u : (0,7] — U was locally Holder continuous. Then the composition
f=fou:(0,T] =Y is locally Holder continuous, since f : U — Y is locally
Lipschitz by lemma 9.10. Now lemma 9.7 (b) with ¢ = 1 applies. Consequently
the sum u(s) = e*®y + F(s) takes values in W' is differentiable in Y and
satisfies the differential equation (128).

It remains to prove that w is locally Holder continuous on (0, T with respect
to the W12 norm. Set K; := sup(()’T]Hle and fix 0 < s < s+ h <T. Then by
the representation formula (129) we obtain that

u(s+ h) —u(s) = /8 (ehA —1) =D (5 do
’ s+h (146>
+/ e(thsfo)Af-(J) do + (ehA _ ]1) 65A7-

Denote the sum of the three terms on the right hand side by 77 + T5 + T3.
By (138) with p = 2 and constant C > 0 it follows that

s+h _
12l < / e =2 £ g1 gyaay 1 ()], dor < ACK Y2,
Now apply lemma 9.8 and (144) with £ =1 and ¢ = 2 to obtain that
h N h
||T3||1,2 < /0 HAe(TJrs) 'YHLQ dr <’ H’YHLzln(l + g) (147)

Note that In(1+ h/s) < h/s < h/Ty whenever s € [Ty, T1] C (0,T). Again by
lemma 9.8 for z = f(o) € L' and (140) with constant C” it follows that

1Tl < / 5 / hlle““*"mf<o>|lg,2df do
</05 /OhHe(T+8U)A)HL(Ll,W“)||f(J)H1deJ
< C"K, /O /Oh(7+s—o)_7/4d7da
— %C”Kl (h1/4 + s — (h+ 5)1/4) <

16C" Ky |14
—g

124



Proof of theorem 9.3. The main idea to solve the integral equation (129) is to
construct a complete metric space Z on which the map ¥ := ¥, defined in (129)
acts as a strict contraction. We follow the exposition in [Ta96, ch. 15, sec. 1].
The construction is based on four facts, namely

e*® . X — X is a strongly continuous semigroup where s > 0,

f:U — Y is a locally Lipschitz continuous map, (148)

e*® .Y — X is a bounded linear operator for each s > 0,
and ,
[l cyxy € T4 Vs € (0,1]. (149)

For fact one see remark 9.6 (d) with & = 1 and g = 2, for fact two see lemma 9.10,
and for facts three and four see remark 9.6 (b) with p = 2.
Since f is locally Lipschitz, there are positive constants p and L such that

1F @) = Flly < Lllz =yl (150)

for all z,y in the closed ball B, C X of radius p and centered at 7. Choose p
smaller if necessary to guarantee that B, C U. Now pick T' € (0, 1] and consider
the subset of the Banach space C°([0,T], X) given by

Z:={ue C%0,T],X) : [lu(s) =7l x <pforallsel0,T]}. (151)

Observe that the elements of Z take values in the ball B,. Being closed Z is a
complete metric space with respect to the sup norm. By (150) it follows that

1fouls)ly < If ouls) = fF(NI: + If DI
< Liju(s) =l o + 1 F N4 (152)
< Lp+ | f(Nl; = K

whenever s € [0,T] and u € Z. By fact one in (148) and strong continuity (132)
we can choose T1 = T1 () € (0, 1] small enough such that

HeSA7 —WHLQ < g, Vs € [0, T1).

Fix a positive constant Ty < max{Ty, p*/(12CK;)*}. We prove that ¥ acts
on Z whenever T' < T,. There are two conditions to be checked. To see the first
condition observe that

/ T oA f(u(o)) do

0

w

< / C(s — o) 34K, do = 4K,CsY/* < i
1,2 0

for every s € [0,T]. Here we used (138) with p = 2 and constant C' and we also
used estimate (152). Hence ||Qu(s) —7||1,2 < 2p whenever s € [0, 7] by the last
two estimates. The second condition is continuity of the map Yu : [0,T] — X.
Recall that Wu(s) = e*2y+4 F(s) where F is given by (141) with f(s) := fou(s).
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Now F' : [0,T] — X is continuous with F'(0) = 0 by lemma 9.7 (a) with p = 2.
The map (0,7] — X : s +— €52 is continuous by lemma 9.9 with ¢ = p = 2
and r = g = 1. By fact one in (148) and strong continuity (132) it extends
continuously to zero. This proves that ¥u(0) = v and that ¥ acts on Z.

Next we prove that U is a strict contraction on Z = Z(T') whenever T €
(0, T3] is sufficiently small. To see this fix uw,v € Z and s € [0,T]. Then by
definition of ¥ in (129) and the estimates (149) and (150) it follows that

|Wu@>—-vanh2::Lése“-ﬂﬂ(fuwo»-—fama»)da

1,2

S/GC@on”ﬂvwwnff@@Dmda
0

< ACLT*sup |lu(o) — v(0)]ly., -

Now choose T' < (8CL)~* to obtain that ||[¥u — ¥v|z < %||u — v||z. By the
Banach contraction principle ¥ has a unique fixed point v in Z; see e.g. [He81,
section 1.2.6]. Now this fixed point of ¥ is a solution of the integral equation
in the sense of definition 9.2 which by lemma 9.11 is a solution to the Cauchy
problem (128) in the sense of definition 9.1. Uniqueness follows by uniqueness
of the fixed point. O

9.1.2 Regularity

Theorem 9.12. Fix a perturbation V that satisfies (V0)—(V1) and a loop v €
AM. Then there is a constant T =T (v) > 0 and a unique smooth solution

w: (0,T] x S* — M, u(0,-) = (),
of the heat equation (125) which is continuous on [0,T] x S*.
Proof. Set f = ¢om where ¢ and 7 are defined by (125) and (127), respectively.
By theorem 9.3 there is a unique solution u € C°([0,77], X) taking values in U
of the integral equation (129) with «(0) = ~. The map f := fou: (0,T] =Y
is locally Holder continuous and bounded by lemma 9.11 and definition 9.1. We
denote this bound by

Ky = sup|| f|lx.
(0,7]

For s € [0,T] define F(s) by (141). In this notation the integral equation (129)
becomes u(s) = €Ay + F(s). From now on W¥P abbreviates WP (5!, RN)
whenever it is convenient.

Step 1. Fiz ¢ > 2. Then u: (0,T] — W14(S1) is locally Hélder continuous.

Now if 0 < s < s+ h < T and h < s, then by the representation formula (129)
we obtain that

u(s+ h) —u(s) = /Os (ehA —1) =D (o) do

s+h B
+/ e(h-l—s—a)Af(o,) do + (ehA _ ]1) GSA’}/.
s
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Denote the sum of the three terms on the right hand side by 171 + 15 + T5.
By (140) for £ = 0 and ¢ = k = 1 and with constant C it follows that

s+h B
I172ll,q < / ||6(h+57U)AHL(L1,W1"1)Hf(G)Hl do < 2qCKh!/?.
S
To estimate T3 for ¢ > 2 we apply lemma 9.8 for z = e22y € W4 to get that
" A SA
Tl < [ A58, ar

h
S/0 He(HS)A)HL(Wl@,WM)H7H1,2 dr

4qC’ _a=2 _a=2
< 5l (577 — s+ 1))

4qC’
q—2

IN

17111 2 -
Here step three is by (140) with constant C’. The last step is valid for all
s € [Ty, T1] € (0,T) and every sufficiently small & > 0. The constant p depends

on Ty, T1, and (¢—2)/4q. In the case ¢ = 2 we obtained by (147) that ||T5]/1,2 <
Vll1.2Toth for s € [Ty, T1]. Next use (140) with constant C” to obtain that

s rh
1Ty < [ [ e @), dr o
s rh
< /0 /0 1) sy | @) d7 do
s h
< C//Kl/ / (T+S—U)_2+1/2q dr do
0 0

2 2
4q 1" 1/2q 1/2q 1/2q) « 4¢°C" K,y
C'Ky|h +s (h+s) _

1 <

= /24,
2q — 2qg — 1

In the last step we used that s'/2¢ < (s + h)'/2, because h > 0.
Step 2. Fixp > 1. Then fou: (0,T] — LP(S') is locally Hélder continuous.

The map u : (0,7] — W2 is locally Holder continuous by step 1 with ¢ = 2p.
Revisiting the proof of lemma 9.10 replacing W2 by W12P and L! by L we
observe that f : W2P 5 1’ — LP is locally Lipschitz. Here U’ is a sufficiently
small neighborhood of W12P(S1, M) in W12P(S' RY) such that all elements of
U’ take values in the neighborhood U of M in RY which was used to define 7
in (127). Hence the composition fow : (0,7] — LP is locally Hélder continuous.

Step 3. Fizp > 2. Then u € C*((0,T], LP(S*,RY)).
Recall that u(s) = ey + F(s). Now A generates the analytic semigroup e®
on LP by remark 9.6 (a). Hence the map (0, 00) — LP : 5+ €527 is real analytic

by (133). To deal with the F" part fix a constant ¢ € (0,7). On the other hand,
step 2 and lemma 9.7 (b) for ¢ = p and the map f := fou: (0,7] — L?, which

A
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is bounded in L! by the constant K, show that F : (0, 7] — LP is continuously
differentiable.

Step 4. Fiz constants p > 2 and § € (0,T). Then the map [6,T] x ST — RN :
(s,t) = u(s,t) is of class WP,

By definition of the space W'P we need to show that u, Au := 8,0,u, and d,u
are in LP([6,T] x S*,RN). By step 2 and step 3 we know that fou and u are
in CY((0,T],LP). On the other hand, by theorem 9.3 we have Au(s) € L' and

%U(S) = Au(s) -+ f o u(s) (153)

for every s € (0,T]. Hence Au is in C°((0,7T], LP) as well. Now every element
of C°((0,T], LP) restricts to an element of LP([§,T], LP) = LP([6,T] x S*, RY).
Step 5. The map u defined on [0,T] x S* takes values in M. It is continuous
on [0,T] x S, smooth on (0,T] x S*, and satisfies (126).

Recall that prior to (127) we identified a compact neighborhood U of M in RY
with a neighborhood of the zero section of the normal bundle pr : vy, — M
of M in RY. Moreover, every element of the neighborhood U of the space of
W12 loops AM takes values in U. Since u takes values in U by theorem 9.3, we
identify u(s,t) € U with the pair (v(s,t),n(s,t)) where n is the field of normal
vectors corresponding to u and v(s,t) := prou(s,t) € M are the corresponding
base points. On the normal bundle fix the Riemannian metric provided by
the ambient Euclidean space RY and the associated Levi Civita connection V’.
Then (153) translates into the pair of equations

(‘3511 _ 8t8tv — P(U) (8{(), aﬂ)) + grad V('U) (154)
Vi'n) Vi'Vi'n '

Now the section 7 of the normal bundle satisfies 7(0,-) = 0, since u(0) = v €
AM. Moreover, by (154) and integration by parts we obtain that

L) = 2(n(s), m(s)) = 2 (WSn(s), m(s)) = ~2[|[%n(s)]3 < 0

for every s € (0,7]. Here we used that the section 7(s), its s derivative, and
the first two ¢ derivatives are L integrable over S! whenever p > 2; see proof of
step 4. Of course, the inequality above proves that n = 0. But this means that
u = v. Hence u satisfies the heat equation by the first component in (154) and
by step 4 it is in WP ([, T] x S, M) for p > 2. Thus u is smooth on (8, 7] x S*
by theorem 4.2 and this is true for all § € (0,T). O

9.1.3 Global existence and asymptotic behavior

Theorem 9.13 (Global forward existence). Fiz a perturbation V that satis-
fies (V0)=(V3), a time T > 0, and an initial loop v € AM. Then the following
is true. Ewery solution u of the Cauchy problem (126) on [0,T) with u(0) = v
extends to a smooth solution on (0,00).
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Proof. Assume by contradiction and without loss of generality (rename if nec-
essary) that [0,7) is the maximal interval of existence. This means u does not
extend to a solution on [0,7”) for 77 > T. By theorem 9.12 we may assume that
u € C°([0,T),AM)NC>((0,T), LM). The idea is to prove in two steps that u
extends to time 7" continuously in AM. Then by theorem 9.3 we solve the inte-
gral equation (129) for the initial value u(T') to get a solution on [T, T’] for some
T’ > T. Concatenation then provides a solution on [0,7”] and by lemma 9.11
every solution of the integral equation solves the heat equation (125). This
contradicts maximality of [0,T).

STEP 1. There is a constant K1 such that ||¢p(u(s))||1 < Ky for every s € [0,T).

Since the action functional Sy is decreasing along solutions, it follows that
10u(s)]15 = 25w (u(s)) +2V(u(s)) < 25v(u(0)) +2Co < [|07]l5 + 4Co

for every s € [0,T). The first and the last step are by definition of Sy,. We used
axiom (V0) with constant Cy = Cy(V) > 0 in the second and the last step. Now
we obtain for ¢ defined by (125) the estimate

loGusHll, < 1Pl ()3 + llerad V(u(s) |
< 1Pl (106715 +4C0 ) + Co =: K

for every s € [0, T). Here we used the second estimate of axiom (V0).

STEP 2. The limit lims_,7 u(s) exists in W12(S1).

Recall that f := ¢ om where 7 is defined by (127). Note that 7ou = u, because
u takes values in AM. Hence by step 1 the map f := fou = ¢ou:[0,T) — L!
is bounded from above by the constant K;. Now fix a constant p > 2, choose
max{0,T—1} < s <o < T, and set h := o0 —s. By lemma 9.11 each solution of
the Cauchy problem solves the integral equation (129). Recall that the difference
u(o) —u(s) = u(s+ h) —u(s) =Ty + To + T3 is given by (146) and that we
already have W2 estimates for the terms 7, namely

16C" K 1
ITilhe < =5 =), [Tl s < 4CKi (0 = 9)1,

e

and -
ITslh0 < € Il o0 (2).

This shows that ||u(o) — u(s)||1,2 converges to zero as s < o both converge to
T. Hence the sequence is Cauchy and therefore the desired limit exists. O

Theorem 9.14 (Asymptotic forward limit). Fixz vy € AM. If all critical points
of Sy of action less than Sy () are nondegenerate, then the solution u in theo-
rem 9.13 converges to one of them in C?(S') as s — oc.

Proof. Observe that the solution u provided by theorem 9.13 is smooth on [4, 00)
for each § > 0. Now apply theorem 1.8 (F) to the shifted solution @(-) = u(-+4)
which is smooth on [0, 00). O
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9.1.4 Differentiable dependence on initial value

Theorem 9.15. Fiz a perturbation V that satisfies (V0)—(V1). For any initial
loop v € AM consider the solution u : [0,T] = U C X with u,(0) = v of the
Cauchy problem (128) provided by theorem 9.3. Then

s UDAM - UCX: v u,y(s)

is a continuously differentiable map for each time s € [0,T).

Proof. 1t is known that the degree of smoothness of the map ¢, coincides
with the degree of smoothness of the perturbation f in (128); see e.g. [He81,
thm. 3.4.4]. Hence it remains to prove that f is of class C'! on U and this is the
content of lemma 9.16 below.

However, since [He81, thm. 3.4.4] is stated in a slightly different situation,
we briefly recall the main steps of the proof in our setting. Fix v € AM and
positive constants p and L such that the Lipschitz estimate (150) for f holds
on the closed ball B?(y) C U C X of radius p about v. Suppose T € (0, 1] and
recall that the complete metric space Z is given by

Z=27ZyT,p) = {u € C([0,T7, X) : ||lu(s) — V2 < pforallse [O,T]} .
By p we denote the constant in (139) for p = 2 and set ¢ := p/6p. Then

: s p

le**@ =l < lle™ @ =l + [le™*0e(@ =M, < 2w Mz =2 < 5

for all s > 0 and x € B°(y) =: B. For x € B and u € Z define ¥,u by (129).
Then for every sufficiently small 7' > 0 the map

V:BxZ—=Z (z,u)— Vu
is a uniform contraction on Z, namely
W= Wl < 5 ol
for all x € B and u,v € Z. To see this choose z € B and u € Z. The main

point is to prove that W u lies in Z. It follows as in the proof of theorem 9.3
that U,u = e®2 + F € C°([0,7T], X) and (¥,u) (0) = x. Now

1(Wou) () =12 =

B —+ / e(s_")Af(u(a)) do
0

1,2

<le® @ =N, o + le®y = ]|, , + 4K CsM*
PP P
§§+§+§

for every s € (0,T»]. See the proof of theorem 9.3 for the constants T5, K7, and
C and the last two of the three terms estimated in the final step. The estimate
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|Wou— ¥, < 2 lu—2v|, is independent of z and follows exactly as in the
proof of theorem 9.3 whenever T' < (8CL)~%.

Next we prove that the uniform contraction ¥ of the ball Z C C°([0,T], X)
of radius p about the constant in s map -y is continuously differentiable. To see
this observe first (see [He81, lemma 3.4.3]) that the map Z — C°([0,7],Y) :
u s fou =: fis of class C!, because f : U — Y = L'(S',RY) is of class C*
by lemma 9.16. Secondly, being linear and by (138) for p = 2 the map

([0, 7], V) — CO([0,T], X), fib—>/A =D F (o) do
0

is smooth. Thirdly, again by linearity and by remark 9.6 (d) for K =1 and ¢ = 2
the map B — C°([0,T], X) : # = ez is smooth. Since V¥ is equal to the sum
of map three with the composition of maps one and two, it follows that ¥(z,u)
is smooth in z and of class C*! in u. Hence by [He81, sec. 1.2.6, second theorem]
the map B — Z which assigns to « the unique fixed point u, of ¥, : Z — Z is
of class Ct. Observe that u, solves the Cauchy problem (128) with u,(0) = x
by lemma 9.11 and it is C'*° smooth on (0,7 actually taking values in LM
and solving the heat equation (125) by theorem 9.12. Hence for s € [0,T] the
composition B — Z — U C X : x = u, + uz(s) is of class Ct. For 0 > T
compose this map with the smooth map u,(s) — u,(o) using that u, actually
extends smoothly to (0,00) by theorem 9.13. O

The following lemma is used in the proof of theorem 9.15.

Lemma 9.16. Fiz a perturbation V that satisfies (V0)—(V1). Then the map
df =d(pom): X DU — L(X,Y)
is continuous. Here ¢ and w are given by (125) and (127), respectively.

Proof. Fix v € U and a sufficiently small constant p > 0 such that the ball
B:={z¢e€ X :||z—7l|1,2 < p} is contained in Y. Given z € B we need to show
that

ldf () = df @)l pxyy = sup[ldF ()€ — df(w)Ell, — 0

€l o<1

whenever y € B converges to  in the W12 topology. To prove this we will use
the constants «; and 3; defined in the proof of lemma 9.10 for j = 1,2 and set

k3 = Iglea(j( ||d3pr(q)|’£((RN)><3,Tpr(q)M)’ B3 = gg}\}( ||d2P(Q)||z:((TqM)X3,T;M) :

Now choose x,y € B, set v = y — x, and pick ¢ € T, X = W12(SL,RY). Fix
t € S* and set

h(v(t)) = Plpre)+ot)) (dp'r|z(t)+v(t) (@(t) +0(t)), dprlee)+oe) (@(t) + i)(t)))

where © = Oyxz. By abuse of notation, but for simplicity, we abbreviate from
now on the projection pr by 7 and the point z(¢) by « and similarly for v and
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¢. In addition, we set ¢, = x(t) + Tv(t). Since all maps involved are C! and
take values in the ambient RY, there exists 7 = 7(¢) > 0 such that

0)5 — an(o)é] = | L dn(re]

d d
= dep‘Oh(Tv—i—pf)’

d d . . : . . :
= E%‘OP|W(qr+p£) (d77|qf+p£(33 + 70+ pf), d7T|qT+pE(33 + 70+ Pg)) ’

d o .
_ Edﬂw(%)(d7r|qrf7d7r|qT(x+Tv),d7r|qf(x+7v))

d .
+ QEP‘W(qT) (dzﬂ‘qr (& @+ 70) +drlq, &, drlg, (& + TU))‘

= |d2Plrq) <d7r|q7v, drl,, €, drly, (& + 70), dnl,, (3 + m))

APy (67lg, (0,€), Al (& + 70), drly, (i + 75)

+2dP|rg) (dﬂq,g, Py (v,& +70) + dr|y 0, dr|y (3 + m))

+2dP) () (dﬂq,u A7)y (&, + 70) + drly, &, dr,. (& + m))

2Pl (@ lg. (v, + 70) + Ay, (€,9) + Al (v, €), drl (i + 7))

2Pl (Plg. (€ + 78) + drly €, d2mly, (v, + 70) + dr . )

<2 (H?Bg + 5K%H2ﬁ2 + 2K1Kk301 + 2H%ﬁ1) (‘CL’|2 + ‘1.)|2) |1)| . |§|
o+ 26382 (1] -+ 9]) o] - [¢] + 2631 [0] - |€]
+ 2k (K12 + 2k21) (&] + [0]) [9] - [¢]
+ it (1] + [o) o] - [€]
Now integrate this pointwise inequality over ¢t € S' to obtain that
1dh(0)§ — dh(v)&ll; < pllvlly 5 1]l 2 -
Here 44+ > 0 depends on the constants p, x;, 3;, j = 1,2,3, the Sobolev con-

stant associated to the embedding W12(S1) < L°°(S1), and on ||7|1,2. Recall
from (145) that

£z < Vlhz+p, N0l < 2p.

We also used Hoélder’s inequality || fgll1 < ||fll2]lgll2- The estimate for the V

part follows similarly using axioms (V0)-(V3). O
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9.2 Morse homology and singular homology

Let V : LM — R be a perturbation that satisfies (V0)—(V3). Assume a is a
regular value of Sy : LM — R and Sy is Morse—-Smale below level a. Fix a
choice v of orientations of the unstable manifolds of all z € P%(V). Our goal
in this section is to propose a strategy of how to prove theorem 1.14. In other
words, we aim to calculate singular homology of the sublevel set L*M in terms
of the Morse complex

CM(LM,Sy,v) := (CM:(V,v),0(V,v))

defined in section 8.2. Recall that its chain groups are generated by the critical
points x of Sy : LM — R, together with the information about the chosen
orientations, and the Morse boundary operator counts heat flow trajectories
between critical points of Morse index difference one with appropriate signs.
These signs are determined by the chosen orientations of the unstable manifolds.

A standard idea is to consider an intermediate chain complex which, on one
hand, is isomorphic to the Morse complex and, on the other hand, whose ho-
mology is known to represent singular homology. A well known candidate is the
cellular complex associated to a suitable filtration; see [M65] in the case of a
finite dimensional manifold. For a Banach manifold with a flow generated by
a O tangent vector field a suitable filtration has been constructed by Abbon-
dandolo and Majer in [AMO6] where they also provide full details of the natural
isomorphism between Morse and singular homology. While our heat flow situa-
tion does not quite match the assumptions in [AMO6] the structure of all proofs
still carries over. Concerning details it remains to replace some of their tools
with those provided in the present text.

To meet the assumptions in [AMO06] we choose the Hilbert manifold A®M
of W12 loops in M of action less or equal to a. Note that the L? gradient
Vi0; + grad V of Sy is surely not a tangent vector field of AM as it is not even
defined everywhere. Increasing regularity of the loops by choosing W*:2 loops,
k > 2, does not help either, because the L? gradient looses regularity. (When
evaluated on any W¥?2 loop the resulting vector field along that loop is only of
class Wk=22 whereas W*? is required for tangent vector fields.) On the other
hand, the L? gradient is a tangent vector field of LM, the set of smooth loops,
but LM is not a Banach manifold. However, we proved in section 9.1 that the
negative L? gradient generates at least a C! semiflow

v :(0,00) x AM — AM

which extends continuously to zero. In this case, while the large scale structure
of proof still carries over from the case of a genuine flow (see [AMO06] and [M69,
S90] in finite dimensions) the arguments to prove major steps do not. In what
follows we recall the major steps to construct the desired natural isomorphism
and comment on how to prove them in our semiflow situation. From now on all
statements are with respect to the manifold A®M.
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Cellular filtration

The construction of a suitable cellular filtration requires a different idea than
the one in [AMO6] to choose open neighborhoods of the critical points and let
them flow in forward time. In our case the union of these sets over positive time
would not be an open set. The problem is that the heat flow ¢, in general does
not map open sets to open sets. (Each W12 loop becomes smooth after any
positive time.) However, the heat flow is continuous and therefore preimages of
open sets are open.

The idea is to generalize the notion of Conley index pair associated to a flow
invariant set S. Here S is simply a critical point. Assume for each critical point
x € P*(V) we have a pair of open subsets L C N of A*M such that x € N\ clL,
no other critical point is contained in the closure of N, and

YEL, pog(v) CN = ¢u(v) €L,
yeEN\L = 3t>0:¢pyg(y) CN.

The first condition says that L is positively invariant in IN and the second
says that every flow line which leaves N goes through L first. Hence L is called
the exit set of N. Below we denote (N,L) by (N, L;). We say a set is
positively invariant if it is invariant under the forward semiflow ¢. Assume
further that

N, N (pr) " (cIN,) =0, Vt >0, (155)

for all pairs of critical points x # y with indy(z) < indy(y). This condition
guarantees that the Morse index strictly decreases whenever there is a trajectory
from N, to N,,. The proof of the corresponding construction in [AMO06, prop. 2.6]
uses the Morse-Smale and the Palais—Smale condition which are both satisfied
in our case.

If the Morse index of x is zero, it is natural to take a (strict) sublevel set
with respect to a value ¢ + ¢ slightly larger than ¢ = Sy(z). Since z is a
nondegenerate local minimum, one can choose € > 0 sufficiently small such that
the connected component containing x is positively invariant and contains no
other critical points. This connected component is N, and we set L, := ). For
T > 1 sufficiently large consider the open positively invariant set given by

F() = U (QOT)_l Nm
2EP(V)
indy (z)=0
We tacitly intersect all sets with A*M.

Assume further that all points in the exit sets of the critical points of Morse
index one enter Fj in uniform time. By choosing T larger, if necessary, we
assume this time is 7. Note that each individual such point enters Fy in finite
time by theorem 9.14. Now define

F1 = F()U U ((pT)_l Nx

zeP(V)
indy (z)=1
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This set is open by continuity of the forward flow and it is positively invariant,
because each point enters in finite time either the positively invariant set Fjy
or one of the sets N,. Now the only way to leave N, is through the exit set
L,. But all these points end up after time 7 in Fy. Let N = N(a) be the
maximal Morse index among the critical points below action level a. Then for
k=1,...,N and by choosing T > 1 again larger if necessary define

F,:=F.,_1U U ((pT)il Ny.

zeP*(V)
indy (z)=Fk

Set Fi, = ) whenever k < 0 or k > N. Singular homology H, is understood to
have integer coefficients. The next steps are then to prove that

H.(A°M) ~ H,(Fy)
and that
F = (F k)keZ
is a cellular filtration of F. By definition this means that F is a sequence
of subsets of the topological space Fiy such that
(i) Fy C Fy4q for every k € Z;
(ii) every singular simplex in Fy is a simplex in F}, for some k;
(iii) relative singular homology Hy(Fy, Fi—1) vanishes whenever ¢ # k.

Whereas (i) is by construction of the Fj, condition (ii) follows since each Fy, is
open. The main idea to prove (iii) is to write Fj as union of Fj_; and a set

U= |J Ul
zeP(V)
indy (z)=Fk

where the open sets U(z) have the property that they are pairwise disjoint as a
consequence of (155) and the pair (U(x),U(x) N F_1) is homotopy equivalent
to a k-dimensional disk modulo its boundary. Think of U(z) as the unstable
manifold of x suitably thickened. Then use excision to conclude that

H*(Fk,Fk_l) ~ H*(Uk, Uk N Fk—l)
P H.(U@),U(z)N Fy).

z€P(V)
indy (z)=k

R

This implies (iii). More precisely, it follows that

Hy, (Fy, Fj_q) ~ @ 7.
zeP(V)
indy (z)=Fk
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Cellular filtration and singular homology
The cellular complex CF := (C*]-' L oL le) consists of the chain groups

Hk‘(Fkakal) ,kE{O,l,...,N},
CiF = .
{0} , otherwise,

and the boundary operator
O OpF — Cp 1 F
associated to the triple (F, Fx—1, Fx—2). More precisely, it is the composition
Hy(Fr, Fr—1) = Hp—1 (Fr—1) = Hp—1 (Fi—1, Fr—2)

of the boundary homomorphism of the pair (F}, F;—1) and the homomorphism
induced by inclusion. It is well known that the homology of the cellular complex
associated to a filtration of a topological space is naturally isomorphic to singular
homology of the space itself; see e.g. [D80, sec. V.1] or [M65]. This means that
the homology of the cellular complex CF is isomorphic to singular homology of
Fn. Hence we obtain that

Hy ((C.F,0UPle)) ~ Hy(Fy) ~ Hy (A M), keZ.

Cellular filtration and Morse homology

The final step is to construct an isomorphism
@k = @k(V,v,a) : CM;(V,U) — Ckf" = Hk(Fk,Fk—l)

as in [AMO6, thm. 2.8] which is induced by orientation preserving embeddings of
the canonically oriented closed unit ball D* C R* into the unstable manifolds of
the critical points of index k£ and prove that © commutes with the two boundary
operators. This concludes our sketch of proof of theorem 1.14. Full details will
be provided in a forthcoming paper.
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