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ABSTRACT. We obtain the gradient flow of the classical action
functional on the free loop space AM of a closed Riemannian man-
ifold (M, g) (where the Lagrangian is given by kinetic minus poten-
tial energy) as an adiabatic limit of the Floer gradient flow of the
symplectic action on the free loop space of T*M (where the Hamil-
tonian is given by kinetic plus potential energy). The limit is one
where the metric on the momentum coordinate converges to zero.
There is a natural correspondence between the critical points in
both theories (perturbed geodesics) and we prove that their Morse
indices equal minus their Conley-Zehnder indices. Nondegeneracy
can be achieved by generic choice of an appropriate parameter -
the potential energy.

The main result is an existence and uniqueness theorem for
perturbed J-holomorphic curves nearby any trajectory of the heat
flow between nondegenerate critical points of index difference 1.
The proof is by a version of Newton’s iteration method. Note that
a crucial estimate has been left as a conjecture for p > 2. A proof
for p = 2 is included.

Our result is a major step in establishing the existence of a
natural isomorphism between Floer cohomology of the cotangent
bundle of M and Morse homology of the classical action functional
on AM, which in turn represents the singular homology of AM.



ZUSAMMENFASSUNG. Wir erhalten den (negativen) Gradienten-
fluB des klassischen Wirkungsfunktionals auf dem freien Schleifen-
raum AM einer geschlossenen Riemannschen Mannigfaltigkeit
(M,g) — betrachtet als parabolisches Randwertproblem — als
einen adiabatischen Limes des Floerschen Gradientenflusses auf
dem Schleifenraum von T*M - ein elliptisches Randwertproblem.
In diesem Limes wird die vertikale Komponente der induzierten
Metrik auf T*M zu Null skaliert. Die kritischen Punkte in bei-
den Theorien kénnen mit (gestorten) geschlossenen Geodétischen
von (M,g) identifiziert werden und wir beweisen, dafl deren
Morse Indizes gleich den negativen Conley-Zehnder Indizes der
entsprechenden 1-periodischen Orbits des geodatischen Flusses auf
T*M sind. Es stellt sich heraus, dass die Nichtdegeneriertheit der
kritischen Punkte durch generische Wahl eines geeigneten Para-
meters erreicht werden kann.

Das Hauptresultat ist ein Existenz- und Eindeutigkeitstheo-
rem fiir (gestorte) J-holomorphe Zylinder in T*M nahe bei jeder
Losung des parabolischen Randwertproblems. Zum Beweis kon-
struieren wir eine Version der Newtonmethode fiir einen stetig
differenzierbaren Schnitt in einem Banachraumbiindel. Eine zen-
trale Abschitzung im hier relevanten Fall p > 2 ist als Vermutung
formuliert. Wir geben einen Beweis fiir p = 2.

Unsere Resultate stellen einen wesentlichen Schritt im Beweis
der Existenz eines kanonischen Isomorphismus zwischen der Floer-
kohomologie des Kotangentialbiindels T*M und der Morse Ho-
mologie fiir das klassische Wirkungsfunktional auf AM dar. Let-
ztere wiederum reprasentiert die singuldre Homologie von AM.
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CHAPTER 1

Introduction and main results

Let us first describe the background and context of this thesis, which origi-
nates in a joint research project with Dietmar Salamon. Our aim is to give a
proof of theorem 1.0.3 by studying J-holomorphic curves in cotangent bun-
dles and relating them to the heat flow of the underlying closed Riemannian
manifold via an adiabatic limit argument. The main point is to establish a
bijection between certain moduli spaces. In this thesis we prove injectivity.
Further results are the index theorem and transversality for loops.

Let (M,g) be a compact smooth Riemannian manifold of dimension n
and without boundary. AM denotes the free loop space of M consisting of
absolutely continuous maps from S' to M. For V € C*®(S' x M,R) and
x € AM consider the classical action functional

Ty (z) = /0 l(aﬁc(tn? — V(t,x(t) ) dt

whose integrand is the Lagrangian Ly : S' x TM — R. The set Crit Iy of
critical points of Zy are the smooth loops x satisfying

(1) —Vyi — VV(t,z) =0

where V is the Levi-Civita connection and VV the gradient with respect to
the z-variable. For constant V' these loops are the closed geodesics. Via the
Legendre transformation the solutions of (1) can be interpreted as critical
points of the symplectic action functional Ay on AT*M

Avte) = [ (1050 - Fy (o)

where z(t) is the basepoint in M of z(t) and the Hamiltonian Hy : S x
T*M — R is given by

(2) Hy(t,z) = 42> + V(t,2)

for z € TyM. A loop z in T*M is a critical point of Ay iff the loop z of its
basepoints in M solves (1) and z(t) = g(x(t))%(¢) where in abuse of notation
g:TM — T*M also denotes the isomorphism provided by the Riemannian
metric. For such loops both functionals agree.

Let f : X — R be a Morse function on a compact Riemannian manifold
X, i.e. its Hessian at any critical point is required to be nondegenerate. If the
negative gradient flow of f is Morse-Smale (stable and unstable manifolds
intersect transversally) then it gives rise to a Morse-Witten complex [Wi82]

1



2 1. INTRODUCTION AND MAIN RESULTS

which is generated by the critical points and graded by the Morse index. The
boundary operator is defined by counting the connecting orbits with index
difference 1 (modulo 2 in the case of Zs coefficients and otherwise with
suitable signs which take account of the orientations). Full details may be
found in the book by Matthias Schwarz [Sch93].

This principle applies equally well to the classical action Zy : AM — R
and the symplectic action Ay : AT*M — R. In both cases the chain
groups C, are generated by the l-periodic solutions z : S' — M of (1).
Such a solution is nondegenerate as a critical point of Zy if and only if the
corresponding loop z : S' — T*M with z = g(z)# and 2(t) € TyyM is
nondegenerate as a critical point of Ay. Here g(z) : T, M — T, M denotes
the isomorphism induced by the Riemannian metric. Each periodic solution
xz € Crit Ty has finite Morse index Ind(z) as a critical point of Zy (the
number of negative eigenvalues of the Hessian, counted with multiplicity)
and for a fixed level a we consider the chain groups

C;C" = @ Zox.
zeCrit Iy, Iy (z)<a,
Ind(z)=k

In theorem 6.2.1 we prove that Zy and Ay are Morse functions for generic
potential V. We also assume that the L2-gradient flows of Zy, and Ay are
Morse-Smale. In both cases this should again be achievable by a generic per-
turbation of the potential V. Under this assumption there are two boundary
operators. There is OM : Cf — Cf_,, determined by the set M°(z~,z") of
negative L2-gradient flow lines of Zy-, i.e. smooth maps u : R x S — M
which satisfy

(3) Osu — Vi Oyu — VV (t,u) =0,
and

: — T
(4) sggloou(s,t) =zT(t).

The second boundary operator §F : Cp — C}_, is determined by the set

ME(z~,zT) of negative L?-gradient flow lines of Ay-. These are smooth
maps w : R x ' — T*M which satisfy w(s,t) € TosnM,

(5) Osu — g(u)"'Vyw — VV (t,u) =0, Vow + e 2 (g(u)@tu - w) =0.
and
; — o(rF F
(6) Jim w(s,t) = g(27) o™
As a result there are two homology theories, namely the Floer cohomol-

ogy of T*M [F89Db], and the Morse-Witten homology of the classical action
Zy. They are denoted by

ker 6F ker oM

HFJ*(T*MaHV):Wa HMf(AM,IV):W.
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As in the finite dimensional case we expect HMZ(AM,Zy ) to be naturally
isomorpic to the singular homology of the sublevel set

ANM ={z € AM|Iy(z) < a}.
CONJECTURE 1.0.1. There is a natural isomorphism
HMS(AMaIV) = H*(AaMa Z?)

On the other hand the negative L2-gradient flow of the symplectic action
Ay gives rise to Floer cohomology groups HF, *(T*M, Hy). The main
result in this thesis is a major step towards a proof of

CONJECTURE 1.0.2. There is a natural isomorphism
HF,*(T"M, Hy) = BM2(AM, Ty)
where Hy : S x T*M — R is given by (2).

Its proof relies on a bijection between certain moduli spaces. Injectivity
— the implicit function theorem part — is the content of this thesis, while
surjectivity — the compactness part — has not been worked out yet.

While working on this project we received a preprint by Claude Viterbo
in which he proves by different methods that Floer cohomology of the cotan-
gent bundle and the singular cohomology of the loop space are isomorphic.
His proof relates both homology theories to Lisa Traynor’s generating func-
tion homology [T94].

THEOREM 1.0.3 (Viterbo, [V96]). There is an isomorphism
HE*(T*M) ~ H*™ (A M).

The above conjectures together give rise to an alternative proof of
Viterbo’s theorem where, in addition, the isomorphism is natural. If M
is not simply connected there is a separate isomorphism for each component
of the loop space.

The proof of conjecture 1.0.1 will be analogous to the finite dimensional
theorem which asserts that the homology of the Morse-Witten complex on
a compact manifold agrees with the singular homology (cf.[F89a, SZ92]).
The proof of conjecture 1.0.2 will be discussed below. Both results should
be extendable to arbitrary coefficient rings if one takes account of the orien-
tations of the moduli spaces of connecting orbits as is done in [FH93]. The
details of the proof of conjecture 1.0.1 as well as of the orientation problem
will be carried out elsewhere.

Our strategy to prove conjecture 1.0.2 is as follows: Both Morse-Witten
homology HMZ(AM,Zy) and Floer cohomology HF, *(T*M, Hy) arise
from the same chain complex C? generated by the solutions of (1) and
graded by the Morse index. The index theorem 3.0.1 states that this equals
minus the Conley-Zehnder index when viewed as a critical point of Ay and
this explains the minus sign in the grading of Floer cohomology. It remains
to compare the boundary operators and this will be done using a family
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of metrics on T* M which scale the vertical component down to zero. This
reduces the problem to the study of an adiabatic limit of a family of elliptic
boundary value problems in T*M approaching a parabolic one — the heat
flow equation in M with perturbed closed geodesics as boundary data.

In this thesis the implicit function theorem part of this singular per-
turbation problem is studied: Given a parabolic solution we will identify a
unique elliptic solution nearby. A compactness argument then is needed to
establish the existence of a limit element of the elliptic families with suffi-
ciently fast rate of convergence. This will be carried out in future research.

Statement of main results The proofs of the following results are
based on conjecture 1.0.6 and work for any p > 2 such that x(p) € (0,1).
The conjecture is proven below for p = 2, in which case x(2) = 1/2. Let exp
denote the exponential map of (M, g) and

THX) : Ty, M = Ty, x M

parallel transport of covector fields along the curve 7 — exp,,7X. The
moduli spaces M°(z~, ) and M¢(z,2") can be interpreted as zero sets
of sections Fy and F, of certain Banach space bundles. If its linearization
Dgo at a zero wug is onto we call ug regular. Define wy = g(up)dsug and
denote by Dy, the linearization of F.

THEOREM 1.0.4. (Existence) Assume Conjecture 1.0.6 below. Let p >
2 and choose nondegenerate x—,z" € CritTLy as well as a parabolic cylinder
ug € Mz, ") such that D?m is onto. Then there exist constants ey, c > 0
such that for any € € (0,€y) the following is true: There exists an element
Ze = (Xe,Ye) € im DL such that

Ti(uo) = T*(X.) (g(u0)dhuo + Yo) € M(™,a)

and

23
“Ze“l,p,e < 062 ) “Ze“oo,e <ce" 2.

More precisely, Z. = (X, Ye) satisfies

1 Xellp + [lg(uo) ViXe — Yellp < c €
[Yellp + IVeXellp < ce/?
[ViYellp + Vs Xellp < ce
“VsYe“p < cemin{3/2fnp,1}
_3
[ Xelloo + 19(u0) ViXe = Yelloo < ce’
_3
IViYelloo + Vs Xelloo < c €' 2

IV Yol < ¢ cmind 20113,

3_3
“YeHoo + ||VtX5||oo <ce2 2
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THEOREM 1.0.5. (Uniqueness) Assume Conjecture 1.0.6 below. Let
p > 2 and fix nondegenerate x—,x+ € CritTy as well as a parabolic cylinder
ug € M%°z~,zt) such that D?m 1s onto. Then for any constant ¢ > 0
there exists €9 > 0 such that the following is true for any e € (0,€): If
Z = (X,Y) € im Dy, with

T (%) (9(w0)Ohg + V) € Me(z™, o)

and

5 3
HXHoo < cet 2

3_3

1Y loo + IViX|loo < cet™ 2
1_3

IViY oo + [|VsX|loo < cet 2

then Z = Z., where Z. is the element provided by the existence theorem

1.0.4.

Hence we obtain for fixed nondegenerate x—, z+ € Crit Iy, of Morse
index difference 1 a map

T, : Mz ,2") = Mz ,2z%) , e> 0 sufficiently small

which associates to every regular solution wg of the parabolic boundary
value problem a solution w, := T¢(ug) of the elliptic one. The existence
theorem establishes the map T, and specifies the distance between uy and
we (strictly speaking between g(ug)d;up and w, in a certain trivialization)
to be quadratic in . The uniqueness theorem asserts that T; is well-defined.
Together they show that T¢ is injective.

CONJECTURE 1.0.6. Let A : R x S' — R" ™ be a differentiable family
of skew-symmetric matrices such that for s = Foo

A(s,t) = AF(t) |, 9,A(s,t) = 0

uniformly in t for skew-symmetric loops AT. Then there exists a continuous
function K : [2,00) = R with k(2) = 1/2 and such that the following holds:
For any p > 2 there exist eg = €o(p, A) > 0 and ¢ = c(p, A) > 0 such that

10:€ 1, + el sl
< (1106 = 0 = Al + ell0s7 + € (0 + AE = )l
+ e (18], + elily) )

for € € (0,€) and E, i7 € C§°(R x SY,R"). The same holds for Os replaced
by —0s. We set || - [l = I - lo(rxs1 R7)-
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Let us discuss its proof for p = 2 to see that the skew-symmetry of A is
an essential assumption:

10:€ — 047 — ATII3 + €2(|0s77 + € 2(04€ + AE — )13
= |0&]I3 + |07 + Aifll3 — 2(0sE, Ouif + A
+ (1077115 + €210 + AE — 1[5 + 2(0477, € + AL — 7)
= |0:€]I3 + |07 + Aifll3 — 2(0sE, Aif)
+ €2)|047713 + € 21|0€ + A — 713 + 2(0s77, AE)
> € 2|0 + AE — 713 + 1077 + A3 + 10:€113 + €105}
— s Al (EIE + 21713
where we used (partial integration)
(07, 7y = — (i, 0s7) = — (0577, 7)
and (partial integration and [Js, ;] = 0)
(05E, 04T} = —(€, Bs04) = — (€, 3,0,
= (&tér: 3s77>

as well as (partial integration, A7 = —A, its asymptotic behavior and
Young’s inequality lemma 4.1.7)

—2(05€, Aif) + 2(y7, AE)

= 2(E, (D5 AT + AdsT) — 2(AD, 17, €)

2 .
> —ﬁllﬁllz 105 All oo Vellll2

> 20, Al 5068 + 51713) -
REMARK 1.0.7. 1) Let
f =0, — 0y — Aif
g =0si + € 2(0 + AL — 7)
then conjecture 1.0.6 implies (add 0)
e 10+ AE = ifll, + 10T + Adfl,
< ele+ 1) (10— 07— Al + €047 + € 2D + AL = D), )
+ = (|1l + ellly )

2) The conjecture leads to a proof of the fundamental estimate, lemma 4.2.5.
3) If we can prove a modified Calderon-Zygmund estimate of the following
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form: for any p > 2 there exists a constant ¢, > 0 such that
18:€1l + 10471 < cp (I0E — il + 047 + B4E — i, )

for all 5, i7 € C3°(R2,R"™), then the same rescaling argument as in the proof
of theorem 4.3.2 implies conjecture 1.0.6 with x = 1. In the above estimate

|- ||p = ||LP(R2,R")-
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1.1. Morse theory on the loop space

We shall discuss in more detail the Hessians of the two variational prob-
lems, the gradient flow lines, and the linearized operators.

The Hessian. The Hessian of Zy at a critical point x € CritZy is the
perturbed Jacobi operator

AY  W22(SY 2*TM) — L*(S,z*TM)
given by
AV = —V,Vi& — R(&,3)d — VVV (t,2).
Here R € Q?(M, EndT M) denotes the Riemann curvature tensor. For every
x € Crit Ty the operator AY has finitely many negative eigenvalues. The
number of these, counted with multiplicity, is the Morse index Ind(z).

To compare this with the Hessian of A4y it is convenient to identify the
tangent space T, T* M with the direct sum T, M @T; M, where z € T,y M, via
the isomorphism which takes the derivative Z of a path z(t) € T*M to the
pair (£, V;z). With this identification, which is studied in B.1.2, the Hessian
of Ay at a critical point z : S* — T*M with z = g(z)4 is the operator

AL wh2(SY 2*TM @ 2*T*M) — L*(S*,z*TM & *T* M)
given by

#(5)-(5 ) () (=)

This operator is injective iff A is injective and thus Zy is a Morse function
iff Ay is a Morse function. However, while the critical points of Zy have
finite Morse index, in the case of Ay both the Morse index and the coindex
are infinite. But there is a relative Morse index, given by the spectral flow,
and it is shown in [SZ92] that this agrees with the Conley-Zehnder index.
This index can be canonically defined as follows. Choose an orthonormal
trivialization of the bundle z*T'M — S' and consider the dual trivialization
of z*T*M (in the nonorientable case choose a trivialization over [0, 1] with
suitable boundary conditions). Via the above isomorphism these give rise
to a unitary trivialization of the bundle z*TT*M where z = g(z)&. Now
the linearized Hamiltonian flow gives rise to a path of symplectic matrices
U, [0,1] = Sp(2n) with ¥,(0) = 1 and det(1 — ¥,(1)) # 0 by

M ot =—nswn0 . wo=0 . s6- (% ])
where S = S represents VH (¢, z) in the unitary frame. The Conley-Zehnder
index of z is defined to be the Conley-Zehnder index of ¥, (cf.[CZ84,
SZ92]). In appendix D we provide an elementary discussion of the Conley-
Zehnder index and visualize the concept in the case n = 1.

To get an idea of what relation between the Morse index and the Conley-
Zehnder index of z to expect consider the simple case where Q(t) = @ is
a constant path of matrices with ||Q|| < 2. The solution ¥, of (7) is
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then given by W,(t) = e~*/*S and hence pucz(¥,) = L sign S ([SZ92]
Theorem 3.3 iv), where the signature of S is defined to be the number of its
negative eigenvalues minus the number of its positive ones. As we derive in
appendix A.4 the perturbed Jacobi operator A2 may be represented in an
orthonormal frame by the operator

I:W22(SLRY) — LX(SYR) , € —8,0,6 — QE.

Now observe that the number of negative eigenvalues of I coincides with
nT(Q), the number of positive eigenvalues of Q. This leads to

poz(Vy) = gsign S =n~(S) —n =n"(Q) —n
=-nT(Q)=—n"(I) = —Ind(z).
In the general case this still holds true and is the content of Theorem 3.0.1.
Related questions have been studied previously by Duistermaat [D76] and
Viterbo [V90] (cf. Chapter 3).

The gradient flow lines. Recall that the set M°(z~,27) of negative
L?-gradient flow lines of the energy functional Zy- : AM — R are the smooth
solutions of 3 and 4. The Morse-Smale condition implies that this is a
manifold of dimension

dim M°(z™,2%) = Ind(z™) — Ind(z™).

There is a free R-action on M%(z~,z") and in the 1-dimensional case the
quotient M%(z~,2%)/R is a finite set. Counting the connecting orbits gives
rise to a boundary operator

oM. = cp

whose homology is denoted by HM*(AM, Iy ).

If we identify T, 7*M = T, M & T,;M as above then the negative L?-
gradient flow equation of the symplectic action Ay can be written in the
form

Osu — g(u) "' Vyw — VV (t,u) =0, Vsw + g(u)0u —w = 0,

where w : R x S' — T*M is smooth and w(s,t) € T;‘(s t)M' These are the
J-holomorphic curves of the title. The limit conditions take the form

: — (2T, 2T

sggloow(s,t) g(zT)0px
where T € Crit Iy. The set of such w is denoted by M!(z~,z%). For a
generic g and V this is a manifold of dimension

dim M'(z7,2%) = pez(zh) — pez(z™)
where pcz(x) denotes the Conley-Zehnder index of z € Crit Zy. The
genericity statement will be subject of future research. Counting the con-
necting orbits in the case of index difference 1 gives rise to a boundary

operator
ot — o,
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whose cohomology is denoted by HF, *(T*M, Hy); cf. remark 1.2.1 Note
that C¢ is identified with the Floer cochain group CF,* so that ¢ :
CF; % — CF;**! increases the grading given by the Conley-Zehnder in-
dex by 1.

The linearized operators. Linearizing the gradient flow equation (3)
of the classical action gives rise to the operator D2 : C*°(R x S*,u*TM) —
C®(R x S',u*TM) given by

(8) DY = V& — ViVl — R(E, Opu)0pu — VeV (t,0)

for ¢ € C®(R x S',u*TM). This is a Fredholm operator between ap-

propriate Sobolev completions. For example, if we define HP = Wo? and

WLP = WiP as the completions of CS(R x SY,u*T M) with respect to the

norms
0o pl 1/p
H§|0,p=</ /0|§|Pdtds) ,

o0 1 l/p
||£||1,p=(/ / |£|”+|Vs£|”+|VtVt§|pdtds> |

then DY : WP — HP is a Fredholm operator with index
Ind DL = Ind(z~) — Ind(z™).

If this operator is surjective for allu € M°(z~, z*) then the implicit function
theorem asserts that the space M%(z~,z%) is a smooth manifold whose
tangent space at u is the kernel of DY and whose dimension therefore equals
the Fredholm index of DY. A reference is Theorem A in [RS93] where
the Fredholm index is expressed via the spectral flow which is the index
difference in the case at hand.

Linearizing the gradient flow equation (5) of the symplectic action gives
rise to the first order differential operator

DL WYP(R x Y, u*TM @ u*T*M) — LP(R x S, u*TM & u*T* M)
given by
Vs 0 —g! Vi )
Dl — S
s = (e )+ ) (e

n < —R(&,0iu)g'w — VeVV )
gR(&, dsu)g~'w —n

for ¢ € CP(R x SY,u*TM) and n € C°(R x S*,u*T*M). This formula

is calculated in section A.2. The operator D is Fredholm for every w €

M (z~,z*) and its index is given by

£
U

") = nez(z™).

We expect that D), can be made surjective for all solutions of (5) and (6) by
a generic perturbation of V. If this is the case then, by the implicit function
theorem, the space M!(z~,z%) is a smooth manifold whose tangent space
at w € M'(x~,x") is the kernel of the operator D} . The two moduli spaces

Ind Di) = pcoz(z
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of connecting orbits are genuinely different but in the next section we show
how to deform the equations (5) into (3) by a change of the metric on T*M
or equivalently by a change of the almost complex structure J compatible
with the metric.

1.2. The adiabatic limit

Exploiting the independence of Floer cohomology of the compatible al-
most complex structure Q@ = —d© on T*M [F89b], [SZ92] we may, in the
identification T, T*M =T, M & T, M, choose a family

(0 —eg!
Je_<6—lg 0 >

which is compatible with €, i.e. Q(-, J.-) = G¢ is a Riemannian metric on
T*M, which rescales the horizontal component by the factor ¢! and the
vertical component by the factor e. The space M!(z~,z7T,.J.) of solutions
w with w(s,t) € Tyis.yM of

Oyii — eg(i) " Vi — €VV(£,3) =0, Vb + e (g@)dha — ) =0.

with boundary condition (6) corresponds, via rescaling w(s,t) = w(e~'s, t),
naturally to M¢(z~,z") the space of solutions of (6) and

(9) Osu — g(u)~'Vyw — VV (t,u) =0, Vw4 2 (g(u)@tu — w) =0.

Although the spaces M!(z=,z%) = MY (z7,zT,J;) and M (z=, 2", J,)
might be different, the resulting Floer cohomology groups HF, *(T*M, Hy)
and HF,*(T*M, Hy, J¢) are naturally isomorphic and so it suffices to study
ME(z~,x") in order to compare the boundary operators.

REMARK 1.2.1. The construction of Floer homology for a compact sym-
plectic manifold subject to certain topological constraints in order to deal
with the possible presence of J-holomorphic spheres is standard (see [Sa97]
for a beautyful exposition). Although (T*M,Q = —d©) is not compact,
it exhibits two nice features. Firstly, the existence of a global Lagrangian
splitting of TT* M allows for a natural normalization of the Conley-Zehnder
index of critical points of the symplectic action. Secondly, the exactness
of 2 excludes the existence of nontrivial J-holomorphic spheres and so one
may use the integers as coefficient ring and, more importantly, standard
bubbling-off analysis leads to uniform C'-bounds for the solutions of Floer’s
elliptic boundary value problem. However, first one needs a C°-bound which
in the compact case is trivial and in the present case of T*M and a Hamil-
tonian quadratic at infinity has been established by Kai Cieliebak [Ci94],
theorem 5.4. The same bound holds uniformly for all solutions on which the
symplectic action takes values in a fixed interval. An essential tool in his
proof is lemma 5.3 which says that

{2 € W', T"M) | Ay (2) < a, || L% — grad Ay ()2 < b}



12 1. INTRODUCTION AND MAIN RESULTS

is bounded in the W2-norm by a constant ¢ = c(a, b, V). In particular, the
lemma gives a uniform C%bound for all critical points of action at most a,
and so implies — in view of their nondegeneracy — that there is only a finite
number of them. Therefore the chain groups C} are well-defined.

We shall study the limit behaviour of the solutions of (9) as € — 0. This
is a singular perturbation problem. Heuristically, one expects the solutions
to converge to elements w which satisfy the first equation in (9) and where
the second equation is replaced by w = g(u)dyu. But these are exactly the
solutions of (3). In other words the solutions of the elliptic equation (9)
degenerate in the small e limit to the solutions of the parabolic equation
(3). Strong evidence for this limit behaviour comes from the energy identity

1 00 1
Ee(w) = 5/ /0 <|83u|2 + g 'V + VV(t,u)|2> dtds

1 00 1
(10) + = / / <62|sz|2 + € 2|gyu — w|2> dtds
2 —00 J0

=ZIy(z7) — Iy (z")
for the solutions of (9) and (6).

PROOF. Use in the second step that w solves (9), condition (6) in the
third one and set zT = ¢g(zT)d;zT to obtain

00 1
- / / GE(%Jeatw — LGV H(t,w), J.Opw — GeVH(t,w)) dtds
—_ 0 \ . J

'

=—0sw
1 00
:/ / Q(0sw, Ow) + d%H(t,w) dsdt
0 _

:—/ *d®+/th) H(t,z™)dt
Rx St

/ @/ @+/th H(t, ) dt
= Ayv(z7) — Av(z") = Ty («7) — Ty (z™).

Note that in the last but one step we used Stokes theorem and the fact
OR x S') = —(—o00 x S') U (+00 x S'), where the minus sign in front of
the first term indicates a change of orientation. O

The proof of conjecture 1.0.2 is based on establishing a bijection between
the space M(z~,z*) of solutions of (9) and (6) and the space M°(z~,27)
for small € > 0. The main idea is to think of the solutions of (3) as approxi-
mate solutions of (9) for e small and to use the implicit function theorem to
prove the existence of a nearby true solution. This is the content of chapter
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2. Here the crucial ingredient is to establish the invertibility of the linearized
operator (on the range of its formal adjoint operator)

DS, WHP(R x 8L, u*TM @ u*T*M) — LP(R x S, u*TM & u*T* M)
for the e-equation. The formula for this operator is derived in appendix A.2
pe (€ = ( Ve€—9'Vin—R(,0u)g " tw = VYV
v\ n Vo + € 2gVi€ + gR(E, 0su)g ™ w — €%
for ¢ € C°(R x S, u*TM) and n € C°(R x St u*T*M).
Let us fix a solution ug of (3) and define

wy = g(uo)dyuo-

For wy we must prove that the operator Dy, is onto for € > 0 sufficiently
small and prove an estimate for the right inverse which is independent of
€. We will establish this in Theorem 4.4.4 under the assumption that the
operator D20 is onto. To obtain uniform estimates for the inverse with
constants independent of € we must work with suitable e-dependent norms.
These are suggested by comparing powers of € appearing in the energy iden-
tity (10). For compactly supported sections ¢ € C®(R x S',u*TM) and
n € C®(R x St u*T*M) define

[eo) 1 1/1’
(11) 1€ o e = ( [~ [er+ et dtds)

and

(12)  MEMIT pe = €M p.e + 1Vl Vemllg e + 1(V&s Vam)I§ e -

To indicate the presence of these new norms on the standard Sobolev spaces
W and L? we denote them by W, "ps and L, respectively.

Geometrically, the difference between the operators DY and D¢ is the
difference between configuration space and phase space, or between loops in
M and loops in T*M. Consider the embedding

AM — AT*M : z — (z,9(x)%).
The differential of this embedding is given by
C®(SY, 2*TM) — C®(SY, x*TM @ x*T*M) : £ — (&, g(x)V;€).

To compare the operators D2 and DS we must choose a projection onto
the image of this embedding (along u). A natural candidate would be the
orthogonal projection 7 with respect to the Hilbert space structure (11).
This would be given by (&,7) — (1 — €2V, V)71 (¢ — €2g71V,n). Instead we
introduce the projection operator m, : Wel’p(]R x SYuwTM ® w*'T*M) —
WUEP(R x 1 u*TM) given by (cf. section 4.1)

me(&,m) = (1 — €V Vy) 1 (€ — 297 ' Vin).

We denote by © : WY (R x S*,u*TM) — WP(R x S, uw*TM & w*T*M)
the inclusion

&o = (€0, 9V&o)-
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We refer to chapter 4 for precise statements about the relevant estimates
and their proofs.

1.3. Overview

As a matter of fact the order of presentation is essentially reverse to the
order in which the project has been worked through.

In Chapter 2 we present the proof of the main results — existence and
uniqueness of elliptic cylinders nearby parabolic ones — by carrying out a
Newton-type iteration method for the Banach space bundle section F, rep-
resented in a suitable trivialization. Key ingredients are the uniform bound
on the right inverse of its linearization derived in chapter 4 as well as the
quadratic estimates of chapter 5.

Appendix A provides analytical results on the exponential map and par-
allel transport required to optimize the quadratic estimates. Moreover, the
linearized operators and the representation of the section with respect to a
local trivialization are calculated.

Chapters 3 on the index theorem and 6 on transversality theory stand
on their on and can be read independently.

Appendices B, C and D recollect basic facts about the two variational
theories at hand, Newton’s iteration method and the topology of the sym-
plectic linear group SI(2,R), respectively. They may be a starting point for
the novice. Certainly they were for me.



CHAPTER 2

The approximation Theorem

This section is at the heart of the thesis as we combine the elliptic estimates
obtained in chapter 4 and the quadratic estimates of chapter 5 to carry out
the iteration leading to the main theorems 1.0.4 on existence and 1.0.5 on
uniqueness of elliptic cylinders nearby parabolic ones.

The strategy is to consider wy := g(ug)0yuo as an approximate zero of
the section F, of a Banach space bundle £? over a Banach manifold P;f’ ot
and then carry out Newton’s iteration method in order to find a true 7610
nearby.

L% UER,

%aph Rl
1,
¢ c/ WePHT, Bhe

FIGURE 2.1. Local trivialization of 1P — P;f) o+ at wo

1p
TWQR(',Xﬁ

To define the Banach manifold we follow [FHS95]| and fix a number
p > 2, two loops 27,z € AM and choose trivializations

(ﬁ:F (t) :R* — T:z::F(t)M
with ¢F(t + 1) = ¢T(t). Denote by
P=P7 .
the space of continuous maps w : R x S' — T*M which satisfy (6), are
locally of class WP, and satisfy ¢=, n~ € W'P([T,00) x S',R?) and ¢7,
nt € WHP((—o0,T] x S*,R"), where ¢T, nT are defined by
expy (47 (DET (5,1)) = u(s, )
and

T (€% ,0) (9(=T )™ () + 17 (1)) = wis, )

15
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for Fs > T with T sufficiently large. Of course, the first condition is simply
the base part of the second one. Here exp denotes the exponential map of
(M, g) and

T5() : TyeM — T:xpuogM

denotes parallel transport of covector fields along the geodesic 7 — exp, 7.
The space P is an infinite-dimensional Banach manifold with tangent space

TP =W'"P(R x S', u*TM @ u*T*M).
The fibre of the Banach space bundle £? — P over w € P is the space
EP = LP(R x Y, u*TM & u*T*M).

A standard reference for Banach bundles and manifolds is Eliasson [E67].
As we need to work in a Banach space setting, we have to trivialize
the Banach bundle &P — P;f’ o+ locally at wo and then study the induced

operator fgf;g (figure 2.1). To define the local trivialization of P around

wo we use again the exponential map on (M, g) and the parallel transport

T(X) : TugM — Teap, x M

along the geodesic 7 — exp,7X. Note that in local coordinates 7 (X )T_1 =
T*(X). Fc is then represented by the following nonlinear map between
Banach spaces

Firiv o WhP(R x Y, ubTM @ ufT*M) — LP(R x St usTM & uyT* M)

€,Up
X))t 0 e
Z=(X,Y) (T( ) T(X)*> F(TX)  wy + 7).

The basepoint of 7(X)* ™' (wo + Y) is given by ezp,, X.

As is discussed in great detail in appendix C, the Newton method is an
inductive process and there are essentially three ingredients that have to be
controlled: A small initial value ffﬁg(ﬂ), a uniformly (in €) bounded right
inverse Qf,, of dFV(0) = D, and the variation of derivatives dF" (Z) —
Dy,,- The bound on the right inverse is expressed by the key estimate for
Dy, on the range of Dy, * and control on the variation of derivatives is gained
by the quadratic estimates in chapter 5.

In appendix A, Theorem A.3.1, it is shown that
dF0,0) = D5, .

€,U0

A right inverse of D¢, will be defined in section 4.4 by

wo

Q, + LP(R x S ufTM @ uiT*M) — WP (R x S, ufTM & ugT* M)
~1
Z — Dy, " (DyyDyy) ™ Z
where Dy, * is the formal adjoint of Dy,  with respect to the L2-inner product.
As mentioned above, the main tools to estimate the right inverse are the



2. THE APPROXIMATION THEOREM 17

key estimates, Theorem 4.4.4, for Dy, on the range of Df * — here the
surjectivity of D,,, is used —

ID5 e < 3 (€l Dy DiseClloge + D, Dl )
I llp + 19267 1y < e (€/21Diy DisiCllope + €™/ lm Dy, DGl

where (£*,7%) = Dy ((), together with the fundamental estimate (Lemma
4.2.5)

(13)

e ln—g(u) Vi€l + IV:Elly + [V enlly + el Vol
< s (IDLS (€ Mllope + € 1€ lloge) -

which holds for D, as well as for Dy, * uniformly for € € (0,¢y). Here
K : [2,00) — R is a continuous function with x(2) = 1/2. Note that due
to the nonlinearities we need to choose some p > 2. As it turns out in
chapter 4, (13) is a consequence of (14) for all p > 2 with s, € (0,1).
Let us fix throughout such a p > 2 and note that its existence is based on
conjecture 1.0.6.

This chapter is devoted to the proof of the following approximation
result: Any parabolic cylinder can be approximated by a unique family of
elliptic ones.

In section 2.1 we prove the existence part, theorem 1.0.4, by constructing a
version of Newton’s iteration method for the map fngg It turns out that
the primary step of the induction process will determine the quality of the
final estimate. Extensive use of the fundamental estimate at this stage will
prove extremely valuable in order to get optimal results.

In section 2.2 we prove uniqueness by combining the estimates obtained from
the iteration, the key estimates Theorem 4.4.4 and the quadratic estimates
I and II from chapter 5.

(14)
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2.1. Existence

PROOF. (OF THEOREM 1.0.4 — EXISTENCE) Note that the nondegen-
eracy of the boundary conditions implies exponential decay of the cylinder
ug and its derivatives. We may therefore assume that there is a constant
co > 0 such that |Vsduuollp, + [|ViVsOiuoll, < co for all ug € M%(z=,zt).
By choosing ¢y sufficiently big, this clearly continues to hold uniformly for
derivatives up to order 4, let’s say. It follows that the cylinder wy is indeed
an approximate zero of F, in the sense that we can arrange its value being
as small as we like by choosing ¢y > 0 sufficiently small

()

Now we are in position to start the Newton iteration.

(15) 1Fe(wo)llop.e = 175 (0)

€,U0

|0p¢:: < ¢pe.

0,p,e

Step v = 0 : Let Zy = 0 be the initial point and define the correction term
o by

iU 0
(§0,m0) = Co = _Qe"]::’“O(ZO) =< <szo> '
This implies
. . 0
(16 Din = ~72a(Zn) == (g )

and we define the next starting point to be Z; = Zy 4+ (3. The estimates for
Co = (£0,m0) and its derivatives, which we are going to prove in this step,
are as follows: there exist constants €y, ¢; such that for all € € (0, €g)

1€ollp + lg(uo) Vico — nollp < €1 €
g9(u0)VeVi€o — Vimollp < c1 emin{s/2=rn:2}
Im0llp + | Vebollp < 1 €2

l9(u0)VsVi&o — Vinollp <
IVinollp + IVséollp + IViVibollp < cre

IV smolly + IV Vséolly + [V Vimollp < e M3/270:1)
(17) V5V s&olly + 1V V0l
IVsVsnollp

l€0lloo + 119(20) Vi€o — 10|
0lloo + 1 Violloo < 1622

_3
IVin0lloo + | Vsbolloo < ¢1 €' 720

2—kKp

A

Cl €

IN

C1

1—kp

IN

Cl €
6nﬁn{3/2—2np,1—np}

IN

C1

23
cLe 2

IN

||v8n0||oo < Cl emin{3/2_ﬁ3p,1}_%.
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Before entering their proof we show how they lead to an estimate for the
two components of F"*(Z;). Using (16) and the fundamental quadratic

€,Up
estimate theorem 5.1.1 we get

IF2 Z)illy = I(FI2 o) — FLv0) — Dg, o)l
< 626%62_5 (62 + 32 et e+ e)
2. 3-2%
< 3cicpe” 2
and

euo euo

(Ferug (Z)2llp = (FELig Go) — Felug (0) — Dy Go)llp

§6262%2 (e—l-e)
3

5
+ a2 (e + /2 4 €) + Aege B
3
< 30%02627%
for 1/¢1 + €9 > 0 sufficiently small. It turns out that we even need partial
derivatives of the section evaluated at Z;. We apply the corresponding
fundamental quadratic estimates in theorem 5.1.1 and simply state the final

results. Observe that the partial derivatives of the first component of the
section are €'/2 better as expected

3

IV F Z)illp < 3cteae”

3.3

IV (Fehis (Z)2llp < 3cteae> >

5 3

IV (Fehi Zillp < 3cteae ™2

3
IV s (FEi Z0)ally < Bcfese 2.

Let us now derive the estimates in (17). The key estimates (13) give three

of them

[1€0llp < loll1.p.c

0
S 3 (6 (vsw0>

S 2000362
where we applied Lemma 4.2.4; moreover

+ ||(]l — eO‘PVtVt)*l(O + EZVtszg)Hp)

0,p,e

||770||p + ||Vt£0||p

1/2 0
= c3 (6 (sz0>

3/2

0,p,e

L V21— eV, v, L0+ EZVtVs“’U)“P)

< 2c¢pc3e
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Using these in the fundamental estimate (14) for D, ~gives another two
estimates in (17)

e Hlg(uo)Vico — molly + [IVenollp + |Vséollp + €| Vsnollp

<o (](55)

<cy (600 + 20003627%1’ + 2000365/27Kp>

+ e "|[&llp + el“PHme>
0,p,e

S 200046

for g > 0 sufficiently small. It remains to improve the estimate for V7 in
the LP-norm as well as to obtain the L°°-estimates. Note that the standard
local Sobolev estimate (of the L>- by the W P-norm for p > 2) pulls through
to the case of cylinders, just as in the proof of Lemma 4.2.6, and so we get
the existence of a constant c¢; > 0 such that for all £ € C°(R x St ufTM)

(18) 1€lloo < e5 (IEllp + [IVe€llp + 1Vs€llp) -

On the other hand Lemma 4.2.6 with 51 = 1/2 , 2 = 1 tells us that there
exists a constant ¢5 > 0 such that

_3
(19) I€llso < ese ™3 (Nelly + €721V igll, + €l Vitly) -

for all £. The unbalanced version only gives |||l < ce, but the balanced
one leads to

_3 93
[€olle < 573 (1ol + €2V icollp + €llVatollp) < Beocacse®™

for €9 > 0 sufficiently small.

To prove the remaining estimates in (17) it is convenient to work in
an orthonormal frame which is parallel with respect to s. We indicate this
situation by putting an arrow on top of all objects which would generate a
collision with the global notation otherwise. For instance 6,5 denotes 0; + A,
where A(s,t) € so(n,R), i.e. AT = —A pointwise. As we will apply several
times the fundamental estimate (14), it is usefull to introduce some notation:
Let p = (i,7) € Ny x Ny and define

Oy = V- V050, = (6t)i(3s)j_
——_——— ——
i times j times

Setting (£7,7) = De(,7) we find (cf. appendix A section A.4)
5 (3@) _ Bs0,E —qﬁa,iﬁ’— S9,E )
“\ 0,7 D30 + €2 (vtaug — 8,ﬂ7) + BOE

( 0uE" + 05, 0, = [V1, 0,)i7 — [S, 0,)€ )

—

Ol + 05, 017 + € 2[Ve, 0JE + B, 9,)€
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so that the fundamental estimate yields

€ HIVi0u€ — Bully + IV 10l + 11050l + €ll 058,71l
<er (naua* ! 4 100, 0 = [V, D)7 — 15, .)€,
+ |07 + [05, 0,17 + €2[Vi, Bu)E + [B, 9,)El,

e 9€]l + € uaﬂﬁup) -

In what follows we apply this estimate to

EN _ o (&\_{( O
(ﬁ') =P (%) = (—aswo>

where the last equality is equation (16).

The case p = (1,0) : 0, = V: and hence m,aﬂ] =0 and [55,8#] = 0,A, as
was shown in appendix A equation (142). Moreover,

—[S, V] = =8V, + (ViS) + SV, = (V;S) = (8,5) + AS

and similarly for [B, V,]. Equation (20) together with the estimates obtained
so far implies

e NIViVi€o = Viiollp + IV Vaiiollp + 10:Viéollp + |05 Viifoll,
< s (04 ca,all&olly + co,s 1l + eco + eca alblly

+ecg, gl +e IVibolly + € el

< ciemin{3/2—np,1}

for e > 0 sufficiently small. This yields appropriate estimates for ||V, V£, —
Viiollps IVi0séollp and — using the LP-estimate for V,7jy obtained above —
we get ||V Vilollp < 3cocae.

The case = (0,1) : 9, = J5 and so [Js,0,] =0, [6,5,8”] = —05A and

—[S, 8] = (89).
Equation (20) leads to three more estimates in (17)
e M|V:05€o — Bsiollp + IV 10stiolly + 10:05Eoll, + €ll DsOsrioll
< s (04 coallolly + co,s1&llp + eco + € o, all&
+ econlolly +e 10l + €10l

< 3cgege! P
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for g > 0 sufficiently small. Here we used the estimate ||0s7oll, < 2cocs
obtained before. Observe that we get from this and formerly obtained esti-
mates

105770l < Beocae™™"™® + (105 ol + 11V, DJéoll
< QCiEmin{?)/anp,l}

for €9 > 0 sufficiently small.
We are now in position to derive some of the L*-estimates. The bal-
anced versions are as follows

IVi€o — 7ol oo
3 (s o= - = - .
<cse (||Vt§0 — 7ollp + €V/2||V, Vo — Virollp + €]|0sVi&o — 35770“p>
3 .
< cse 2 (2000462 + ciemm{%'ﬁp"r’ﬂ} + 301637%1’ + 038A20003e3>

3
< 4020562_5
and
— -3 - 12\ = N 4 3_3
olle < e (il + €2 Fublly + ellduiilly) < 3edesct ™
The same estimate holds for V&, in view of the result for ||[V,& — 7o |lo-
Moreover,
= - _3
IV ilolloo + [|9solloo < ce' 2.

We could do better for p close to 2 using the unbalanced estimate (18):
V460 — olloo < dchese? ™"
177 lloe + [[Ve€olloo < 3chese™in{3/2=rp,1}

V770100 + 1050 ]|oe < ce .

Observe that so far we only get

1057000 < cel”%*3/2p,

which is not sufficient. To get a better estimate consider
The case p = (1,1): 9, = V.8 and so

[6% 8#] = —(6,53514) - (asA)§t 3 [881 au] = (8314)83
(S, 0] = =(V1055) = (9:9) Vi — (V45) s
and the quality of the next estimate is due to the one of €77 ||V, V&|,
671”615615835) - 61tas770||p + “6t6t85"70”p
+ 1105 Vis€ollp + €l|0s Vi Dyoll, < ce™m{B/2=2rp =0},
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The case = (0,2) : 9, = 0505 and so [Js,0,] =0,

[6,5,@] = —2(0;,A)0s — (0,0,A) , [S,0u] = —2(055)0s — (05055),
therefore

e LIV 105050 — D550l + ||V :0sDsiol
+ ’|3s35355)’|p + 6||358585ﬁ0]|p < cemin{l_Q’ip;O}‘

The latter implies, using a result from case u = (1, 1),

1050570l < 4cie™ =2t 110,900, + [V, 051050l
< 4ciemin{272np,1} + ciemin{3/2f2np,lfnp} + 2CBSACOC3€

< 2ciemin{3/2—2np,l—np}
which finally gives, using the balanced estimate,
||8s770||oo < CE_% <€min{3/2—f$p,1} + 63/2—1% + ernin{5/2—2/ip,2—/ip}>

i _ _3
SCemln{?)/Z Kp,1} o

The unbalanced version leads to
10570 [lo0 < cemin{3/2=2kp,1—kp}

Choose ¢; > 0 sufficiently large to get the desired constant in the estimates.

Induction step v — 1 = v : Let v € N and suppose we had already
constructed (p,... ,{,—1 and Zy,...,Z,, then define

(51/’771/) =(y = —Qi,ooff,’}fg (Zz/)

and

Zl/+1 - ZI/ + Cu-
This implies
(21) Diyolv = —Fiud(Zy).

The claim is to prove the induction hypothesis (H,) under the assumption
that (H,—1) holds.
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1€ + lg(uo) Vil —null, < g_lll 2
Inllp + 19:8lp < 55 €72
IVenullp + [IVs&ullp + [IVeVi&olly < ;—11/ €
IVsnullp + IVeVséullp + IVeVinullp < ;_11/ emin{%_nml}
IVsVs&ullp + IV Vs llp < ;_}/ L r
IVsVsnullp < ;—11, emin{%*%pq}
€0 lloo + l9(10) Vils — My lloo < ;_111 2%
(HV) cT 3_3
17w lloe + I Vi&ulloo < TR
IV llso + IVséullso < ;—11/ o
1900l < 55 a2t o
I g < 292 S
IV e Zoinllope < 3(;%,,02 3%
Vs }?Zg( Zys1)ope < 302%,/02 62_%‘

Here ¢; and ¢y are the constants introduced in step v = 0. (H,) holds
uniformly for all € € (0, €), where ey > 0 has been chosen sufficiently small.
As is to be expected we will get significantly better estimates here than
in step v = 0 and as actually was our claim in (H,). However, there will
appear additional constants and we use the extra powers of ¢ to neutralize
them and therefore get (H,). It will also be important to use the better
results in estimating F;’ t’"“’ via the quadratic estimates derived in chapter 5.

REMARK 2.1.1. Observe that the estimates for two terms, namely
IVsnullo and ||VsVn, ||, are worse than the ones obtained in step v = 0.
This is not to be expected, but as the former estimate is not used anywhere
in this text and the latter one is sufficient for the Newton method we don’t
make any effort to improve them. However, just in case improvement is
needed at a later stage here are two proposals how it should work.

One way is two consider higher derivatives as in step v = 0, namely
the cases 4 = (1,1) and p = (0,2), but this leads to the problem of calcu-
lating quadratic estimates for the second partial derivatives V;V fﬁ’;fg nd
V V y:trzv

€,U0 "
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A more realistic way is to establish a modified version of conjecture 1.0.6
where e~ "7 (||€||, + €||nllp) is replaced by ||€]|, + ||7]lp- This holds is true for
p = 2, cf. lemma 4.1.6. Then iterating case p = (0, 1) should result in the
improved estimates.

Let us now assume (H,_1) holds. In what follows we will need again
and again the estimates

1Feas Ziloe < I(Felug Zillp + €l (Féug (Zn)llp
3c2cy 63_% 3c2cy 63_2_ 60102 3__
— 9v-1 ov—1 - 9v-— ov—1

and
7 eFE Z)llp < (1= eV V)T (FER (Z1 — €97 Vi FRY (Z)a)

3/2
< N1 FEe Zonllp + 206 N F L Zial
< 30102 3__ 6pcicy %_21 < 40102 3__
Q= ou—1 gr—1 gr—1

for €y > 0 sufficiently small. We used the induction hypothesis (H,_1) and
Lemma 4.2.4 to estimate the inverse operator. The key estimates (13) then
give

1€ llp < NIy

g < ca(eIFEE (Zo)llopee + e (2l )

60102 4_f 40102 3_7
S (21/ 1 Pt T Q— 1 )
5010203 3,_

- 9v-1
and
I llp + 1966ullp < 5 (2T () o + € 2 ImeF s (Z)ly

2
5_3
5621 62163j 2o
> v

for €9 > 0 sufficiently small. Using these results the fundamental estimate
(14) leads to

6_IHQ(UO)thz/ - 77V||p + ||Vt771/||p + ||Vs€1/||p + 6||Vs77t/||10
< e (IFEE 2 o + € el + < )

601020304 Bk 23;,,
— gr—1

for ¢g > 0 sufficiently small. Choosing ¢y > 0 again smaller, if necessary,
gives the desired estimates in (H),) for all terms involving LP-norms other
than Vgn,.

Let us now repeat the procedure from step v = 0, namely application
of the fundamental estimate (14) not simply to (&, 7,), but to (Vi&y, Viny)
and (Vs&,,Vsn,). To do so we are working again in an orthonormal frame
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which is parallel with respect to the variable s and indicate this by our usual
vector notation. In what follows we apply estimate (20) to

f,/ — 5/ _ _ptriv(/
<771/)> DE (ﬁy)) fe,uo (Zl/)

The case p = (1,0): 0, = V; and, using the identities [§t,8ﬂ] = 0,

[55,(%] = 0;A and —[S,V,] = (0:S) + AS derived in step v = 0, as well
as equation (20) we get

6_1||6t6té/ - ﬁtﬁunp + ||6t6t771/||p + ||3 6ltgt/Hp + e||3 6ltﬁl/“p
<c (Il(thfrzfé’ il + co,all&ully + co sIEllp + el(ViFnie (Z))allp

+ eco,alliiolly + ecg, gl llp +e (V& llp + fl_npllvtﬁullp)

701020304 g Ko
— Qv— 1

where we used (H,_1), the estimates derived above and €y,1/¢4 > 0 have

been chosen sufficiently small. Use the estimate for ||§t77,,||p and choose
again €y > 0 sufficiently small, then

5 o o Tceqesc 3
ViVl < =55 € ™ e

and
70%020304 65

3
: 5—Kp—3-
2”

which imply the corresponding estimates in (H,) for ¢y > 0 sufficiently
small. Moreover, it follows from the balanced estimate that

19iéuloo < 5 €% (I9Elp + 19Tl + €0,V

6c2cocse _3 3_3 ¢l 3_3
beicatsts -3 §-3 » O S5
—_— 14

VeV il + 105 Vil llp <

— 21/—1

The case = (0,1) : 9, = 05 and so [0s,0,] = [6,5,8“] = —0sA and
—[S, 0s] = (055). Equation (20) gives

671||§tasé/ - 88771/“1) + ||6tas771/||p + ||8 0 é;”p + 6||8 63771/“1)
<c (H( WFI Z)illp + co,alliivllp + co.sllullp + €l (B Fmit (Z) 2l
+ 6_1083A||£V||p + GCBSBHEVH;D "‘E_Hpnasé/“p + 61_’%”88771/“1))

2 2
7cicacsey (min{3—2,,2}— &
— ov—1
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for €gp > 0 sufficiently small. This implies
S - T2 0903C7  minf3 3
||Vtasﬂy||p + Hﬁsasf,,up < 121/7714 6m1n{3 2kp,2} 5p
and

Tcleacse]  mi 3
- 1€2€3C4  min{2—2kp,1}—5-
||333577,,||p < o1 € 2p

as well as

R T¢2CoC3C7  minfd—2k. 31— 2
lositullp < =t €U 1 gg o lléuly + 105V ol

2 2
5
8010201304 S-r- g
S ot

which for €y > 0 sufficiently small implies the last missing LP-estimates in
(Hy).

Using these results we can estimate the L>-norms for €y,1/c4 > 0 suffi-
ciently small. The balanced version of the L*>-estimate leads to

6c2cocse _3 1_3 C _3
12356221’6121’<—1€22p
I 17

1€0llo0 + l9(u0) Vi&s = M lloe <

2u—1
6cicocscs 3.3 1.3 ¢ 3.3
I lloe < SAZDED 35 1 < 2
Tcicacscacs -2 2-ky—2 _Cl 1-2
IVinulloo + IVséulloo < ou—T € e r < Y2 P
and
cC 3.3 _3 71_ in{2—2x, 53
||VS771/||OO S 21/_1 €4 2pe 2p (64 Kp +€m1n{4 25;074})
: 9 5 3 : 3 9 3
< ;_1 emln{172np,1}fﬁ < =2 emln{ﬁfnquan,l}fﬁ.
- v - v

Note that the minimum is taken on by the first, second, third number if %,
is in the interval [1/2,3/4], [3/4,1), (0,1/2], respectively.
Next we derive estimates for X, and Y,. Recall that X, = Z;/:_ol &

and Y, = Z;/:_ol n;; so it follows from the previous induction steps
(Ho), SR (Hl/—l)

v—1 v—1
Xl < Z &l < € 2271 < 2¢; €.
=0 =0
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Similarly we get

lg(uo)ViXy — Yyllp < 2¢1 €
1Yullp + IVeXullp < 2¢1 /2
IVYollp + Vs Xollp + ViV Xy [l < 261 €
IVsYollp + IVeVsXully + IVeViYollp < 2¢ min{Z—rp,1}
VsV X, |lp + [[ViVsYyllp < 261 €777
- IV VYl < 2¢p emin{i—2mm5)
X oo + 19(10) Vi Xy — Yy lloo < 201 €2 2
1Y, oo + 1V X oo < 261 €375
IV Yolloo + Vs Xolloo < 261 €75

.3 9 5
||V5YV||OO S 261 Emln{ﬁinp’172npa1}*%.

So far we have established all estimates in (H,) except for those of the
section ffﬁfé’ and its first partial derivatives. To obtain them we apply the
quadratic estimates theorem 5.2.1 and theorem 5.3.1, the estimates derived
above — not the ones from (H,) ! , equation (21) and the old trick of adding
zero to get for ¢y > 0 sufficiently small (appearance of both exponents 3/p

and 3/2p is not a typo)

I(Fm Zyr)lp
< \(FH(zy + ¢y — Fv(Zy) — dF(Z) Codllp

€,Up €,10 €,10

+ “(dfet,rzfg(zu) Cz/ - Dfug CV)IHP

3_3
€ r\2
§08<2u—1> (63/2+6+6)

3
€ P\ 5_3 /1 T_j 8 T_j 8
+08(2u—1)62 2p(€2 +l+€2 P p+l+€2 P p)
23
€ 2 3,33 P 3 5_3 k3 _9
+cg(2u_1)(62 2 (7% 4TI f 2 4 T ) e 2p>
3_3
€ P 93 93
+cs(2y_1)<e3/2+e-e %4+ ¢/2 e 2?)
93
€ 2p 3_3 5_3 K 5_3
+CS(2V_1)(E TreE Bt W ot 2p)
3_3 1 3_3 1 3_3
<ce2 2 € < —e€
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and

I(F22 (Zu )2l
S |(}—£Zg(zu + Cll) - f-triv(Zy) - d]:t”v(Zu) CV)QHP

€,Up €,U0

+ ||(d‘7:et,r1fg(zll) CV - D1€l}0 CV)ZH;D

33
< Cs(e 7p )2<672(62 n 63/2) e 32y 6min{3/2fnp,1}>

3_3
€ P 3 5.1
+Cg<2ll71>6 2P<(e3+62)e p+ e “P+gz)
23
€ 2 _3 5.3 o 3 . 3 5_3
+Cg<2yil)<672(63 2p 4 g2 2p)52 2p _|_€3 Kp=3pc2 p)
3_3
€ » 3_ 3 3 5_ 3
re(5r) (¢ e e )
23
€ 2 _3 5.3 o 3 3 5_3
2.3 2 i 3—kp
+ cg v 1 € "€ 2 +€ “€2 e W t¢ 2 €2 2
_3 1 _3 1 o 3
<ce € < — &
— 21/—1 - v

The underlined terms expose the worst behavior in terms of powers of e.
We used the spare positive powers of € to take care of all constants appearing
by choosing €y > 0 sufficiently small. Similarly the partial derivatives of the
section are estimated by using the corresponding quadratic estimates. As
a matter of fact we obtain for fixed p > 2, fixed x, € (0,1) and choosing
€o > 0 sufficiently small

||Vt(‘7:€tj;fg(zy+1))1“p <c 62V_1 €2 2 4 ... < 2% ¢33
Hvt(]:ngg(zu—i—l)h“p <c 62;;/_% €2 7 4 ... < 2% 6%7%
IVs(Féug Zurllp < 21 W< 2L &%
||Vs(.7:ngg(zu+1))2||p <c 6321/7_1;2 =2 +...< 2% =

This concludes the induction step.

It remains to show that (Z,),en, is a Cauchy sequence in the Banach
space WP (Rx St ugTM @ uiT* M) and that ]::zfg(Ze) = 0. The estimates
for Z, = (X,,Y) in the statement of the Theorem are then an immediate
consequence of the estimates (22) for the elements (X,,Y),) of the Cauchy
sequence. To see that (Z,),en, is a Cauchy sequence observe that its norm
is dominated by a standard Cauchy sequence in R, i.e. using the induction
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hypothesis (H,) and assuming without loss of generality that v > u, we get

v—1 v—1
1Zy — Zull1p,e < Z 1Cill1,pe < c1e? 22_l — 0 for v, p — oo.
l:u l:u

(H,) also implies

6c2coy 5.3
162 E3 % — ()

. tri .
Tim | F52(Z,)lope < lim o1

uniformly in € € (0, ). O
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2.2. Uniqueness

PROOF. (OF THEOREM 1.0.5) Set Z = Z — Z.. As Z,Z. € im DS} we
may apply the key estimate Theorem 4.4.4 to obtain

1Z — Ze“l,p,e <c <€||D§;02||0,p,e + ||7T€Dz€x)oZ”p>
€,U0

< (I@FEO2nlly + 2 (dFE 0 2)2 )

where we used Lemma 4.2.4 for the m.-term. To estimate the last two terms
add 0 and use

FiHv(Ze) = 0= FIv(Z)

to get two differences based at Z. (better estimates than at Z)

DS Z = dFIN0)Z = —FIN(Ze + Z) + FL(Ze) + dFITY (Zo Z

€,u0 €,u0 €,up V€
+ (dFEi 0y — dFE(Z0) Z.

Now we are in position to apply the quadratic estimates I and II the-
orem 5.2.1 and 5.3.1. It turns out to be necessary to place some L*°- and
LP-norms differently as in the quadratic estimates and therefore we restate
them in the form needed here. Moreover, we use the estimates for (X, Y;)
obtained in the existence Theorem 1.0.4. For (X' , f/) the same L*>°-estimates
as for (X,Y) hold. We use || X||, < 2||Z||1 . and apply Lemma 4.2.6 to es-
timate [|X oo < [ Zlloce < cp € /7 21,

[(dFEP0)Z)1 ],

€,UQ
< |[(Fv(Ze + Z) — FU0(Ze) — dF R (Zo Z )l
+ [(dFER 0V Z — dFTE(ZO Z)1 ||

< all Xl | X oo (192Xl + V5 Xelly + [ V2Yel )

et Xl (1% oo 4+ 1V Xllse + 196 Xlloo 1 ¥ o0 + 17 lloo + V47 ol1 X ]

+ el Xelloo (IXeloo (1K Iy + 1V Xl + ¥l + IV ) + [Vl | 70X
+ 1| X lloo (IVXelly + 175 Xl Xelloo + 1y + 192Vl Xel o )
+ el Xelloo (1Kl + 1V, X lp + 1V X | Xelloo + 1)

3 7

- 9_ 9 3.3 7.3 3.3 5 3
SCQHZHI,]),E (64 2» + €4 20 4 €4 P4 €2 P+ et 2p)

3.8 Lz
< 2cet || Z]|1pe < 1o 1Z11,p,e
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and

€2 || (dF 0)Z)all,

€,U0
3 riv 7 iU iU 7
< e (Fot(Ze + 2) = Flut(Ze) — dF L0 (Zo Z)ally
+ €3 |[(dFER0)Z — dFEE (Zo Z)sl,

3 _
> Cl€ oo\ € ellp tNellp sVellp ellp stellp
<€ | X5 (€72 (IXellp + IViXellp ) + IV Xcllp + 1 Yellp + Vs Yel
§ ~ o ~ ~ ~ ~
+01€2||X||1o<e 21X Nloo (X loo + Ve X [lo) + Vs X [l
Y lloo (1 4+ 1V Xell o))
§ o ~ ~ ~ ~
+ 16} Xelloo (€ 21Kl + 19X ) 1Kl + VX 117 1)
2w -2
+ cre2 ||X||OO(€ ||VtXer||XeHoo + HvsXer + HYEHP)

2| Xelloo (€ 21X llp + € 21V X [pl1 Xelloo + 175 Xl + [T
+ cie elloo | € ptE€ tX IpllXelloo + sX|lp + p

5

~ 9_9 3_3 3 9_3 3_3
<2l (7T + T 43T LT 427
9_09 3_3 . 9~ 1 =
< 2e(e % + €7 ) Z]l1pe < 7 1 Z]l1p,e

for ¢y > 0 sufficiently small. We underlined the terms which enforce the
assumptions on the L*-norms of (X,Y’). Insert these estimates in (23) to
obtain

1
||Z - Ze”l,p,e < §||Z - Ze”l,p,e
and so

Z = Ze.



CHAPTER 3

The index theorem

For a nondegenerate perturbed closed geodesic & € Crit Zy we would like
to compare its Morse index Ind (z) with the Conley-Zehnder index pcz(2z),
where z, = g(z)0,x is the corresponding 1-periodic Hamiltonian orbit.

THEOREM 3.0.1. (Index) For any nondegenerate, closed perturbed ge-
odesic x € Crit Iy

Ind(z) = —poz(zz).

The relation between the Maslov index and the Morse index of a closed
geodesic has been studied first, as far as we know, by Duistermaat [D76].
In the case of a closed geodesic on a flat torus, i.e. the corresponding Hamil-
tonian system evolves in R?", theorem 3.0.1 had been obtained by Claude
Viterbo [V90] with a slightly different definition of the Conley-Zehnder in-
dex (apart from the different normalization which causes a sign difference in
the formula): due to the degeneracy of the action functional he considered
the Conley-Zehnder index of the linearized Hamiltonian flow on the energy
surface restricted to directions normal to the trajectory.

In what follows we will prove the theorem. The main idea is to construct
a 2-parameter family of Lagrangian planes where the parameter domain is
a square. In view of its contractibility the Maslov index of the loop around
the boundary is zero. On the other hand it is additive under catenation
of paths, so it remains to identify the Maslov indices of the four obvious
subpaths with the quantities in the statement of the theorem. As there are
different choices in the literature, let us first state the normalizations which
we are going to use.

REMARK 3.0.2. (Normalizations) The signature of a symmetric ma-
trix S is defined by

sign S =n~(S) —n*(9)

where nF(S) is the number of negative respectively positive eigenvalues of
S. The Maslov index for Lagrangian planes, the Conley-Zehnder index and
the spectral flow are normalized as follows

PLag(Gr e 705 A) = pog(e %) = § sign §
frspec({arctant}ie( oo 00)) =1
where the constant symmetric matrix S satisfies ||S|| < 2.

33
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Let ¢ : S x R* — z*T'M be an orthonormal trivialization (cf. appendix
A.4) and {E4,... , E,} the associated orthonormal frame of the vector bun-
dle z*TM — S'. The (perturbed) Jacobi operator A} — which represents
the Hessian of Zy at « — is given with respect to this frame by the self adjoint
operator

I:L*SYRY) — LS, RY)
Em— Q¢

with dense domain W2?2(S!, R"), where ¢ denotes 9;¢ and Q : St — L(R™)
is a smooth family of symmetric matrices. We know that I has a real and
discrete spectrum (appendix B.2.2) with finitely many negative eigenvalues —
counted with multiplicities — and z nondegenerate is by definition equivalent
to 0 ¢ spec I.

Now the linearized flow along the corresponding 1-periodic Hamiltonian
orbit z, = g(x)0;x is represented in the unitary frame

o= <<g ¢*01> : SUX R = o*TM & z*T*M

by the smooth path of symplectic matrices determined by
(24) U(t) = —JoS(H)T(t) , w(0)=1

w=(3 %) so=(4" ).
Observe that 0 ¢ spec I is equivalent to det (1 — ¥(1)) # 0, which in turn
means that z is nondegenerate as a critical point of the symplectic action
Ay. Therefore the Conley-Zehnder index of the path W is well-defined.
Moreover, in between the lines we used the fact shown in remark A.2.2 that
the linearized flow along z, satisfies the linearized equations which, with
respect to the unitary frame, take on the form (24).
Let N = Ind(x) € Ny and denote the eigenvalues of I by

where

pr Spe < ... <pun <O0<pygr <.

Pick /i < min{0, 1} and choose a monotonically decreasing cut-off function
B € C*(]0,1],[f,0]) which is identically 0 in a small neighborhood of 0 and
identically /i near 1, cf. figure 3.1. Let A; be determined by B(\;) = p;
fori=1,...,N. It will be a crucial point later on (regularity of paths) to
choose (3 in such a way that 5'(\;), i =1,... , N, is not an eigenvalue of the
symmetric linear operator (1) : R* — R™.

Consider the family of self adjoint operators I, A € [0, 1], given by

Iy : L*(SY,R") D W?%(S',R") — L?(S*,R")

(25) .
£ = =(1=2Q¢ = BOVE.
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ol Aa 1, A
by : '
Ha
Hy=Hs
21
ft

FI1GURE 3.1. Cut-off function § and negative spectrum of

Clearly It = —0,0; — i1l is a positive operator and so Ind Iy = 0. Note
that Iy = I. Studying the kernel of Iy, we observe that &, € ker I iff
&1 [0,1] — R solves

— & —(1= Q6 — BNE =0

E(0) =&(1) , &(0)=¢&x(1)

where the last two conditions reflect the periodicity of the domain S'. We

may rephrase this in terms of fundamental solutions as follows. For k£ =1, 2
consider the solutions 1y j : [0, 1] — Mat(n,R) of

—0i0hrg — (1 = N QUi — BNk =0
Pr1(0) =1 Pr2(0) =0,
Pr1(0) =0 hr2(0) = 1.
Define ¢§ = ¢,(0) and 79 = n,(0), then

(26)

E(t) = a1 (DEY + P2 (t)n}
€3 € ker (1 — 4 1(1) Nker 4y 1(1),

77())\ € ker (1) Nker (1 — 1%\72(1)).
Setting n) = &) equation (26) transforms into the first order system of ODE’s

27) 9o
== —(1 = A)Q& — B
whose fundamental solution W) : [0,1] — Sp(2n,R) is determined by

&\ € ker Iy &

Note that ¥y : [0,1] — Sp(2n,R) is precisely the symplectic path obtained
by linearizing the Hamiltonian flow on T*M along the 1-periodic orbit z, =
g(xz)Ox and so pcz(zz) = poz(Po) by definition. Moreover, simple matrix
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multiplication and uniqueness of solutions of ODE’s shows that

_ (oai(®) Paa(?)
Talt) = <¢A,1(t) ¢A,2(t)>
indeed satisfies (28) and so
éi)\i (0)
Exi (0)
where &, (t) = 1hx;1(£) £3,(0) + ¥hx, 2(1) £, (0).
The 2-parameter family Wy (¢) of solutions to (28) gives rise to a 2-

parameter family A)(¢) of Lagrangian subspaces by pointwise taking its
graph

(29) En; € ker I, & ( > € ker (1 — Ty,(1))

Ax(t) := Graph Uy(t) C (R?" x R?", —wp & wy).

Here wy = dx; A dy’ is the standard symplectic form on R*™ equipped with
coordinates (21, ... ,Zn,y', ... ,y"). As the parameter domain [0, 1]x[0, 1] is
contractible, the Maslov index ji1,q4 of the loop I' of Lagrangian subspaces
(relative to the diagonal A C R?" x R?") obtained by going around the
boundary of the domain clockwise is zero. Let the paths of Lagrangian sub-
spaces 7; be as indicated in figure 3.2 and T’ = 74737271 be their composition
in the sense of paths (i.e. first follow 1, then 7,...).

A

Y,
I T > B
. r=Y,Y;Y,Y;
Y, v \A
0 y4 1 t

F1GUurE 3.2. Contractible loop of Lagrangian subspaces

The Maslov index for paths is additive under composition of paths (cf.
[RS93] thm. 2.3 CATENATION) and so

4
0= MLag(Fa A) = ZNLag(’)’ia A).
=1

LEMMA 3.0.3. 4) firqaq(y1,A) =0
i) prag(v2,A) =0
i1i) [trag(Y3, A) = —Ind(I)
W) frag(¥a, A) = —pcz(Po).
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The lemma implies theorem 3.0.1. Before proving it we shall briefly
recall ([RS93]) the definition of the Maslov index pirqq(A, V') of a path of
Lagrangian subspaces A of a symplectic vector space with respect to a fixed
Lagrangian V. t; is called a crossing if A(t;) NV # {0}. At t; there is a
quadratic form on A(¢;): Pick any Lagrangian complement W of A(¢;) and
for v € A(t;) and sufficiently small § > 0 define w(d) € W by v + w(d) €
A(t; + 6). Then

QO () v = F| 52V, w(d))

is a quadratic form on A(#;) and independent of the choice of W ([RS93],
thm. 1.1). The crossing form at t; is the quadratic form on A(#;) NV defined
by

T(A, Vi ti) = QOAED) |ae)nv

and t; is called a regular crossing if the crossing form is nonsingular.
For the special case A(t) = Graph ¥(t) C (R?" x R?", —wq @ wy), where

U :[0,1] — Sp(2n,R) is a smooth path and V = A = {((,{) | ¢ € R*"} is
the diagonal, we derive an explicit formula for the crossing form at a crossing
t;. Observe first that ¥ determines a smooth path of symmetric matrices S
by

0 (t) = —Jy S(t) U(¢)
or, equivalently,

S(t) = Jo 0,U(t) \If(t)*l.

For v € Graph ¥(t;) N A, ie. v=((,¢) = (¢, Ut;)C), and W := 0 x R>" we
have w(d) = (0, w2(d)) and the condition v + w((i) € Graph ¥(t; + 0) leads
to

(Ca C) + (0,’(1)2 ) (Ca t + J C)
and so
w(6) = W(t; +6)¢ — C.
This implies

QMO v = 5|5 (—wo ® w0) ((,0), (0,w2(6)))

= Flimo (—w0(6,0) + wolC weti + 8¢ — )
= wo(C, 0V (ti)()
—(¢, S () U (t:)¢)
—(¢, S(t:)<),
where we used wy(-, Jo-) = (-, ). Identifying (Graph ¥(t;)) N A with ker (1—
U(ty) via (¢,¢) — ¢ we may write

D(Graph W, A, t;) - = — (-, S(ti)*) lker 1-w(t;) -
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The Maslov index of the path Graph ¥ with respect to the diagonal A is
then given by

Lrag(Graph ¥, A)

def _% sign T'(Graph U, A, 0) — % sign ['(Graph ¥, A, 1)

— Z sign T'(Graph ¥, A, t;)
0<t;<1
= % sign ('a S(O)> |ker 1-o(0) +% sign ('a S(l)> |ker 1-o(1)
+ Z sign (-, S(ti)) |ker 1-w(t;)
0<t;<1
where the sums are over all ¢; with det(1 — ¥(¢;)) = 0.
PROOF. (of lemma 3.0.3) ad 7) As U,(0) = 1 for A € [0,1] we get
y1(A) = Ay(0) = A, but the Maslov index for a constant path is zero
([RS93], thm. 2.3 ZERO).

ad 47) < is the graph of the path ¥y = ¥y () and so by formula (30) and
the fact that there are no crossings for ¢ > 0

NLag('Y% A) = ,ULag(GTaph Uy, A) = % sign (-, 51(0)) |ren=0
where R?" = ker (1 — ¥((0)). The last step follows because the signature of

a1 0 )
51(0)=<% ]1> , <0

is zero.
It remains to show that there are no crossings t; > 0. S1(t) = S1(0) for
all ¢ € [0,1] and so we can solve (28) explicitely

— —tJoS1(0) — 0 t1
Uy(t) =e exrp (—t I 0

_ cosh /—fit 1 (—f1)"Y/2 sinh \/—[it 1

~ \(=)"/2sinh /=7t 1 cosh v/—/it 1 '
Studying its characteristic polynomial, the eigenvalues of Wy (¢) (of multi-
plicity n each) turn out to be

p+(t) = coshy/—fit £ sinh/—at , t>0
so that (cf. figure D.1 in appendix D)
pilt)=1=p (1) & t=0.
Let us remark that as ¥y (¢) is symplectic, it follows p () = p_(¢)~! and this
fact is reflected in the key identity for hyperbolic functions cosh? — sinh? = 1.
ad iv) Note that the Maslov index changes its sign if a path of Lagrangian
subspaces is traversed in the opposite direction. Let 44(t) = v4(1 —t), then
fiLag(Y4, ) = —piLag(Ya, A) = —piLag(Graph Wo, A) = —pcz (Vo)

where the last statement is shown in [RS93] remark 5.4 .
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ad #¢¢) The idea is to study the spectral flow of the family of selfadjoint
operators {I) } xc[o,1], which is defined to be the number of eigenvalues chang-
ing sign from — to + minus the number changing from + to — during the
deformation from Iy = —0,0, — Q(t) = I to Iy = —0;0; — ji. I is positive
definite as i < 0 and so

NSpeC({IA}Ae[O,I]) =#(— N +) — #(+ ~ —) = Ind(I).

On the other hand it is a main result in [RS95], lemma 4.27, that the
spectral flow may also be calculated as the sum of the signatures of certain
crossing operators at regular crossings (these terms will be defined later on)
and this gives the first equality in

pspee({Inbrepa) = Y sign T({Ixbaep,pr Ag) lker 1y,
0<A,; <1

= Z Slgn <'1a)\I/\j'>L2 |k€7" Ik]-
0<);<1

= Z —sign (,g1(>\z)> |ker(]l—‘1’>\i(1))

0<A; <1

= Y signT(Gr ¥ (1),A,N) lanGru,, (1)
0<A; <1

= [tLag(GT ¥ (1), A)

= MLag(%, A)

= —MLag(’)%, A)

where 3(A) = v3(1 — A). The fifth equality is by definition and the fourth
one is given by formula (30) where the path of symmetric matrices Si(X) is
determined for fixed ¢ by the symplectic path A — W, (¢) by

S’t()\) =Jy 8,\\11)\(75) \I//\(t)_l.

Note that Sp(A) = 0 for all X. We will now define the crossing operator
for the operator family, thereby establishing equality two, and then finally
prove the third equality by showing that the crossings are the same and the
corresponding quadratic forms are isomorphic.

Following [RS95] we define the crossing operator

T({I ey Ai) = P, (OaIn;) Px; [ker 1y,

for the family I : W22(S1 R") — L?(S',R"), where P, : L?(S',R") —
L%(S',R") denotes the orthogonal projection onto the kernel of I.. ); is
called a crossing if Iy, is not injective and it is regular if in addition the
crossing operator is nonsingular. Now the second equality follows, because
the orthogonal projections are selfadjoint and act as the identity on ker I,.
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We had already shown that the crossings in the third equality are the
same, namely recall (29)

&, Eker Iy, & (p:= (gg) = <2:Eg;> € ker (1 — Wy, (1))

where &y, (t) = ¥, 1() €, (0) +1y, 2(2) £5,(0). Hence it remains to show that
for all £y, € ker I,

(5)\,‘7 (a)\-[/\l) 5&)[,2 = _<C07 SII(Az) CU)

Integrate the identity (obtained by using several times the defining equations
for S\(t) and Sy(\))

(W, DT SiN) T, ()
= (0 x7T) Sehi) U, () + Tx, () O (JoOA Ty, (1)
=" Sx () Jo Sih) U, (0 + Un, ) Jo Ox(—Jo Sa,(t) U, (1)
= -y &) Sx, () NTx &) + Tx, 1) (015, (1) T, ()
+ 0,7 Sy (h) WDy, ()
= Uy, ()" (OnSx,(H) Wy, (B)

(31)

over ¢ from 0 to 1 and use Sy(A) = 0 to get

1
Ty, 1) S1h) Ty (1) = / Ty, )" (92Sy, (1) T, (t) dt.
0

Now use O\Iy, = Q — #'(\;) and &y, € kerI), to obtain

(Ex;s (On1,) &) 12
= <£/\i’ (Q - BI()‘l)) £/\i>L2

= / (Pri 1 DEY. + P 2S5 (R — B'ON)) (r, 1(DEY, + P, 23, )t

1
0
1 0 0
Q.) (Qm—ﬂ’w) 0) (f)\->>
- NI AR Uy (t i) dt
/0< Al()(ﬂﬁi 0 0) "M\
3V ! T 139
= << 01> , (/ Uy, ()" (=028, (1) Wi, (D) dt) ( 0>>
77)\1' 0 T’/\i
8\ & &,
== (UM 5 ],5N) M) | o
,r’)\i ,r’)\i

where we used formula (3) for Wy, (¢), the identity (31) and So(Ai) = 0 in the
last but one, as well as (29) in the last step. Our choice of cut-off function
(recall B'(\;) ¢ spec@Q(1)) guarantees that {Iy}xe[o,1] indeed is a family with
regular crossings only and — in view of the isomorphism just shown — this
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implies that A +— W,(1) is a regular path, too. More precisely, assume
& € ker O\I, Nker I,, then

Q1) = B (M)E(t) Ve [0,1]
£0)=¢(1) , £(0) =¢(1).
Now f'(\;) ¢ spec Q(1) implies £(1) = 0. Differentiating (32) with respect
totleads at ¢ =1 to
(') = QUE(L) = Q(1)E(L) =0
and in view of the nonsingularity of 5'(\;) — Q(1) we get £(1) = 0. As ¢
is also in the kernel of the second order differential operator I, and all its

boundary conditions are zero, it follows £ = 0. This proves nondegeneracy
of the crossing operator I'({ )} xc[0,1], Ai)- O

(32)
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CHAPTER 4

Elliptic estimates

The main result in this chapter is Theorem 4.4.4 which provides the key
estimates for the right inverse of D;, uniformly in ¢ > 0 sufficiently small.

Due to the nonlinearities we are forced to choose p > 2. However,
it will be convenient to deal with the case p = 2 first in section 4.1 as the
combination of the Hilbert space structure with Young’s inequality simplifies
the estimates enormously. Section 4.2 then generalizes the results of section
4.1 to the case p > 2. In section 4.3 we introduce the important technique
of rescaling in the proof of the linear estimate Theorem 4.3.2. That way
we reduce the proof to the Calderon-Zygmund inequality, the basic elliptic
LP-estimate which holds uniformly for all compactly supported functions on
R?. The formal adjoint operator is introduced in section 4.4 in order to
define the right inverse Qf, of Df,. Finally the main estimate of Df, on the
range of Df,* is derived.

4.1. Nonstandard estimates for p = 2

Pick two smooth loops z,y in M and a smooth cylinder u between them,
ie. u € Pyy(R x S1, M), and define w = g(u)du. Note that the choice of
boundary conditions guarantees the boundedness of the linear operators.
Our goal in this section will be to show that surjectivity of DY implies
surjectivity of Dy, for all € > 0 sufficiently small. We formulate and prove
this in terms of injectivity of the formally adjoint operators Dg* and DS *.
In this section we mainly work in the orthonormal frames introduced in
appendix A section A.3, so that for E, 7€ CO(R x S, R™)

(33) Dyé = —0,6 — ViV — SE

and

(34 v () = ~0hE = Vi — S€ 4 Bj
“\7 —0s17 + €7 2(Vi€ — 1))

where we have taken the latter adjoint with respect to the e-dependent
Hilbert space structure (-, -). suggested by (11) with p = 2.
Recall the inclusion

L CPR x Y u*TM) — CPR x S',w*TM @ w*T*M)
o = (§0, 9(w)Vi&o)-

43
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To compare the operators Dg* and Dg* we must choose a projection onto
the image of this embedding. A natural candidate would be the orthogonal

projection w1 with respect to the Hilbert space structure (-, ).

LEMMA 4.1.1. The orthogonal projection ©t from L?(R x S*,u*TM &
w*T*M) to toL?(R x S',u*T M) with respect to {-,-)c is given by

e (&n) = (A= ViV) T (€ = g7 W) V).
PROOF. The condition for 7 to be an orthogonal projection is
@t (€m) — (&), 1&0)e =0 Ve € L*(R x ', u* T M).
Setting & = 71 (£, n) this leads to
0 =((&,9Vi&r) — (§m), (€0, 9Viko))e

= (& =& &) + (V& — g7'n, Viko)

= (0, (1 — €V, V)& — € + 297 V)
for all g € L?(R x S',u*TM), hence nondegeneracy implies

& =(1-eV,Vy) (-9 Vi),

Instead we define more generally

(35) me(é,n) = (1= e*ViVy) ™! (€ — g™ Vin)

where o, € R. As we will see during the proof of lemma 4.1.3 and proposi-
tion 4.1.2 the right choices are 8 = 2 respectively @ = 1. The significance of
these definitions lies in the next proposition and subsequent four lemmata.
All the norms in this section are L?-norms unless otherwise indicated.

PROPOSITION 4.1.2. Let u € Py (R x SY M), where z,y are smooth
loops in M, and define w = g(u)Oyu. Then for every constant ¢y > 0 there
exist constants ¢ > 0, e¢g > 0 such that the following holds. If the injectivity
assumption

€l + Ve Vi€l < ol DY
holds for all £ € C§°(R x S',u*TM), then

el < e(elDs* (€ mlloe + IlmeDs" (€ m)1)

Inll < (/21D Mo + Dy (€ )

and therefore

I¢lloze < e(elDg*Clloge + Dy ¢ll)
1Cllo,2,¢ < el D3 Cllo2,e
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for e € (0,€0) and ¢ = (£,n) € C(R x ST, u*TM @& u*T*M), where we set
a=1 and G =2.

Note that in combining the estimates for ¢ and 7 the extra factor €*/2 in
the n-estimate is wasted. For the convergence of the Newton method later
on it will be a crucial point to remember this fact and use the estimates for
¢ and 7 separately.

LEMMA 4.1.3. Let u € Py y(R x SY, M), z,y smooth loops in M, 3 =2
and define w = g(u)dyu. Then there exists a constant ¢ > 0 such that

DY ¢ — weDL*C|) < ce/?||¢]lo,2,6 + e[|V in]
< ce? D02, + (€ 4 /27|10,

for0<e<1,0<a<2and (= (£m) € CRR x SYuTM @ u*T*M).
The same estimate holds for Ddn. — 7. DS, .

In the proof of lemma 4.1.3 it will be a crucial point to set 8 = 2 in order to
eliminate certain terms. Moreover, mixed estimates like ||D" 7w .¢ — w.D5C]|
and ||DO7 ¢ — DS *¢|| will contain a term of the form c||Vs|. The absence
of any € in this term obstructs getting an injectivity estimate for Dj, —
assuming one for Dg* — along the lines of the proof of proposition 4.1.2. As
in our case of interest D, is not injective anyway, the best we can hope for is
an injectivity estimate for Df, on the image of D{,*. This will be the crucial
estimate for the Newton method and it will be carried out in section 4.4.
From now on we set 8 = 2 unless mentioned otherwise.

LEMMA 4.1.4. Let u € C®°(R x S', M), then

€ —7eCll < e ln — g(w) Vel + 26 [Vor]
In — g(w)VimeC|l < lln— g(w) Vié|| + 26| V|
1€ = emeClo,2,e < 26|l — g(w) Vik | + 4€* || V|
ImeCll < llemeCllo,z.e < 2[[Cllo,2,e
for0<e<1,0<a<2and (= (&n) € CPR x SLu*TM @ u*T*M).
LEMMA 4.1.5. Let u € C®°(R x S', M), then
(1= e*V, Vi) 7] < €]
I(1 = eV, Vo) 12 < gl
(1= e*VeVy) "1V Vi < JI¢]]

fore>0, a €R and £ € C°(R x S, u*TM).

Motivation for the next lemma comes from the energy identity (10). Tt
turns out to be the fundamental estimate to carry out the Newton iteration
in the proof of the main theorem. It also points the way towards the right
definition of the norm || - |1, by comparing powers of € appearing.
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LEMMA 4.1.6. Let u € Py y(R x SY M), z,y smooth loops in M, and
define w = g(u)Opu. Then there exists a constant ¢ > 0 such that

e Hn—g(w) V&l + Vsl + [IVenll + el Vsnl|

<c (IIDZ,*(f,n)Ilo,z,e i %n(an)um,e)

and likewise

e Hn—g(u) Vi€l + IV €]l + [ Venll + € Van]
< ¢ (D5, (€. Mlo2.e + €I+ [Imll)

for 0 < e <1 and (£,n) € CPR x SLu*TM @ u*T*M). The estimate
continues to hold for Dy,.

PROOF. (of Lemma 4.1.6) We work in the orthonormal frame & =
diag (¢, ¢*~') defined in (144). For simplicity we drop the vector notation

here, e.g. we will write £ instead of E Let ¢ = (&,n) and DI( = ¢ = (f,ﬁ)
so that

£=—0—Vin—SE+ By, = =0+ € 2(Vi€ — ).

We compute with L?-norms

IDECIG 2.0 = IEN7 + €717
= = 0s& = Vin = S¢ + B n||* + €] = Oy + € (Vi = n)|”
= 0811 + | Vin — € B*n + SE||* + 2(0:¢, Vin — €B"n + S¢)
+E|0sl” + €2 Vil = nll> — 2(05n, Vi€ — n).
Now use the identities (9sn,n) = 0,

2(05¢, 5¢) = —(€,05(S)) + (S0:€,8) = — (£, (9:9)€) > —ca, slIEI,
—2(0s¢, 62B*77> = 2(¢, e? (0sB*)n) + 2(¢, 62B*83n>

1
[nll* = ZliEll* — e+ | Oml|*

1
> —g||f||2 —€°co,p+?
and

)

IVn]|? — 14c52]|€)|? — 14e*cp-2

IVen+ 8¢ = B nl* > SIVenl® = 7 (eslléll + e*cp-

N = DN =

> [nll?

as well as the crucial estimate

2(‘9567 Vt"'?) - 2<Vt§a asﬂ) = 2(57 (vtas - 35Vt)77> = _2<§7 (8SA)77>

1
2 —;Hfll2 — decy, 1% |In]”
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with 9s4 = ¢~ ' R(9su, Oyu)¢. Note that for the finiteness of the constants
¢B = ||Blloo = sup(s perxst [|B(s,1)|| we essentially used the boundary con-
ditions for the cylinder w.

I1De¢

5.2, = 10sE11° + IVin — € B0 + SEI? + E(|0sn]|” + € ?(|Vi€ = nl?
- (fa (3SS)§> - 2(856, EQB*T/> - 2(67 (asA)T/>
_ 1
> € 2([Vi€ —nll® + 110:€117 + §!|V1ﬂ7||2

1
+ (1= ep-)e?|9unll* — (1ese + co,se +3) €]
— (l4cp-?€® + co, p+2€" + 4ep, 4%)elIn|)?

so for €y > 0 sufficiently small the result follows.
Using Young’s inequality in a slightly different manner, we get

~2(05¢, B n) > —€” (lElI* + ¢, - Inll*) — € (I1€)1* + - 10sn]%)

and

—2(&, (95 A)m) > —|I€]1” — 3, allnll?

which lead to the alternative form of the estimate we are claiming for. The
estimates for Df, work similarly, they may be found in [SW98]. O

PRrROOF. (of Lemma 4.1.5) Let ¢ = (1 — ¢*V,;V;) !¢ so that ¢ —
€V, V¢ = & Take the L?inner product with ¢ and use the Cauchy-
Schwarz as well as the Young-inequality to obtain

1 1
11 + e[ ViE'|IP = (€', €) < §||§'H2 + §||§H2-
Hence ||¢'||242(|€*/2V£'||2 < ||€||? and this implies the first two inequalities.
To prove the third inequality write &’ = (1 — e*V,V;) V£ so that & —
€V, V" = Vi&. As above take the L?-inner product with £¢” to obtain
e® 1

"1+ VI = (€7 Vi) = ~(V4€".€) < SV + S el

Hence [|e*V,£"||? < ||€]|? and this implies the third inequality. O

PROOF. (of Lemma 4.1.4) Still working in an orthonormal frame we
denote

fo =7l = (11— €V, Vy) HE — 2Vm)
Then

£ =& =€e*(1— eV, V)7 IVi(n — Vi€) + (2 — €9 (1l — ¥V, V) "' Vyp
and hence, by lemma 4.1.5

1€ = &oll < €2[ln = Vi€l + 26| Vim|
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Similarly,

n—Vigo = (1—€*"V, V) (= Vi€) — (" — )N — "V, V) 'V Vi
and hence, again by lemma 4.1.5,
elln = Vikoll < elln — Vi€l + 26" 72| V.

Take the sum of these two inequalities to obtain

16 = emeClloe < N1E = Eoll + €llm = Viloll < 2¢*/2[ln = V& || + 4€* (| Vn|
for 0 < e <1 and a < 2. To prove the final inequality denote
o =7 = (1 - €e*V, V) (£ = €Vin)
and use lemma 4.1.5 to get
&l < NEll+ €2l el Vol < €7l + € *[In.

Square these two inequalities, use (41) with p = 2 and take the sum to
obtain

limeClI§ 0,e = l€0ll” + € Vi&oll?
< (24267 + (265 + 262 |?
< 4¢3 0,e
for0<e<1land o <2. O

PROOF. (of Lemma 4.1.3) It is convenient to work in an orthonormal
frame as specified in the proof of lemma 4.1.6 so that the operators D2 and
D:,* are given by (33) and (34), respectively. We also adapt the notation
used there. As above denote

fo =7 = (M- "V, Vi) (£ = "Vim)
where V; = 0; + A denotes the covariant derivative in the local frame. Then
DymeC = =060 — ViVi€o — S&o
=[-0s — S, (1 — "V, V) (£ — €’ Vi)
+ (1 — €V, V)" (=0s& + €70,V — V, Vi
+ PV, Vi Vi — S+ #S5Vn).
As in the proof of lemma 4.1.6, denote D*¢ = ¢ = (£,7) so that
§= 0,6~V = SE+ B, )= —0m+e *(ViE — ).
Then
7D = (L= "V, Vi)™ (€ = Vi)
= (1= €e*V, V)" (—=0:¢ — Vin — S{+ €B*n
+ €'V 0sn — VUV — ).
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Taking the difference we find

Dyme¢ — mDIC
=[-0s — S, (1 — eV, V) ] (£ — €# Vi)
n 65(]1 B eO‘VtVt)_l([asa Vin + ViViVin + SV — 62—63*77)
+ (P72 — 1) (1 — €V, V) ' Vi(Vi€ — ).

From now on we set § = 2 in order to eliminate the last term. Using
[a,b] = b[b~!, a]b in the first step, the commutator is given by

[0 = S, (1= €*V,V,) ™)
= (1—€*V, V)"l — eV, Vy, =0, — S])(1 — €9V, V) 7!
= (1= "V, V) " (=0,A + V. S)V, (1 - 2V, V)~
+ e (1= e*V, V)7 V(=054 + V,.8) (1 — €2V, V) ™!
where 95 A = [09s, V]. Hence
Dime¢ — meDX¢
= eY(1 — 2V, V) "L (0,4 + V;:S)V, (1 — €2V, V) 7L (€ — 2V,n)
+ Ea(]l - ethVt)_IVt(—asA + VtS)(]l - eO‘VtVt)_l(f - eQth)
+ 62(11 - GQVtVt)_l((asA)n + VtVtth + Sth — B*T])

(36)

Inspecting these expressions term by term and using lemma 4.1.5 as well as
a < 2 we find

1D§meC — m D¢ < e IV + e[ llo,z,e-

The last claim now follows from lemma, 4.1.6. The estimate for Dnr, — . D¢,
works similarly and may be found in [SW98]. It is carried out in the case
p > 2 in the proof of lemma 4.2.2 below.

Note that the compactification of the cylinder u via the imposed boundary
conditions z,y is a crucial point in our proof as it implied the finiteness of
certain supremum norms we have used in between the lines, e.g. ||B*|lo <
00. U

PROOF. (of Proposition 4.1.2) First note that the injectivity estimate
€]l + 1V Viéoll < ol Dy o
for &y € C°(R x S, u*TM) implies

(37) IVi&oll < IVeVioll + 1€oll < coll DY 4oll.
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This follows from partial integration and Young’s inequality

00 1
||Vt§0||2 :/ /0 —<Vtvtfo,§0> dtds

ViV |6
< .
_/_OO/O ( o 2 )dtds

Let us restrict a to [0,2] in order to apply lemmata 4.1.3-4.1.6, then
1€ < 11§ = meCll + llmeC ]
< e*?|ln = g(w) Vil + 26*([Vinll + co | DY meC |
< c1€®|D5*Clloz,e + c1€* 2 ([¢ 0,2,
+ 00| DY me — w D, ¢l + ol we D, ||
< o€ + 2 )IDg "Cflo,2.e + collme Dy ¢
+oa (e 2 2+ )¢l gy

where we used lemma 4.1.4 and the injectivity assumption in the second and
lemma 4.1.6 for Dg* in the third inequality. The last one follows from lemma
4.1.5. We observe that the best estimate is obtained by setting @ = 1. Now
for g > 0 sufficiently small incorporate the &-part of ¢ into the LHS and
obtain

(38) el < e (elD5 " Cllope + lImeDE ¢ + €2 ) -
Repeating the steps of the &-estimate above leads to
Inll < lln — g(u) VireC|l + | VemeC]|
< |l = g(u) Ve€ll + 2¢*| Vel + eo| D 7 |
< 12 D5 Cllo,2e + 1> 2(1CNlo 2,6
+ ol Dy me¢ — we Dy, + collme Dy, ¢ |
< oa(e*? + )P Clog,e + collm DY ¢l
+ o (€272 4 B2y ea/2)||C||g,2,E.

For ¢y > 0 sufficiently small incorporate the n-part of ¢ into the LHS and
obtain with aa =1

(39) Inll < e (21D *Cloze + leDs ¢l + el -

Inserting (39) into (38) establishes our first claim for ¢y > 0 sufficiently small
and, similarly, inserting (38) into (39) the second one. Together they imply
the third claim and lemma 4.1.4 then gives the fourth one. O

We would like to state two inequalities which we have used occasionally
during the above proofs.
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LEMMA 4.1.7. (Young-inequality) Let a,b > 0 and 1 < p,q < oo such
that - + + =1, then
P
P
ab < s + —.
p q

PRrROOF. For one of a,b equal to zero the inequality holds trivially. So
assume a, b > 0. Taking the logarithm of both sides and using its concavity
we get

1 1 a? b
log(ab) =loga +1logh = —loga? + —logb? <log | — + — ] .
p q p q

The result follows as the logarithm is strictly increasing. O
Another useful inequality is
(40) (a +b)* <2a*>+2b* ,Va,bER

which follows from the binomial identities (a + b)? = a? + 2ab + b? and
0 < (a — b)? = a? — 2ab + b>. More generally, for a,b € R and 1 < p < 0o

(41) ja+b” < (la] + [b])” < 277" (lal? + [b]P)
which follows from convexity of ¢ in (0,00) (cf. [Ru87] proof of thm. 3.5).
Note that for p > 1 this implies
1/p
1D lope = (J€1E +ellmlf,) ™ < UElo + ellnlzs
(42) <(llgllzo-+ellnllzr)?

— 1
lelle + ellnlle < 227072 (Jllh, + ellnl,) " < 201 ) lop.e-
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4.2. Nonstandard estimates for p > 2

New ideas are required to prove lemma 4.2.4 and lemma 4.2.5. Once
these are established the other results follow quite similar as in the case
p = 2 in the last section.

Throughout || -||, denotes the LP(R x S, u*T M)-norm unless mentioned
otherwise. As it turns out in the proof of the main result of this section,
proposition 4.2.1, the critical exponent k), has to be in the range (0,1).
Moreover, the projection 7 is given by (35) with constants a = 1 and
(G = 2. This choice of 3 is forced by lemma 4.2.2 below, whereas the choice
of o optimizes the ¢-estimate in proposition 4.2.1. At this point also the
crucial condition k, < 1 arises in order to incorporate certain terms into
the left hand side. The following result says that surjectivity of DY implies
surjectivity of Df, and leads to a uniform bound for its right inverse in section
4.4.

PROPOSITION 4.2.1. Let u € Py (R x SY M), where z,y are smooth
loops in M, define w = g(u)Oyu, a =1, § = 2 in 7. and assume k(p) € (0,1).
Then for every p > 2 and ¢y > 0 there exist constants ¢, > 0, €y = €o(p) > 0
such that the following holds. If the injectivity assumption

1€llp + 1V:Veéllp < coll D€l
holds for all ¢ € C§°(R x S, u*TM), then

€1l < e (1D (€ Mo + ImDG" € )l

9llp < e (21D (€ Mlloge + €™ 2- 0 7 DG (&, )l )

and therefore

¢lloe < ep(€lDG"Cllope + I D5 ¢l )

¢ |0,p,6 < CpHDz;*gHU,p,e

for e € (0,60) and ¢ = (&,n) € CP(R x SY,u*TM & u*T*M).

LEMMA 4.2.2. Let u € P,y (R x S, M), z,y smooth loops in M, 3 =2
and define w = g(u)Oyu. Then for any p > 2 there exists a constant ¢, > 0
such that

1D} 7e¢ = 7D *Cllp < e 2|ICllope + cpe® 7 | Vienlly

< ey | DS o pc + cpe™ 2 Rmon /2

for0<e<1,0<a,<2and (= (£n) € COR X SLu*TM & u*T*M).
The same estimate holds for DOw. — 7. D5,
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In the proof of lemma 4.2.2 it turns out that 8 = 2 is a natural choice.
Moreover, setting «,/2 = 2 — a;, — kp, or equivalently a, = 4/3 — 2k, /3
optimizes the last estimate.

LEMMA 4.2.3. Let u € C®(R x S', M), 8 =2 and p > 2, then

1€ = wellp < 2pe™ 2 |In — g(uw)Villlp + 26 [ Vinl,
In — g(u)Vimellly < lln — g(w)Vi€llp + 4pe»/2(|Vin]l,
1€ = wmeCllope < 4pe /2| — g(u) Vil + 8pe (| Vinll,
[meCllp < [lemeCllop.e < 6pl[Cllop.e
for0<e<1,0<a,<2and(=(&n) € COR X SLu*TM @ u*T*M).
LEMMA 4.2.4. Let u € C®(R x S, M) and p > 2, then

(1= €*V, V) €llp < 1€l
(1 — €2V, V) L2V, < 2plI€]L,
(1 = e*ViVy) T eV Villlp < 201,

fore>0, a €R and £ € C°(R x SY,u*TM).

LEMMA 4.2.5. Let u € Pyy(R x S, M), z,y € C®(St, M), and define
w = g(u)Oyu. There exists a continuous function k : [2,00) — R such that
k(2) = 1/2 and the following holds. For any p > 2 there exists a constant
cp > 0 such that

€ Hln—g()Vi€lly + IV s€llp + IVenlly + el Vanll,
< ¢ (175" (& Mllop.e + € "7 11(€,)

for e € (0,1] and (£,m) € CP(R x S, u*TM @ u*T*M). The estimate also
holds for Dy,.

|0,p,6)

PROOF. (of Lemma 4.2.5 assuming Conjecture 1.0.6) We work in
the orthonormal frame ® = diag (¢, ¢* ') defined in (144). For simplicity

we drop the vector notation here, e.g. we will write ¢ instead of 5 Let
¢ =(&n) and D¢ = ¢ = (£,7) so that
§= =0 =V — S+ B, i =0+ e *(ViE —1).
Use conjecture 1.0.6, remark 1.0.7 1) as well as addition of 0 to obtain
e H10e€ + A& = nllp + 110 + Anlly + [195€]lp + €l D5l
< (Il = 0 — aun — An — SE + B, + |S€ll, + 2Bl
el = 0+ 2@ + AE—)llp + P €], + O], )

< 2epesen- (IDHEM o + e P NE Do)
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where cs = ||S|oo;, OB+ = ||B*|loc and || - |l = || - |Lr (R x 51 gn)- The estimate
for Dy, works similarly. O

The next lemma is independent of the others. It is extremely useful in
carrying out the Newton iteration to prove the existence theorem 1.0.4 as
well as in the proof of the uniqueness theorem 1.0.5. We will prove it first.
Note that for the (0o, €)-norm of (£,71) a choice of 81 = 1 and B2 = 1/2 is
natural (cf. proof), whereas to estimate & only, other choices can be useful.
For instance 8y = 1/2,3, = 1 is the right choice to prove the uniqueness
theorem 1.0.5.

LEMMA 4.2.6. Let u € Py y(R X S, M), where z,y are smooth loops in
M, then for any p > 2 there exists a constant ¢, > 0 such that

16 m) looe < € *P)1(€,m)
B1+B2

€lloo < cpe 7 (el + €™ IVl + €1V 481))

for e € (0,1], 81,582 > 0 and (£,1) € C(R x SY,u*TM @ u*T*M).

PROOF. Let Z, = R x S! = R x ([0,e71]/{0,e"!}). Rescaling (£,7) in
the usual way (cf. proof of theorem 4.3.2) leads to

IEDlIwroz) = €2 1M

|1,p,6

and

1M loo,e : = sup  [&(s,t)|+€ sup |n(s,1)]
(s,t)ERx ST (s,t)ERx ST

= sup €GB +e  sup e (5 D] = 1€ DLz
(3,)eRx S} (5,))eRx S}

These two identities will imply the result once we have shown that there
exists a constant ¢, > 0 such that

(43) 1 Moo (z0) < e 1€ w2
for € € (0,1] and (£,7) € C§°(R x S}, @*TM & @*T*M). Note that @(3,f) =

u(€%3, et). This inequality is a consequence of the standard Sobolev estimate
for p > 2 (cf. [MS94| Theorem B.1.4)
[ull oo () < cp(Q) [lullwre )

which holds for all u € C*®(,R), where @ C R? is a bounded domain
with smooth boundary. This is shown as follows: Cover Z, by translating
a bounded subset Q2 C R? with smooth boundary. Denote the (countable)
cover by {U;}icz, then

1M Nz (z) < sup 1 D ze (0

< () sup 1 Dllwrewsy < o @IE D wrrz-
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To prove the second assertion pick (1, 82 > 0, set

Zg, =R x ([0, E_Bl]/{ov e_ﬁl})
and £(3,1) = (725, ¢P11). As above we get
1€llo0 = €]l 2o (z5,) < olléllwrnz,,)
_B1+B89

<cpe 7 (Ilellp + IVl + Vil -

O

PROOF. (of Lemma 4.2.4) The Lemma is proved in three steps. As
the s-variable is irrelevant for the estimates to be shown, we restrict in steps
1 and 2 to the 1-dimensional case of the ¢-variable. Step 2 is a rescaling
argument and integrating its result over s € R then proves the Lemma.

Step 1 Let S, = [0,¢71]/{0,e7'} and v € C®(S,, M), then
(01— vaf)_1£||LP(SE,7*TM) < HEHLP(SE,’Y*TM)
(1 - vaf)ilvi“éHLp(Sg,'y*TM) < 2p||é||LP(SE,'y*TM)
(L= ViV ViVl pogs. vrary < 200 Lo (s.y-ran)

for any € > 0 and any € € C®(S.,v*TM).
PROOF OF STEP 1 Pick { € C*(S,,y*TM) and set 7 = (1 —V;V;) ¢, ie.
§ =n— V;V;n. This is well-defined as the bounded linear operator

1-V;V; + W*P(Se,y*TM) — LP(S,v*TM)

is bijective by elliptic regularity and hence admits a bounded inverse by the
open mapping theorem. To be shown are inequalities of the form ||7||, <
€]lp, etc. We use the short notation || - ||, for the LP(S¢,y*TM)-norm,

whereas |7]| denotes the function (7(t), 7j(t))*/2. To start with consider
d? d P
—~~p:—~ ~~§_1V”N~)
il = 2 (pt, )8 (Vi)
= plp = DNl (Vi) +plil 2 ((VeVi, ) + Vil
~ —~ v N——\ e — ——
>0 >0 g >0

> plilP —plAP~2(E, ) > plalP —p |APE €]

5P E|p
> plaf’ —p (7'77' + ﬁ)

p/lp=1)  p
> plif’ = (p = DIl — &7 = 7P — €7
where in the second inequality we applied Young’s inequality. Integrate the
result over ¢ € [0, ¢ !] and use the periodicity of the LHS to get |||, < [I€]],-
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The essential tool in the following calculation is again Young'’s inequality
lemma 4.1.7 ; a and b are indicated before each estimate (their exponents
follow the semicolons).

d
(s Tsp .5|P—2
d£<<77avt77> |Vt77| )
= |Viil? + (i, ViV | ViilP 2 + (p — 2)(#, Vi) [V [P~ YV, ViVii)
— —
=ij—¢ =ij—¢
~12
. n D ~ _ 17—
> Vil + I Pt~ R 2 v
=a;p/2 =bp/(p—2)
+ (p—2)(0, Vi) 2|V~ = VP ] - Vil (p = 2)IE] - [V
"~ A/_/ "~
>0 =a;2 =b;2
> V7P @ P2 218 _ P=2 9575 |\ [P
> |VinlP + B V] p|£| » <’ Vil

Y L - 22 0-lio ~|p—
— |Vl 4—2 Vil 2 — (p—2)* [E* 271Vl ?
=a;p/2  =b;p/(p—2)

> (1- 252 975 222 95 ) vyl — (24 2(p— 2)?) 4P

/2
> 2|Vl — 2 (1+ (p—2)%) [¢P

Integrate the result over ¢ € [0,¢ '] and use the periodicity of the LHS to
obtain

IVzly” < (1+ (= 2)°) 1l," < 20°1El1," < 27 €],

The last one is easy as we may use the first inequality
VeVl = 17 = Ellp < Il + 1]y < 211l
Step 2 Let v € C®°(SY,y*T M), then
11— €*Vi V) " Ellzr(st peran < €llr(stAeran

(1 — €V V) T 2V il rogst orary < 201N Lo (st orany

(1= €*Vi Vo) eV Vil ragst perary < 2ElLo(st peran
for all e >0, a >0 and £ € C®°(S',v*TM).
PROOF OF STEP 2 Rescale £ € C®(S',v*TM) by

£(f) = &(e/*1)

where £ € [0,¢*/2]/{0,e */?} = S, then

ViE(T) = ePVie(e?t) | ViViE(R) = €2V, V,£(e2/?0).
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Use this and Step 1 to get

o ! dt e
e e LU
= H5||I£p(567:y*TM) > “(]l_ Vivi)iléuip(se,fy*TM)
e—a/2

- / (1= Vi) @) Pd
0

1 dt
— / (1— v, 7)) P2
0 e/

_ 6—04/2“(]1 — ethVt)_linp(sl,y*TM)'

The other two estimates work similarly.
Step 3 The Lemma follows by applying Step 2 pointwise to £(s,:) €
C>®(St, u(s,)*TM) and integrating over s € R. O

PROOF. (of Lemma 4.2.3) Using Lemma 4.2.4 (p > 2) instead of
Lemma 4.1.5 (p = 2), the proof of Lemma 4.1.4 goes through almost literally.
Adopting the notation used there we only indicate the minor differences.

E— = (11— WV, V1)~ (€ = €PVViE — £+ €9V — € Vi +¢2Vin)
adE 0
= —7(1— €V, V;) ! (Vt(vtf —n)+(1- 627%)Vt77>

and therefore lemma 4.2.4 implies

1€ — &ollp < 2pe/2||V1€ — nllp + 262 [ Venll,

where we used € € (0,1]. Similarly we get

In = Vibollp < Ve€ = nll + 4pe/? (V-

These estimates establish the first three claims. To prove the fourth one we
observe that

[1€ollp < lllp + 2p€2_ap/2||77||p
el Violly < 2pe' =2l + 262 I,
Use these expressions, «,, € [0,2] and (42) to get
lemellope = lollp + €l Vidollp
< (1+2pe' /) ||&||, + (2pe® /2 + 2¢%%2) In]l,
< 3p ([l€llp + €llnll)
< 6pl[ (€, M llopie-
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PROOF. (of Lemma 4.2.2) The proof is essentially the same as the one
of lemma 4.1.3. The same notation will be used here. We only indicate the
minor differences. Denote

& =1l = (1— eV, V)7 (€ — #=2Vyn)

where V; = 9, + A and § = 2. That this is the right choice follows from
taking the difference below where certain inconvenient terms cancel each
other precisely for 5 = 2. Observe the opposite sign in front of the Js-terms
in

DymeC = Do&o = 9s&0 — ViVi&o — S&o
=[0s — S, (1 — €2V, V) (€ — 2Vn)
+ (11— eV, V)" H0:€ — €20,V — V; Vi€
+ 2V, V Vi — SE + €25V ).

and

meDe( = (1 — eV, V)1 (056 — Vi — S¢

— 2V,05n — ViV + Vin — €2V(BE))

which leads to

Dyme( — mDe(
= (11— eV, V) (0,4 + ViS) V(1 — €2V, V) "1 (¢ — €2V i)

+ (1= €V, V) V(0,4 + ViS) (1 — €V, V) 1 (€ — Vi)

+ (1 — eV, V;) Y2V, Vi Vin — €2[0s, Viln + €25V + €2V (BY)).
Inspecting these expressions term by term and using lemma 4.2.4 as well as
0sA = [0s, V] we find

1Domre¢ — mDeClp
< 2pee®|[€]l, + 2c€”(|nll, + 2pce®?([E]l, + 4p”ce” ]l
+262 |Vl + cenlly + ce | Venll, + 2pe /|| BE],
< 20p%c €2 flo,pye + de €7 Vin]l,.

Note that the compactification of the cylinder u via the imposed boundary
conditions z,y is a crucial point in our proof as it implied the finiteness of
certain supremum norms we have used in between the lines, e.g. ||B¢||, <
| Blloo|lEllp with [|Blac < 0o. Now use lemma 4.2.5 to obtain the second
assertion

20520 Clo e -+ dec= |V,
<615 ope+ (€72 + 27 ) [ Cloge

which is optimal for o, /2 =2 — o), — k) or o, = 4/3 — 2k, /3. The estimate
for Dyme( — mD}( is quite similar. It is carried out in the case p = 2 in the
proof of lemma, 4.1.3. O
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PROOF. (of Proposition 4.2.1) The proof is the same as the one of
proposition 4.1.2 in the case p = 2 and will be sketched below. Just replace
lemmata 4.1.3-4.1.6 for p = 2 by lemmata 4.2.2-4.2.5 and use

1 *
%Hvtfnp < [iélly + IVeVillp < coll Dy €l

for any ¢ € C°(R x S, u*TM). Let us prove the first of these two inequal-
ities for p > 2. As in the proof of lemma 4.2.4 consider

(& v vier)
= |VlP + (&, Vi Vi)V
+(p = 2)(&, Vi) Vil P HV L, Vi Vi)
> [Vl —(p—1) [E] |ViVi|[VigP~?
~—

=a;2  =b;2
> |VlP — (p—1)IEP 3|V 2= (p— 1)|VtVt£|2\%|Vt£|”’2j
=a;p/2 :b% =a;p/2 :b%

_ p=2 9p/(2-p) P _ 20y 1)P/2)¢|P
> (1- 2229/ [V — 2(p— 1)/2¢]
— 2= PPV
Integration over t € S and s € R eliminates the LHS and we get

IVell? < (p = PP (IEll? + IVeViclly?) -

Carrying out the same steps as in the proof of proposition 4.1.2 and assuming
kp € (0,1) leads for €y > 0 sufficiently small to

*
€]l < N1E = mellp + ol DY 7l
< ce®|ln — gVillp + ce*[Venll,
+ ce®?|[¢llop.c + c€”IVenlly + collme Dy ¢l

< ce| DY Cllop,e + ce™™ 232 ||, + cllme Dy, ¢l

and
Inlly < eI D5 Cllop,e + e 27 €]l + cllme Dy, ¢l

Note that only in the {-estimate we were forced to require @ = 1 and &),
to be strictly less than 1 and there is no way out in view of the Vn-terms.

Inserting these two estimates into one another, again using x, € (0,1) and
choosing €y > 0 sufficiently small implies

1€llp < cell Dz Cllop,e + ellmeDy, ¢l

and
Inlly < e DS Clo e + ce™ {2700} | DE ¢,

Hence our first two claims are established and they imply the third one. The
fourth one follows from the third using lemma 4.2.3. O
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4.3. The standard linear estimate

Throughout this section we simply denote R™-valued functions for in-

stance by & — instead of E as in other parts of this text. For ¢ > 0 let
S!=R/e 'Z and Z, = R x S} with coordinates (s,t).

THEOREM 4.3.1. (standard linear estimate) Let 0+ T = 0, + JoO; +
T, where T € C°°(Z¢, R2™2) and lims_, 500 T(s,t) = TT(t) exists uniformly
in t. Then for any 1 < p < oo there exists a constant c, > 0 such that

I<llwr(z. rony < ¢ <||(‘9 +T)C (2. mon) + HCHLP(ZE,R?”))

for any € > 0 and ¢ € WYP(Z.,R?*™). This continues to hold for a uniformly
bounded family {Ty}aca, i-e.
sup sup || Tu(s, t)||g(ren) = sup || Talloo < o0.
€A (s,t)EZ, acA
Using the technique of rescaling the standard linear estimate immedi-
ately implies linear estimates for the operators Df, and D{,* uniformly in

e € (0,1]. The former one will be used in the proof of the key estimate of
D:, on the range of Df,* (theorem 4.4.4).

THEOREM 4.3.2. (linear estimate) Let w € C®(R x S',T*M) such
that w — g(yT)OyT uniformly in t for s — Foo and yT € C®°(S', M). Set
u = Ty;w. Then for any 1 < p < oo there exists a constant ¢ = ¢(p) > 0
such that

1€ M lpe < e (GZIID&(&n)Ilo,p,e + H(&n)llo,p,e>

for 0 < e<1 and (&n) € WHP(R x S',u*TM & u*T*M). The same holds
for Dg*.

PROOF. We are working in an orthonormal frame, cf. (144), so that the
operators Df, and DS,* are given by D, as in (143) and D} as in (34) (with
S replaced by C* = C7 strictly speaking). Pick (£,7) € CP(R x St R*™)
and e € (0,1], then rescale

5(5, Z) — €(€2§a €t~) o) 2n
(44) (ﬁ(§, i‘) - 6’)7(625, €t~) € CO (ZeaR )a
W(3,t) = ew(e?3, et) and §7 () = yT (et). Note that w(3,1) — g(§F ()57 (t)
for § — Foo uniformly in £. Now apply the standard linear estimate theorem
4.3.1 to the operator

it (§)-wsn() (5 %) (9

A(3,1) = cA(5,€t) , B(3,1) = €B(e25,et) , C(5,1) = 2C(e25, €t).
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The families of matrices A, B and C' are defined in appendix A section A .4.
Indeed

~ . — QC A -
Te(sat) = <€A—|6-€3B i]l) ( Et)

is a family of operators uniformly bounded for € € (0,1], so that we get a
constant ¢, > 0 (uniformly in €) such that

1 D lw(z, mony < € (II (9 + T E D oz, p2) + 1(E07) “LP(ZE,R?”))

for all (£,7) € WLP(Z,,R2"). Recall that as the frame is chosen to be
parallel with respect to the variable s, V3 = 0; and V; is represented by
0; + A, then

1 DN 7, omy + IV(E,S 77)||Lp oy T IVSEMIT 2 mon)

- [ (|£<st,£>|”+ D

+|VEGDP + |V (5, D)

+ |0:6(5,8)|P + |0571(3, 1) P ) dids

— /Z /01<|g(s,t)|”+e”|n(s,t)|”

+ € |ViE (s, )P + €2V (s, )]

dt ds

0L OP + (s, ) DL

1
= S ME I,

In the above calculation we first used the definition (44) of (¢,7) as well as
the identities

ViE(3,1) = eVi£(e25, €l) 0:E(5,1) = 20,6(e%5, l)

6517(5, ) =€V en (€23, ef) 0571(5,1) =€>0sen(€%3, et)

and then carried out the change of variables s = €23, t = et. Note that this
also includes

1
||(£ 77)||Lp Ze R2n) = 6_3 “(5?77)”6),1),6'
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The next step is to compute
H (3 + Te) (57 77) HI[)/I)(ZE,R%)
0 et _ - o
[ 10—+ di—cév
—o0 J0
+ |05i7 + 056 + A€ + BE — qj|P dids
00 1
= / / €205¢ — 20 + 2 An — EC¢PP
—o0 J0

y dtds

+ €205 + €0i¢ + €AE + B —enl” ——

e »
= 6_3 ||DE(§7 77)”0,;1),6'

Using the results obtained above one gets

1
= 1€, m)[1,p,e

o Lo O 1/p
— (H(&T/)H:ZP(ZE,RM) + ||V£(f,ﬂ)||ip(Z6’R2n) + ||V§(§777)||I[),p(Z6,R2n))
< 24| (€, 1) lwro(z mem

< 2eacy (10 + T E Moz om) + IE Doz, eom) )
2cac
= 2% (2D, (6, m) o+ (6o

which proves the first claim. The estimate for D{,* is obtained the same
way. ]

The proof of the standard linear estimate, theorem 4.3.1, will involve a
partition of unity argument and the following consequence of the Calderon-
Zygmund inequality

PROPOSITION 4.3.3. For 1 < p < oo there exists a constant ¢, > 0 such
that
IV¢ I g2 r2ny < ¢ 10C] Lowe Ry
for ¢ € CP(R2,R*™) and 9 = 05 + JoO.
Following the exposition in [MS95], appendix B.2, we briefly recall the
fundamental solution of Laplace’s equation
1
K(z) = —loglz| , z¢€R*\{0}.
27
Denote z = (s,t) and K; = 0;K for j = s,t. Every u € C§°(R?, R) satisfies

(45) u=Kx*xAu , dju = Kj x Au
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with A = 0505 + 0,0;. For every f € C§°(R?,R) one has
(46) ANK*f)=f ,  AKjxf)=0;f.

Hence u := K * f for f € C§°(R?,R) solves the inhomogeneous Laplace
equation Au = f. Let Q C R? be open and f € L} () (ie. f € L'(Q)

for any compact set Q C ), then a function u € L] () is called a weak
solution of Au = f if

/ u(z) A¢(z) de = / f(x) p(x)dz , Vo e CE(R).
Q Q

Note that the last identity determines w up to a set of measure zero, cf.
Folgerung 2.11 in [A192].

THEOREM 4.3.4. (Calderon-Zygmund inequality), [CaZ52] For
any 1 < p < oo there exists a constant ¢ = c(p) > 0 such that

IV(E; * f)llze < cllfllze
for f € Cg°(R2,R) and j = s,t.

Now we identify C with R? by z = 2 + iy — (z,y). Multiplication with
1 is then represented by the matrix

0 -1
n=(5 7).

We define the first order differential operators

0z = %(aac + Joay) , 0, = %(aac - J()ay)'
The fundamental solution of the Cauchy Riemann operator Oz is given by
N(z) = 1/nz, ie. if f € CP(R?,R?) then u = N * f solves d;u = f
(IMS95], lemma B.3.1). Moreover, for u,f € LP(R?,R?) with compact
support it holds ([MS95], lemma B.3.2): u is a weak solution of dzu = f,
iff u=N xf.
Here u € L}, () is called a weak solution of O;u = f for f € L], () if

/(az¢,u> +/<¢,f> —0 | VpeOROLE).
Q Q

(-,-) denotes the euclidean inner product on R?. A straightforward calcula-
tion shows that A = 40,05 and N = 40, K.

PROOF. (OF PROPOSITION 4.3.3) It suffices to consider the case n = 1.
For u € C{°(R?,R?) we define f = Qzu. As mentioned above

u=Nxf=40,K x f =2(0s — JoOy) K * f
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and hence
IVulls, = l0sully, + [|dwull?,
< 22® (10,05 K * )T, + 1T00s (0K * )],
+ 1000 K )|, + [1T00u (0K * f)IIF,)
= PPV (|V (0, K )%, + V(0K * £)II7,)
< 27| fII%, = (4c)”|Oull}, .

The last inequality uses the Calderon-Zygmund inequality. Moreover, we
used that Jy is constant and leaves the norm invariant. O

PROOF. (OF THEOREM 4.3.1) Step 1 First we construct an open cover
of Z; = Rx S' by two open sets and a subordinate partition of unity (which
is constant in the s-direction). Identifying S' = [0,1]/{0,1} we define an
open cover of S by

Ul = (1/8,7/8) , U = [0,3/8) U (5/8,1].

Let p1(t) be a smooth compactly supported function on U; which takes
values in [0,1] and is identically 1 on [3/8,5/8]. Define po(t) = 1 — p1(¢).
We extend the above trivially to the s-direction
U1:R><Ul, UQZRXUQ
pl(sat) = ﬁl(t) ) ,02(3at) = ﬁQ(t)'

Step 2 For € > 0 we get a covering of Z, and a subordinate partition of
unity by rescaling:
0, =R x (¢1/8,e17/8) , Up = R x ([o, ¢ 13/8) U (e 15/8, e*l])
:51(51 7?) = ,01(§a 62?) ) ﬁZ(E,E) = p2(§7 EE)
Note that for ¢ = 1,2

8- (32) - () - S

and
a0 =1 (52 00 s,
()Gl <t <
where
e P ) R SRS

Step 3 We may restrict to { € C§°(Z.,R?") as this space is dense in
WP(Z.,R?™). This nicely combines with p; and po having compact support
with respect to the variable ¢ and so results in p1{ and p2( having compact



4.3. THE STANDARD LINEAR ESTIMATE 65

support. Therefore we may apply the consequence proposition 4.3.3 of the
Calderon-Zygmund inequality.

2

IVClrzememy < DIV GO Lo, mony
i=1

< ¢ Z 10(pi¢ HLp 5 R2n)

< Cp Z (H(gﬁi)C“LP(supp piC,R21) + “ﬁi(EC)“Ll’(supp ﬁi(,R%))
i=1

2 1/q
<e¢p <Z 1q> €b <Z HC“L? (supp pi¢,R>" )
=1
9 1/q 1/p
Cp (Z 1(]) (ZHBCHLP suppp(Rzn )
=1

< 26 (HgCHLI’(ZE,R?") + ebHCHLP(ZE,R%)) .

In the fourth estimate we used the discrete Holder inequality with 1/q +
1/p =1 and in the last one the additivity of integrals.
Step 4 Note that

1/p

IDCN vz omy > 10C] Loz mon) = 1T oo ISl Lo (2. 2my
hence using Step 3 we get
I<llwre(z. r2ny = Il Lp(z. r2ny + [IVC] Lo (2. m27)
< (1 + €6p) ¢l 1oz r2ny + Epll O (2, m2m)
< e (1D Loz, m2ny + (S Lo (2 R2m ) -

In the last inequality we used ||T'||oc < 00, which follows from the assumption
on the asymptotic uniform convergence of T'. The argument also works in
the case of a uniformly bounded family. O
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4.4. An estimate for the right inverse

In this section we derive the key estimates for D, on the range of DS, *.
In other words these give rise to bounds, uniformly in € € (0,¢), for the
right inverse Qf, of D;,.

We start with the definition of the formal adjoint DS,* of Df, and some
considerations concerning their kernels and cokernels. Let u € Py ,+(R x
S M) and z=, + € Crit Iy, then w := g(u)dsu is a cylinder in T*M
and zT := ¢g(zT)0,xT are its hamiltonian boundary conditions. If they are
nondegenerate as critical points of the symplectic action, then for 1 < p < oo
the operator D, is a Fredholm operator, cf. [RS95] theorem A for a general
exposition or [Sa97] theorem 2.2 for the case e = 1. Recall that with respect
to an orthonormal frame which is parallel in the s-direction (cf. appendix
A section A.4) this operator is represented by

D.: WHP(R x ST, R?™) — LP(R x S, R*™)

(5) L oE-Vai-QE )
) 01 + € *(Vi€ — 1) + BE

That D is bounded follows from the B.L.T. theorem ([RS1] theorem
L7): As D, : (COMR x SLR2Y) ||+ [|1p.e) — LP(R x S*,R?*") is bounded and
the target space is complete, D, extends to the completion WP (Rx S',R?")

of the domain with the same bound. Therefore we may assume without loss
of generality that D, acts on C§°(R x S, R?"),

DEFINITION 4.4.1. Let 1/p+1/q = 1 and p > 1, then the formal adjoint
DEF : WHIR x ST, u*TM & u*T*M) — LYR x SL,u*TM & u*T*M) is
defined by

(47) (', DEC)e = (DS, O V¢, € CPR x SYLu*TM @ u*T*M),
where for € € (0,1]
()¢t O (R x S, u*TM @ w*T*M)*? - R

((§1> ’ (52)) (&1, E) e + € (n1, M) e

Existence of Dg* : C§° — C§° C LI follows by explicit calculation
via partial integration and uniqueness by the nondegeneracy of (-,-)¢; then

extend DE* to WH (by B.L.T.). For (£,7) € C°(R x S, R*") we get

D (5) _ [ 0E = Vi — Q€+ B\
“\7 — 051 + € 2(Vi€ — 1)
Note that as 1/p + 1/q = 1 the dual space of L? may be identified with L

and the duality pairing is given by the bilinear form (-,-) (cf. [A192] Satz
4.13). The cokernel of D, is now defined as the annihilator of ran Df,.
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DEFINITION 4.4.2.
Coker DS, = (ran DE,)*-
={(" e (L))" = L1 |0 = ({",Dy()e, V¢ € WY
Coker DE* = (ran DE*)*
={( € (L = L2 0= (Dy"¢",()e, V(' € WP}

Elliptic regularity implies that for ¢’ € Coker D¢, i.e. a priori ¢’ € L{,

w
indeed ¢ € Wo? and DE*¢' = 0 (cf. [MS94] exercise B.3.5). This shows
Coker DS, C KerD;,*. The opposite inclusion follows from the definition of
the formal adjoint; the same for Coker D{,* and Ker D,. This proves

LEMMA 4.4.3.
Coker D, = Ker D"
Coker DS,* = Ker D,.
Similar conclusions hold for the operator
Do : WP — HP
€ 06 = ViViE - QE.

Assume now that D¢, is onto, then we can define a right inverse

Qf : LP(R x S, u*TM @ u*T*M) — WIP(R x S', u*TM & u*T*M)
¢ = Dy (DD, 7 ¢

Being the composition of two bounded operators, Qf, is itself a bounded
operator. To see the boundedness of ((D{,D,*) consider

DS* Ds,
Whi o W2P =2 Wl =5 P,

Note that the inclusion holds because of p > 2. As Ker D{, = Coker D"
the operator Dy, Dg,* is a bounded bijection from W2? onto LP, hence it has
a bounded inverse by the open mapping theorem (cf. [RS1] theorem III.10
and II1.11). The crucial point is to get a bound for Qf,, which is independent
of € € (0,€p). This and more refined estimates are the content of the next

theorem. Note that throughout this subsection the projection 7, is given by

Te(&,n) = (1 — eV, V) 1€ — g Vi)
and we need the assumption «, € (0,1) on the critical exponent.

THEOREM 4.4.4. Let u € Py (R x S M), where z,y are smooth loops
in M, and define w = g(u)dyu and (£*,n*) = D*(&,n). Assume that DY
is onto and K, € (0,1). Then for every p > 2 there exist constants ¢, > 0,
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€0 = €o(p) > 0 such that D, is onto,

€7y < e (lDEDL Clloge + 7 D5 DSl )

19 llp + 1968 lp < c (21D *Clloge + € /27D DG "¢l )

and

ID5 "¢l e < e (DD Cllope + 7D DGl
1D " Cll1pe < plIDy D¢

w

|0,p,6

for any € € (0,€p) and ¢ € C(R x SY,uw*TM ® u*T*M).
To prove the theorem we need

LEMMA 4.4.5. Let u € Py y(R X S, M), where z,y are smooth loops in
M, and define w = g(u)Oyu. Then for every p > 2 there exists a constant
cp > 0 such that if DY is onto, then

17D "¢l < € (IImeDy "¢ = DY mel llp + 1DSmeDECllp)

for all e >0 and ( € CP(R x S, u*TM & u*T*M).

PROOF. (of lemma 4.4.5 ) The proof is standard (cf. [DS94] lemma
4.5) and consists of three steps. Choose ¢ > 1 such that 1/¢+ 1/p = 1.
Step 1 Surjectivity of DY implies that there exists a constant co such that

for € e Wha

I€lly < collD"€llg-

This fact may be found for instance in [Br83] theorem II.19 for unbounded
operators and in [Ru87] theorem 4.13 for bounded ones.
Step 2 There is a constant ¢c; > 0 such that for &€ € WP

& <D2*~’D2*€
DY Ellp < e sup "Bt
" P cewha ||D2 f”q

As dim Ker DY < oo we can find a basis {e1,... ,en} of Ker DY, which
is orthonormal with respect to the L?-inner product. Choose an element

¢ € L7 such that
€DyE) =D e, » Il =1.

That this choice is possible is a consequence of the Hahn-Banach theorem
for linear functionals (cf. [A192] Folgerung 4.4). Since DY is onto there
exists a unique & € W9 such that

=D+ (€ eje;.
=1
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This follows from the decomposition LI = ran D" @ Ker DY and the fact
that DY onto implies Dg* injective and so

DY Wl = ran DY
is a bijection. Now
ID% Elly = (€, D0 €) = (DY 60, Dy )
<D2*§07D2*5>

m

= €= (€ e)ell
A
m * * 7
(DO anDO f)
<1+ lesllplleille | e
2 lleslbllesle | Speeery,
D¢, DY"E
§C1Sup (ugau€>

cewha HDB*ﬁHq

Step 3 We prove the claim. For all ( € WP (R x 81, u*TM & u*T*M) and
& € Whi

(D &0, Dy 1) _ (Dy b0, Dy meG — meDg,*C) | (€0, DymeDy*¢)

DY 6olly D5 ¢ollq D5 6ol
< HD2*7T€C - WGDZ;*CHP + CO||D27T6DZ;*<H17

where in the last estimate we applied step 1. Use step 2 and the former
estimate to get

* (DY"¢o, DY)
DY el <1 sup K U
v €oEWha 1D &ollq

< || DY mel — 7D ¢ |lp + coct[| DL T DL |-
This implies
7D ¢l < 1meDE* ¢ — DY mel|lp + DY 7l
< (14 e)|DY 7e¢ — 7D *Clp + cocr | P D C -
]

PROOF. (of theorem 4.4.4 ) Translating surjectivity of Df, into in-
jectivity of DS *, the linear estimate theorem 4.3.2 for D * together with
proposition 4.2.1 lead to the injectivity estimate

1K1 pe < ¢ (1D Cllop.e + ICllo.p.e) < €Dy Cllop.e-

Throughout we will use the assumption «, € (0,1) in between the lines.
Apply the linear estimate for D, theorem 4.3.2 to Dg,*(

1D "¢l pie < co (1DLDL Cllope + 105 Cllog.c) »
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then it remains to estimate the last term. With (* = (¢*,7n*) = DS,*( we
get

D% Cllop.e < 1D "¢ = eme Dy Cllop.e + leme Dy *Cllop.e
< c1e| Dy Dy Cllop,e + care™ 22D (o e
+ 7Dy "Cllp + €l Vime (€7 n") I
< c1€e| Dy Dl Cllop,e + cae™™ U 22D (o
+ Dy Cllp + cae! 2 1E¥ | + cae® "l
< c1e| D¢ llope + (e1 + ca)e™™ =21 ¢2 g 6
+ [ lp-

In the 2"? inequality we applied lemma 4.2.2 to Dg,. The definition of .
and lemma 4.2.4 imply the 3"% inequality. For ¢y > 0 sufficiently small this
implies

D5 Cllop.e < cell Dy Dy Cllop.e + e Dy Cllp-

Use lemma 4.4.5 to estimate the remaining term

7D Cllp < esllmeDy, "¢ = Dy meCllp + e[ Dyme(Dy, ")l
< czca€| Dy, " Clop,e + 6304emin{17’“1”1/2}“§
+ 3| Dame(Dg, *¢) — w D, (DL )l
+ c3l|me Dy (Dy, " Ol
< Dezegeminli=rod/2} | pe e

|0,p,6

lo.p.c + eallme Dy, (D" Ol

+ cscael| DY DG *Cllogp,e + cacacse™ ™ 02 |7 DE ]

where the 2% inequality follows from lemma 4.2.2 and the third from propo-
sition 4.2.1 and again lemma 4.2.2. Choosing ¢y > 0 sufficiently small we
may incorporate the last term into the left hand side and combine the result
with the former estimate to obtain

1€y < D% Cllop.e

48
(48) < cel| DS DS ¢

l0.p.¢ + cllmeDy Dy "Cllp
and therefore
D5 Cll1pe < cell Dy Dy, "Cllop,e + cllme Dy Dy “Cllp-

This proves the first and third assertions. The fourth one then follows from
the third one by lemma 4.2.3.
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To prove the estimate for ||n*||, apply lemma 4.2.3 as well as the defini-
tion of 7. and lemma 4.2.4 in the 2"¢ inequality to obtain

17" [lp < 110" = g(w) VimeC™[lp + [[VimeC I
< eslln® = g(w)Vi€* [l + s Vil
+ (s /2 21E Ny + (co/2)elln” |l
< cre D5 o + er(e 27 4 ) €7,
+er(@7 1 o),
< cse 2 ID5¢ Nlope + cse ™2 DY C
+cs(€¥27 4 o)1 -

Here we used lemma 4.2.5 for D¢, in the 3" inequality and estimate (48) for
€* in the 4" inequality. Now incorporate the n*-term into the left hand side
for €9 > 0 sufficiently small. Moreover, using lemma, 4.2.5 for D, in the 2"¢
and the above estimates for ¢* and n* in the 3"¢ inequality we get

IVl < IV = g(w) " 0% llp + In*llp
< cge|| D, CFllope + coe P E I + colln* [l

< c10€ 2 D5C lo,pye + c10€ 2w DLC -
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CHAPTER 5

Quadratic estimates

Deriving the quadratic estimates, although mainly a tedious technical pro-
cess, provides an essential ingredient to carry out the Newton type method
in chapter 1. The quality of the quadratic estimates obtained here deter-
mines the qualitative results, with respect to powers of ¢, on the size of the
existence and uniqueness neighborhoods of the zeroes detected by the itera-
tion process. In order to get optimal results we use elements of Riemannian
geometry summarized in section A.1.

In section 5.1 we calculate the fundamental quadratic estimate needed
in the initial step of the Newton method. It turns out to be necessary to
preserve the combination ¢V¢ —n in the term with coefficient €2, as well as
to do the estimates for both components of FZV(¢) — Fi (0) — dF!72 (0)o¢
separately.

This holds true also in sections 5.2 and 5.3 where we get the estimates
I and II applied in the induction step of the iteration. Note that in this
whole chapter — due to the nonlinearities — we heavily rely on the results
of the geometric analysis in section A.1 about the exponential and parallel
transport maps.

As a first step we will produce pointwise estimates in local coordinates
and integration will then lead to estimates with respect to LP- and L°°-
norms, where we shall throw the former ones on terms involving derivatives.
So let us construct a new norm| - [|g, . on CG°(R x SYu*TM @ u*T*M),
u € Pg5,, using a cover of M by local coordinate charts. This new norm,
although dependent on the choice of the cover, is equivalent to the norm
| - llo,p,e introduced previously.

Let ¢ps be the injectivity radius of the exponential map of the Riemann-
ian manifold (M, g). As M is compact it follows 15y > 0. Let {U;}Y, be a
cover of M by open sets, which has the following technical properties: U; is
contained for any 7 € {1,... , N} in some coordinate chart (V;, p;) of M and
expyé and expyn are contained in the same coordinate chart for all ¢ € U;
and £ € TyM, n € T;M of norm less than a constant

(49) iy € (0,enr).

Clearly ¢/, may be choosen independently of 7. (A cover as described above
can be constructed for instance via a partition of unity subordinate to a
finite coordinate cover of M. The interiors of the supports of the partition
of unity serve as the cover, if we choose ¢}, sufficiently small.)
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¢ (v;)
7Ryl ¢ (U;)
CCU O
Wi

FIGURE 5.1. Construction of the norm || - |[f , .

DEFINITION 5.0.6. Using the same notation as above define W; =
u Hw@® x SHNU;) CRx St For e >0 and (&,7) € C°(R x SLu*TM &
w*T* M) with |£(s, )], |n(s,t) | < thy for all (s,t) € R x ST define

e Z / (Es. 0 + s, o) deds

where E resp. 77 denote the representatives of £ resp. 7 in the local coordi-
nates on U;.

LEMMA 5.0.7. [ - [Ig e and || - llop,e are equivalent norms on C§°(R x
SYu*TM ® u*T*M), i.c. there exists a constant C > 0 such that

1
AllEmlope < NEmllope < ClE o,

for all (£,1) € CP(R x S, u*TM & u*T*M).

PrROOF. Let v be the maximal number of sets W; having nonempty
intersection, then C' = v'/? will do the job. U

Hence we may choose to work in local coordinates to get estimates for the
derivatives of ff”;f”. Although these derivatives do not have in general an
invariant meaning, the above lemma justifies this local approach, which
allows us to use simply calculus on R”.

REMARK 5.0.8. The quadratic estimates with respect to LP- and L*°-
norms are an immediate consequence of the corresponding pointwise esti-
mates (by integrating them). By the equivalence of norms it suffices to prove
the quadratic estimates in the norm || - ||, . and therefore we may restrict
to a coordinate chart (U; C Vj, ;) as described above.

Let us consider for instance the following term of pointwise estimate II,
where | - | denotes |- |z, M

[T (s, 8) + To(s, )] + €| Ty (s, £) + Ti(s, )|

—

< e(X(s,1) [E(s,1)] - [05X (s, 1)].
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Take this inequality to the power p and integrate (s,t) over
W; =u Y (wR x SHNT)
to obtain
1T+ ol gy + 1T + T2 0y

S/;Z( B)P |E(s, D)7 - 10,X (5, 8)P dtds
< cpl/ P (19X (5.0 + X (s ) ) deds

<%wxmwmvmmmm+wmwmg

where we used in the 2"¢ inequality that

|83)?(s,t)|p < ort ‘(@Xk(s t) +Fk lu(s,t) Ot s, t) X (s, t))ak‘

+2r!

Filusn Osu' (s, ) X7 (s, t))ak‘

< const(i, p) (|V3X(s,t)|p + |X(3,t)|p).

We observe that any partial derivative in the pointwise estimates gives rise to
a covariant derivative plus a corresponding zero order term in the quadratic
estimates. Moreover, the distribution of LP- and L°-norms to the factors of
products is clearly motivated by the intention to optimize the estimates in
the Newton iteration. The strategy will be to throw LP-norms on the terms
involving derivatives.

The next lemma, is the major technical tool in the proof of the pointwise
estimates.

LEMMA 5.0.9. Let f € C*(R",R") , n € N. Then for any § > 0 there
exists c; € CO(R™,RT) such that

i) [f(X 48 = F(X)] < es(6) [€]
ii) (X +€) = f(X) = df (X)et| < c5(€) l¢]
for all X with |X| <0 and all £ € R™.

PROOF. We only prove ii) as i) follows quite similarly. It suffices to
prove the estimate for a component f* of f, i.e.

'l X+ €) = FIX) = dFF(X)otlr < c5i(€) [€]3n

The general result may then be obtained as follows

(Zw@

< (Do enst©) Ve < este) el

=1

(a',..
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Now

[FHX +€) = f1(X) — df(X)et]r
1

df(X+T§)f df*(X )de

d2 FUX + o€)o(€, f)dadT

< / / 12 FH(X + 06) | cgn ezn ) dad¢-|s|ﬂin

1
3 82 25X+ 76) | cqunsn s € e
0<7<

IN

N

1 .
<5 sup sup [[d*f1(X + 7| cnxrn ) - €l
|X|<60<r<1

def

= c5,i(€) €l
O

REMARK 5.0.10. Throughout the subsequent proofs we drop the arrows
(indicating R"-valued functions) and the argument (s,t) from our notation,

so that for instance ¢ denotes E(s,t) = (€4, t),... ,E7(s,1)). Define
|§| = |§|Tu0M = gij|u0(s,t)§ (s,t)fj(s,t).

wy = g(uo)Oyuo
(50) auo, &) = expuy,é
b(uo,&,m) = T~ (€)" (wo + 1),
then
da(uo, &) = O0ra(ug, §)o0ug + 0aalug,&)o0r
Ob(uo, &, m) = dT ' E (0, wo +n) + T (&) o(Dpwo + in)
and similarly for d;. The notation d7 ! £ (9i€, wo+n) means that a7 ! £()

is bilinear and is given by (d7 ~!|¢00;€)*o(wo + 1), strictly speaking. More-
over,

(51)

AL | Osa(u, X + 7&) = 0s(D2a(u, X)of)
(52) = 010q2a(u, X)o(&, Osu) + Oa02a(u, X)o(£, 05 X)
+ O2a(u, X)o0s€.
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5.1. The fundamental quadratic estimate

THEOREM 5.1.1. (Fundamental quadratic estimate) Let p > 2 and
ug be an element of the moduli space M°(z~,z%), where z~, x+ € Crit Iy,
and denote

P Q) = P2 0) = a0 = (1)
Let « =t or a = s5.Then there exists a constant ¢, > 0 such that
1Bl < epllllon (Il + 19l + [ a€lly + linll + [ Vel
c
1Ballp < 2 1elloe (1o Ve6 = nlly + il )

+ ¢ Ielloo (19581 + Inlly + IVl ) + cp lloc 1 95€

and

IVaFillp
< ¢ €]l (I€llp + 1960y + IV &l + lally + 1V 2llp + [Vl
+ IVaVillly + IVa Vst Iy l¢ll )
+ ¢ Inlloe (V6 + 1V aélly) + e Vi€ lool Vel
I¥aFsll,
< B0l (IVaVs = g~ Vinlly + €l + V€l + il
+ [ Vatll + el (IVarlly + 1 VaVicll))
+ 2 (1V4¢ = g 1llp (elloe + Vel )
+ plélloe (1958l + I950lly + 9 anlly + I9aVetlly + 1VaVonlly)
+ oo (19t llp + 1V5€ lp + V¢l

+ 6plIVatlloo (1958 llp + 1V lly) + ol Vartll| 7€ oo

for e € (0,1] and ¢ = ({,n) € CP(R x Sl,ugTM@ugT*M) with ||€|lee <
Uy /2 and [nloo + [ Villoo + [IVa€lloo < 1/Cp/2 -

The theorem follows from the pointwise estimate 5.1.3 via integration as
described in remark 5.0.8. Note that the condition on ||{]|~ is necessary in
order for the local constructions to be well defined. The other L*-conditions
only serve to simplify the expressions. We underlined the terms which de-
termine the rate of convergence in the Newton method.

REMARK 5.1.2. The constant ¢ appearing in lemma 5.1.3 depends lin-
early on Jyug, Jsup and in the estimate for VF; even on 0,0:up. In order
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to derive theorem 5.1.1 via integration as described in remark 5.0.8 we need
continuity of all these partial derivatives of ug and some information on their
behavior for s — Foo. By definition of M°(z~,z%) any element wug is C*®
anyway and there are prescribed boundary conditions zT; however, at some
point one needs to justify this definition by working out an appropriate reg-
ularity theory for the solutions of the parabolic PDE. This will be carried
out elsewhere.

LEMMA 5.1.3. (Fundamental pointwise estimate) Let ug be an ele-
ment of the moduli space M°(z~,zT), where x—, x+ € Crit Ty, and denote

F
Fe(©) - Fin(0) - ars 0 = (1)
for ¢ = (&,m) € CPR x SLugTM & uiT*M) with ||€|lso < t4;/2, where
vy is the constant introduced in (49). Then in a local coordinate chart
i C Vi,pi) as in figure 5.1 the following pointwise estimates hold: ere
Ui C Vi,p n fi 5.1 the follows: ntwi ' hold: Th

erists a continuous function ¢ = c(g) > 0 - also depending continuously on
iy and its partial derivatives of first and second order — such that

] < e 8(18+ 10:] + 10,6 + 171 + 100l ) + ¢ | - |9,d] - |]
B < 115 Vi€ =l + €] (7] + 1R o) - ) )

+  |Z1(1E] + 10561 + 1771 + 10671 ) + 7] - 19:8]

and fora =t or a = s

VaFil < €116+ 1001 + 10a€] + 1,811 +10aE]) + 171 + 1071 (1 + 10a))
o+ 10a7] (1 + 04€]) + 102061 (1 + 171) + 1020:8] - €]
il - 10a€] (1 +10:€1) + ¢ 106€] (171 + 10a])
VaFbl < ce 2I¢|(IVaVig — g~ Vanl + nl + 06| + 1081 (1 + Inl +195¢]) )
e 21Vag — g 0l (Il + 10ag]) + e 212 (1 + 0an] + 0ath¢])
o+ cl€)(105€] + 10an| +1051] + 1020:] + Dadsn]) + O] - |0

o+ cll (10261 + 10,61 + 10a05€]) + clat] (10:€1 (1 + Inl) + 1041

for e € (0,1], where | -| = [- |1, .,
indicates that it is represented in local coordinates and evaluated at (s,t).

M and an arrow on top of an object

Recall the definition of ffﬁf”: Pick a smooth cylinder u € Py, ,y
smooth loops in M, and set

w = g(u)atua
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then
; T 1(X) 0 a(u, X)
triv _ )
]?u(X3Y)"< 0 71XV>°f;(Mug¥Jﬂ
_ (T 1 X)(0sa — g @) Vb — VVi(a)
T\ T (Vb + € 2g(a)dia — € 2b)
where

a(u, X) = exp, X
b(u, X,Y) =T ' X)*(w+Y)
and 7 (X) is parallel transport along the geodesic
0,1] = U; cV;Cc M
0 > exPy(s,1) 0 X (8, 1).

Note that 7(X) was denoted 7 (1,0) in appendix A and so in local coordi-
nates

(TX)")F = (T*0,1)f = (TA,0)} = TX)}.

Moreover, we define 7 1(X) = T(X)~ L.
In the following proof we will use several times lemma 5.0.9 as well as
the notation introduced in remark 5.0.10 below.

PROOF. (of lemma 5.1.3 — fundamental pointwise estimate) Let

us denote
triv _ T_l(f) fl(&aﬁ))
Fe,uo (5’77) o ( T(f)* f2(§777)

where
fl (51 77) = asa(U'Oa 5) - gil |a(u0,§)vrb(u0a £, 77) - vv”a(uo,&)
f2 (55 77) = V:b(UO, £, 77) + 672g|a(u0,§)8ta(u05 5) - 672{7(“0a £, 77)
Estimates for F; and F5
The estimate for the first component F} is less subtle than the one for Fy
as there are no terms containing factors e 2. For F| we may simply apply the

corresponding estimate of lemma 5.2.2 (pointwise estimate I) with X = 0
and Y = 0. A more delicate analysis is required in order to estimate

|Fo| = [T (€)* fa(&,m) — f2(0,0) — | (T&* fa(r&,mm)|
= [T (&) f2(&,m) — Vi(gluo o) — dT[6(&, Vis(glueOruo))
— 01f2(0,0)¢ — 92f2(0,0)n|

(53) = |(Te&r - 1-dT15€) falem)
+(ﬁ@m—vﬂﬁwww—&ﬁ@mg_@ﬁ@mn)

+ T3 (& fot&m = Vigluodruo) )|
= IV +V+VI|
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Note that the last equality defines terms IV, V and VI. Moreover, we have
added twice zero in the steps above. As the e >-terms are the worst ones in
order to get estimates with highest possible powers of € and, on the other
hand, we have strong estimates for g(uo)Vi& — n, the crucial point in all
what follows is to keep those differences together rather than treating V¢
and n separately. Use formula (72) for V;b(uo,&,n) to obtain

(54)
VI=dTly (6 , AT HE(05€, glugOruo + 1) + T 1€ (0s(gluo Do) + )
= Tla(uoe) (3161(“0,5) Osug + Da(ug, &) 05, T (E)* (glu Oruo + 77))
+ € 29la(uo.6) (B1a(uo, &) yuo + daa(uo, &) 04€)
— € 2T 1) (gluo Ortio + 1) — Os(gluoOstio) + Tlug (Bsuo , 9|u03tuo)>

and
(55)

1V = (76 = T0)" = a7156) (T 50048 . guprn + 1)
+ Tﬁl(ﬁ)* (8s(g|u08tu()) + 8377) - 6727’71( )*(9|u03tuo +n)
~ Dlagug ¢) (D100, 051 + (o, 0,8 , T4 (gluy Do + 1))
+ € 2gla(uo.6) (O1a(ug, ©)Opuo + Bra(uy, f)&tf))

as well as (using 9 f2(0,0)¢ = % ‘OfQ(Té’, 0) and similarly for 9 f2(0,0)n )
(56)
= (a7 g = dT105) (06, ghuoOmo) +dT (3¢, 1)

+ (T7H9)" = 1= aT 7156 0gluodhuo) + (T71(&)" = 1) dim
(F|a (uo.g) (D100, ©)85u0 , T (€)* glugOrtu0) — Tlug (Dstio ; glug o)
— | Tlaguo ) (Bratuo, T&Dsuo , T~ (7€) glug Do) )
(F|a (uo,6) (8200, &) -, T 1€)* glugOruio) — Tlug (- gluoatu()))asé‘

~ (Plaunsy (@r0000, 0410, 769" ) = Tl (3o, ) )1
= Ta(ug¢) (B2, )85, T H(&)*n)

+e? (g|a(uo,a> (91a(uo, £)Bug + Baa(ug, £)04€) — T (€)* (glus Fruo + 1)

— dglu, (f, 3tU0) = Glue i€ + dT_1|3(f, g|u08tu0) + 77)-
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Let us consider for the moment the special case of the standard flat
metric ¢ = 1. Then the e~2-terms in IV and VI reduce to e 2(0;¢ — n),
whereas the one in V' vanishes. Distributing the L°°-norms on 9;¢ — 7, the
¢ 2-terms in IV, V and VI contribute as follows (note the extra ¢ coming
in from the (0, p, €)-norm)

e HIEN - 1106 —nlloo + 0+ € M€l - 1106 — nlloo-

Inserting (&g, 7o) from step 1 of the Newton iteration and using the estimates
derived there, the above term is less than a constant times ¢ and that is
exactly what we are heading for. Unfortunately the subsequent calculations
do not result in the worst term being c|¢]? (which would give ® indeed), but
c|é?||R(-, Byug) - || (which gives €2 only!). On the other hand the occurrence
of curvature terms in the nonflat case should not be too surprising and the
result specializes in the flat case to the one derived above. Moreover, it will
turn out later that this a priori bad term will not lead to worse estimates in
the Newton method below, if we only use the quadratic estimates separately
for each component.

Back to the general case we now derive a corresponding estimate in the
realm of Riemannian geometry. Rewrite the ¢ ?-terms in VI (and IV)

(g|a(u0,§)82a('u0a f) - g|u0) (8t§ + FuO (8tU[), 5) - g_1|uOT’>
+ (g|a(u0,§)82a(u03 5) - 7'_1(5)*9|u0)9_1|u077
BD 4 (9l + gl T (Dr110,€) — )

+ <g|a(uw§) (ala(UOa §) - —02a(ug, )Ty, ('a f)) - Tl(f)*g|uo'> Oyug-

We’d like to estimate the second term in the sum by c |€|2|n| and the last
one by c €2, Call the last one h(£), then we have to show h(0) = 0 and
dh(0)¢ = 0. Both will follow from the discussion of the exponential map
and the parallel transport carried out in appendix A section A.1. h(0) =0
is obvious and

dh(0)¢ = Z=| (7€)
= dglag (€ , Oto ~ Tug (9410, 0)
+ gluo (8281a(u0, 0) (Ouo, &) — B202a(uo, 0) (&, T|ug (Druo, 0))
— Byauo, O ug (Do, €) )

—dT 5 (&, glug Oruo)

= dgluo (& Ortio) — GlueTuo (Oruo, €) — dT i (€, glue Oruo)
=0

(58)
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where we used the results on the derivatives of the exponential map in
proposition A.1.2 and the last equality uses lemma A.1.11 — both in appendix
A section A.1.

Let k(&) be the second term in the sum in equation (57), then we compute
k(0) = 0 and

dk(0)¢ = 2| k(7€)
= dglu (&,97 o) + GluoP202a(u0,0) (&, 97" uen)

- dT—1|6 (57 77)
= 0.

(59)

The last equality is again due to proposition A.1.2 iv) and lemma A.1.11 —
both in appendix A section A.1. Summing up, the absolute value of (57)
may be estimated by

(60) (161 1Vi€ = g7 nl + 1€ Inl + Vo€ — g7l + 1¢2).

This leads to

IV < cléPe (194 — gl + €2 ol + I¢?)

(61)
o clél? (e + 105¢] + 1941 - Inl + In] +10sm]).

In order to estimate VI we have to rewrite the terms without an ¢ 2 in

front:

dT s (f , AT HE(8€, g(uo)dpuo + 1)

+ (771" — 1) 95 (g9(u0)Opuo) + T~ (€)*0sn
- (Fa(uo,g) (01a(uo, &) -, T 1©* -) = Tlug (- -)) (9510, g(u0)Bruo)
- Fa(uo,f) (810*(“07 f)aSUO ) 7‘71(5)*77)

= Ta(uo.6) (aza(u(), 60s¢, T &) (g(uo)druo + n)))

< clé|(Ig] + 105€ 1 + 10,81 - Inl + Il + 0.1

and therefore

V1| < cléle® (1V2€ = g7l + ¢ -l + 1¢]?)

(62)
o+ clé) (161 + 10561 + 105€] - ] + Il + 10sn]).
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Rewrite the e ~2-terms in term V and add twice zero to obtain
(63)
(9lauor6) 920110, €) = glus ) (918 + Tlug (Butto, €) — g™ ugn)

+ (g|a(’u,0,§)82a(u07§) - Tﬁl(&)*g|u0> g*1|u0,r,
+ (g|a(u0,§)81a(u03 E0uo — T~ (€ glug o + dT " [5(€, glug Oruo)
- dg|u0 (57 (9tu0) + g|u0F|u0 (atU[], f) - g|a(u0,§)82a(u07 §)F|U0 (8”]‘07 f)) .

The first term in the sum gives c |¢| - |V;¢ — g~ 'n| and the second term is
identical to the one in (57), which we had estimated previously by c|£|?|n], so
it remains to estimate the third term in the sum by c|¢|?. Call it again h(¢)
and observe that terms 3, 4 and 5 cancel due to lemma A.1.11 in appendix A
section A.1. So it coincides with the function A(¢) considered above and we
know h(0) = 0 and dh(0) £ = 0. Let us compute also the second derivative
of h as it was great if it vanished (the term then would contribute c|¢]?). Tt
turns out to be important to keep track of indices from now on. Derivatives
of a(ug,&) with respect to the first variable will be denoted by 9/du’ and
with respect to the second one by 9/0x7.

hi(0)(6,€) = x| hy(76)

da(ug, 7€) . . )
0 <9jl|a(uoﬁ£) % Ol — T*(7,0)% griluo Orul

d2
P

da(ug, 7€) .
- 9jl|a(uo,7§) % [ luo Orug T£s>

4 Jg;1 Oda(ug, TE)® raa(uo,Tf)l
55 la(uo.7€)

T a0\ ys ox" ¢ ou’ Prug
%a(ug, T ., . :
+ Gijtla(uo,re) W Opug £ — 0, T*(7,0)5 griluo Oru

89 il aa(uﬂa T&)m 3a(u0, T&)l
64 _ 299k n
(64 oum la(uo.r¢) oz ¢ oxt

a2a’(u07 T&)l m i r s
= Gitla(uo,re) T oo £ U glug Orug 76

Lslug Opug 7€

da(ug, TE)
~ latuney 2 T L 0 )
9%gj1 ;o 0gji,  9%a(up,0)® !
= Ou™Ous |U0 €m€satu0 + ous |U0 OxmOx" £m€7'atu0
09,1 , alug,0)t . . Ogji - 0%a(ug,0)! ..
s o ¢ Wﬁ Ortty + 5o § aagsgui) & ohug
83a(u0,0)

l
. . |
+9ithio Gorgpaga &€ 0 = gz | T (700 geilus Ottt
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dg;i [
&Lt—in |u0 £m Frs|uo gsatug

-0-0+ gjl|u0 Flmi|uo £m Ff‘s|u0 fsatug

ag jl 0%a ug, 0 ! ;
- au—in|uo €™ T gluo €°0rufy — gjiluo W §" T luo & Opug
or:.  ort,

= gjiluo 5857"815“6 ( ous  oul + Fim Ir — fnl Fg;) |uo
= Gjiluo Risilug £"E°Opufy
= gji|uo (R(ﬁ, 8tuo)f)z|uo

which is not zero in general! Here the first four equalities are a straightfor-
ward calculation using the definition of h;(7¢) and the product and chain
rules for derivatives. The fifth equality uses results from appendix A section
A.1, namely proposition A.1.2 on the derivatives of the exponential map
and lemma, A.1.11 on the second derivative of the parallel transport. Note
that in the sum preceding the fifth equality sign terms 3 and 4 are zero.
Moreover, terms 1, 2,6, (10 + 14), 15 are identified with terms 2,3,1,4,7, re-
spectively, in the formula of lemma A.1.11. The remaining terms are 5 and
13 here and terms 5 and 6 in the lemma. Now use formula (98) for the
curvature tensor in terms of Christoffel symbols and their derivatives to get
the last but one equality.
The above estimates yield

~0-0-0-

VI < ee gl (1966 = g~"nl + Il - Inl + I€] - IR, Druo) - )

o clé](1€] + 19:€] + [l + 91 ) + eln] - [9:].

All together this gives finally our claim for the second component
|Fo| = [IV +V + VI

< ce el (1966 = g nl + €] Inl + I - IR(-, o) - )

o+ clé] (I¢] + 041 (L + Inl) + [nl + 9sn]) + cln| - 10s¢]-

Estimates for V,F; and V} F>
To estimate V,F; we may simply apply the corresponding estimate of
lemma 5.2.2 (pointwise estimate I) with X =0 and Y = 0. Moreover, as

VZFQ = 8aF2 - I‘|uO(8au0,F2),

we may use the estimate for Fy derived above for the second term and it
remains to consider 0, F». Using the notation introduced in (53) we obtain

|06 Fa| < |0aIV |+ |0,V | + |0, VI|

and proceed by treating each term separately.
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Let us begin with term I'V given by equation (55) as a product of two
factors which we denote by IV; and IV,. Note that it turns out to be
sufficient to estimate the e 2-terms individually. We obtain

0aIV| < |0aIVi| - [IV2] + [IVA] - [0al V5
< |dT (6" 0al —dT (0)* 0ak| - [TV2]
+ T ()" = T(0)" —dT(0)*¢] - |0aIV5|
< clé] - 10ak] - 1 IVa| + c|€]* - [0alVa)

< clg] - 10a€] (1 -+ nl + 10:¢] (1 + Inl) + 041
e J¢] - 0a] (1+[00€] + [n])

Felep (1 T 0l (1 + 104€]) + 18561 (1 + 3un])
+10at] (105¢] + 10s1] + 105€] - Inl) + 10a05E] (L + Inl) + |aaasn|)

Fee? | (1 10| + D]+ 10aE] (L + Il + 18:€]) + |aaat§|)

where we underlined the worst term with respect to the Newton method.
Next we deal with term VI given by equation (54) and define new e-
independent functions V' I{ and VI, by the identity

VI=dT|§(&, VI + e 2VIy).
We obtain
10aVI| < c|0al| (VI + e 2|VIa|) + c|é] (|0aVI1| + €20,V I2]) .

Note that VI + e 2V I, satisfies estimate (62) with the common term |¢|
replaced by |0,¢].

| 0a€ | (VI + € 2|V I3)
(65) < cldatle 2(194 — gl + I - Il + 1€P?)
o+ cl0ag] (IE] + 10581 + 105€] - In] + n] + 9]

Use product and chain rule to calculate 0,V I; and then estimate each term
containing &, n or partial derivatives thereof individually and pair the re-
maining terms appropriately to obtain

€l- 10V T < cle] (|n| (14 10a€] + 10461 + 10:] - 10:€))
(66) 10E] (1 + [9an]) + 19a€] (1 + 951

T 10un] + 19a05¢] (1 -+ n]) + |aaasn|).
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Let
0aVIs =k + ko + ks
where
1 = dgluuo,e) (G200, €) Dat, Dratuo, & Auug + Dpatuo, ) A1)
- dgagug &) (D100, €) Datio + Daattio, &) Dak +hatuo, &) D)
+ 9la(uo,) (32310(%,5) (0af, Orug) + O102a(ug, &) (Oato, O4€)
+ 02020 (ug, §) (0a€, 3t£)> — dT [ (9at, gOruo + 1)
ko = dg|a(ug,e)(O1a(uo, &) oo, Ora(ug, &) Oyup)
+ 9la(uo,e) O1010(u0, &) (Oaro, Do) — T H(€)* dgluy (Do, Bruo)

and
3 = Glaguo,e) (9110, &) Daditig + Daattio, © Oart)
—THo)" (gaaatuo + 3a77>-

Estimate k1 term by term to obtain

2]l < e €] (106€] + [0a€] (1+ (06| + ).

Consider k5 as a function of &, then proposition A.1.2 4i7) shows that k2(0) =
0 and we obtain

e 21E| - ka(&)] S ce 2 ¢

k3 is harder to deal with. We rewrite it in a form similar to (57)
k3 = (9la(uo,6)P20(t0,€) = gluy) (Vavtf - 971|u0v&77)
+9(VaVit =97 1w Van)
+ (9la(uo £)0200, &) = T 1€ Gluo) 9 uoOan

+ (g|a(u0,§) (81@(’[1,0, 5) OaOpup — a20' UOa F|uo (8 atu()a 5))
- 7——1(5)* 9luo 3a3tuo>
- g|a(u0,§) 8201(11*07 5) (d]:‘|l9au0 (atU[], 5) + F|u0 (8tU[], 8046)

o Tlug (Datto, 01€) + Tl (a0, Tlug (9o, §)) r|uO(8auo,n>)-

The first line is estimated by
cle] - [VaVig — g~ Vi),
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the second one by ¢|V, V£ — g~V n| and the third one had been calculated
before in (59) and yields c|¢|?|0,n|. The fourth line contributes c|£|? as
we know from (58). Estimate the remaining terms individually and get
c (|&] + 10:€] + |n| + |0a€]) as upper bound. This implies

2 1¢] - [hs| < ce 2 1] (19 Vet — g uo Vil (1 + IE]) + €] Ban

Il +100€] + 0] + 190t
and we finally obtain

2] 10V o] < e €] (1Va Vit — g7 Vinl (1 + [¢]) + ¢

Il + 100¢] + 10uE1(L + 194€] + [n]) + 1€ 10l

Term 9,V is the hardest one. Recall that V' is given by equation (56) as
a sum of nine terms h;, i € {1,...,9}, (here we consider everything inside
outmost brackets as being one term). So we may write

0oV = Oah1 + ... + Oohs + € 20uho
and remark that only the last term contains a power of e. We only state
the results of estimating the terms with 2 = 1,... ,8 as the calculations are
rather lenghty but straightforward (given the explicit estimates done so far).
A guiding principle is to group together terms with the same linear factors.

Here are the results: Note that the constant ¢ depends on ug and its partial
derivatives up to second order, all evaluated at the point (s, t)

L 0] < 10a€] - 10:6] + €] (10a05E] + 10:€])

|Oacha| < [0ag] - 105€] - 0] + [0a05€] - [n] +105€] - |Oan|
|Oacha] < [€] (1€] + 10a])

|0ahal < |0sm] (I€] + 10ag])

|0ahs] < [€] ([€] + [0a€])

|Oachs| < [€] - [0a05E] + |05€] (€] + 10a])

|G| < [nl (I€] + [0a€])

AlRrol=alRrO RO IFRAIFROIFO

|Oahs| < |7l (105] + [05€] - 10ak] +|0a05&]) + 105€] - |Oan]-
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Now hit hg with d, and rewrite the resulting avalanche of terms as follows

Oahg =
<d9|a(u0,§)(31a(UO,§) Datin, O2a(tg, §) +) — dg|uy (auio, ')) (Vi&—g ')
+ dgla(uo,) (D2a(u0, &) 0aé, Vi€ — g~ 'n)
+ Gla(uo.¢) D202a(u0, &) (0a€, Vi — g7 'n)
+ (9|a(u0,g)3132a(u0,5)(3aUO, -) — g0 0aa(ug, 0)(Dao, ')) (Vi& —g ')
+ (9laguo,6) = 9lue) (Va Vil — g 'Vin)
— (9lauo.c) — 9) (F(aau[), 0€) + 97T (Batio, n) + T (Batio, T(Dyuo, 5)))
+ (dg|a(u0,§) (D1a(uo, &) Dqug, Baa(uo, £) g~ ')
+ 9laguo,e) O102a(u0, &) (8atio, g7 'n) — T1E)* dglue (Oauo, 9_177)>
+ (dg|a(u0,§) (B2a(uo, &) Dat, Dra(uo, &) g~ ')
+ Glatuo.g) Da00attin, ) (9u€, g™ 1) — dT V7 (9a€,1) )
+ (g|a(u0,§) daa(ug, &) — T‘l(ﬁ)*gluo) (dg™"uo (Oarso,m) + g~ " 9an)
+ (dg|a(uO’§) (Boatio, ) Dut, Dyatuo, &) D) — dT 2 (9at, gdyuo)
+ la(uo) 201a(u0, &) (0ak, Ot) — Glague¢) O2a(wo, ) T (dyuo, 3a€)>
+dT " [5(9a€, 90ru0) — dgluy (9, 90suo) + 9T (Dpuo, af)
- (9laguo 6) D100, &) Dadrtsg = T~ (€)" g Oudhuo + AT 5 (¢, 90aOpuo)
— dgluy (& 0adpuo) + 9T (0adpuo, €) — glaguo,e) P2a(uo, &) F(aaatuo,f))
+ (dgluy (Outio, T(01110,€)) = Glatuo g) Ba0atin, €) A g (Dutio, Auto, €)
+ 9dT |y, (Datio, By, €) — gla(ue.¢) 10200, &) (Datio, T'(Dyug, §))
— dgla(ue ¢) (Ora(u0, &) Bauo, Dra(ug, &) T'(dyuq, f)))
- (d9|a(u0,§) (Doa(ug, &) Bk, Doa(ug, &) T (dpu, £))

 Glauo e) Da0hatuo, €) (Dt T(Brto, €)) )
+ (=T 7HE* + L+ dT Y5 €) dgluy (Bauo, Dpuo)
+ (dg|a(u0,§) (Dra(uo, €) Do, O1a(ug, &) dyuo) — dglug (Batio, Orug)

+ 9la(uo,¢) 0101a(u0, &) (Bauo, Aruo) — d*glu, (Oatio, €, 3tuo))-
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We obtain termwise

1
g |aah9|
< (192€ = 97" 0l (1€] + 9] + 10u81 + 121 + 1€1) + 1€1(06€] + Il + 1¢1))

+ (111l + 10a€] - Inl) + 11 (Il + |8an]) )
+ €] 10a] + 617 + 17 + [€] - 10a€] + €7 + €1
All in all we get

0aV] < ce2Vi = gl (1€ + 10u€1) + e 1€ (1n] + 10an])
e 2181 (1€ + Il + 10i€] + Il - 19a€] + 10a¢])
+cl€l (1] + Il + [0a€] + [058] + 10571] + [0a0€]) + cldsE] - [Oan]

+ c|0al| (In] + 105€| + [0sn] + 0] - 105€]) + c|n| (105€] + |0a05E]).-

This estimate for d,V, the one for J,/V and estimates (65),(66),(67) for
0,V I together give the claimed estimate for the second component V} F;.
O
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5.2. Quadratic Estimate I

The following quadratic estimate is an essential qualitative ingredient to
carry out the induction step in the Newton method. The theorem follows
from the pointwise estimate 5.2.2 via integration as described in remark
5.0.8. Note that the conditions on ||£||sc and || X ||s are necessary in order
for the local constructions to be well defined. The other L°°-conditions
only serve to simplify the expressions. Terms involving s-derivatives have
not been dropped in simplifying the estimates for the components F; and
F,. This is of importance in the uniqueness part of the Newton method
because these terms may appear with negative powers of e. We underlined
the worst terms with respect to rate of convergence in the existence part of
the Newton method. Moreover, the theorem actually holds for any cylinder
with appropriate smoothness and asymptotic convergence properties.

THEOREM 5.2.1. (Quadratic estimate I) Let p > 2 and u be an el-
ement of the moduli space M®(z~,z%1), where z=, 2t € Crit Iy, define
w = g(u)Oyu and denote

Fy

Then 3 a constant ¢, > 0 such that for Z = (X,Y) € CP(R x St u*TM &
wT* M) with | Xlleo < tiy/2 and [Ylloo + [IViXloo + [[VsX[loo < /Cp/2

F(Z 4 ) — FIT(Z) — dFIT(Z)e¢ = (F) .

11l < cpllelZ (IVeX Iy + 19,X ] + VY )
+ cpllllo (1l + 1 9eElly + IV o€ 1o + Inllp + Vel Il )

+ X2 (Il + I195€ 0 + Il + Vel
+ cpll XllseInll Vel
1Bslly < cpllelZ (21X Tl + 196X 1) + IV:X 1l + [Vl + [V:Y )

+eplielioo (102 (el + 192 l,) + 19,8l + Il (1 + 19X 1))

+ ¢pl| X loo (6’2(||€||p + [1Veéllp) 1 X lloo + IIVsé”IIpIInIIoo)

and

IVaFilly < cpllelZ (IVeX Ty + 1Yy + 195Xl + VY llp + [ VaY
+ IVaViXllp + [ VaVi¥ [l + [IVa VX1l
+ cpllellos (IElly + Inllp + IVl + [Vl + 1Vt
FI9s€llp + IV anlly + IVaVetllp + V0T s€ lpli o)
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+ cpllglloo (192Xl + IVa Xl + 192Y Iy (1Kl + V2 X 1)
FIVaY Il Viélloo + 1Va Ve X oo )
+ | XIZ (Inlly + IVenlly + 1V V¢l
+ | X loo (Il + 1l + 1V at lp + 1€l + 1Vanll,
FIVaVitlplElloo + 1VaVillplnloo)
+ cplloo (196€ 1 + V0l + IV a Vel 1l

+ &l Vatllp (17X oo + Vel )

||VaF2||p

< gkl (e-2(||X||p FI9X ] + [ Va Xl + VoV X))

FITXly + Va1 + 1.1+ IVaTeXy + V27,7, )
+aplllloe (el + 19l + ¥l + [VaVecl,)
F 9.8l + lall + [Vl + [l + Va5l )
+ plllloe (101 + 190Xl + VY 9.6l
191 (90X | + [all) )
+ X1 ? (Il + 19l + 19l + VeVt
+ Xl (<2 (1l + 192€0) + V€l + Vot 76

VY €l + Hvavssnpunuoo)

+ epl|Vatlloc (N(usnp Vil ) + V€l + ||vsX||p)

+ ¢pllnlloo (||Va£||p + IVl + Vs XllpllElo + IIVaVsXIIpllilloo>

for e € (0,1] and ¢ = ({,n) € CP(R x SLu*TM @ u*T*M) with ||€]le <
Uy /2 and [nlloo + [IVi€lloo + [[Vs€lloo < 1/Cp/2-
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LEMMA 5.2.2. (Pointwise estimate I) Let u € Py, z, y smooth loops
in M, and denote

triv _ rtriw o triv _ Fy _ T+ T+ T3
Pz +0) - 7 2) - arti e = () = (R TR TR

for Z = (X,Y), ¢ = (&,n) € CP(R x S, uw*TM & u*T*M) with ||¢,
| Xloo < thy/2. Then in a local coordinate chart (U; C Vi, ;) as above
the following pointwise estimates hold: There exists a continuous function

=

c(&) > 0 such that

- =

1] < (@) 187 (1+ 101 (1 + 7)) + 10, + V] + 07| + 0477

+o(€) €] (12€] (1 + 171 + ¥1) + 10:€] - 6] + 11 (1 + 9, X))

+e@) 1X] (106€] - 171+ 10,€] - 1 K] + 194 - 1K)

—

B < ef@) 167 (e2(1+ 0 X]) + 10, K] (1 + 7)) + [P] + 0,71
+c(€) 1] (10T - €] + 91 (1 + 17 + ¥]) + Il (1 + 10, X]))

K| (210l - 1K1 + 101 - 171

82) + (81) + |Fi[)

80) + (78) + | F4])

for e € (0,1], where |-| = |- |r,,, M and an arrow on top of an object
indicates that it is represented in local coordinates and is evaluated at (s,t).

PROOF. (of lemma 5.2.2 — pointwise estimate I) Throughout the
proof we use the notation introduced in remark 5.0.10.

Estimates for F; and F>
The term Tg : Use the definition (50) of b to get
€To = ~T(X +"b(u, X + €Y +1) + T(X)"b(u, X,Y)

o (T + 78 b, X+ 76,Y + 7))
=-n+ % 0(’UJ+Y+TT]),




5.2. QUADRATIC ESTIMATE I 93

The term T3 :
Ty = =T (X + oVVilaw,x+¢) + T (X)oVVia(u,x)
Lo (T X + 780V Vilagux106))
= —(T‘I(X +O-T'X) - dT‘llxof) oV Vila(u,x)
-T X + €)o(VW|a(u,X+§) = VVilau,x) — d(VVi|a(u,X))O€>
— (T X+ = T 10 od( Wil ))o€

=I+1T+1I1

where in the 2"¢ equality we have added twice zero (terms 1 + 5 as well as
6 4+ 7). Now use lemma 5.0.9 to get

1) < | T 74X + 6 — T HX) — dT Y xof|| - [VVilagux)|
<e(X,€) - |- e(X )
111 < ||T HX + O] - [VVilaqux+e) = VVilatux) = AV Vilau,x))o€
< (X, 6) - e(X, )-Ifl2
I < [T "X +& - X - [|A(V V) lagu,x)002a(u, X))o
< (X, €) - €] e(X )-I g

As the constants depend continuously on X and || X || < ¢),/2 it follows

(69) T3] < c|é)?.

The term Tj :
Ty =T X + &odsa(u, X + &) — T H(X)edsa(u, X)
-4y (T—I(X + 7E)00sa(u, X + TO)
= (T_I(X +OH =T X)) - dT‘llxoﬁ)oasa(uvm
+ T HX 4 6o (3auX+§ Dsa(u, X) — 8(320(U,X)°§)>

+ (T7HX + & = T71X)) o0 (Baau, X)et)
=I+1T1+1I1

where in the 2"¢ equality we again added twice zero (terms 1+5 and 6+ 7).

Using lemma 5.0.9, equations (51) and (52), adding zero and moving a term
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in I11 containing 9,£ to I1, we obtain

1]
< o(X,€) [¢)? - |01au, X)odsu + Dra(u, X)ods X |
< o(X,€) |6 e(X) (e + 10,X )

|ITT — T X+£82au X)0s& + 04€|

< ||T X—i—£ X))l - 101 02a(u, X)o(Dsu, &) + 0202a(u, X)o(s X, &)|
+-T% )azaw,X 00s€ + 05|

< (X, s>(|§|2 + IE[210,X] + X P|0y¢ )
1T + T~ V(X + &0a(u, X)0s¢ — O4¢]
< ‘7" X +6)(Oratu, X + & — dratu, X) — pdrau, Xt ) (D + 0,X)
F T X + Hdvau, X + £)00,¢ — O4€]
< e(X,€) (1€ + 1€ - 10,X] +1X + £ 0,

where we applied results derived in appendix A to
h(X) =T YX)aw,X) — 1.

Namely, we get h(0) = 0 and dh(0)X = dT ]o(X,-) + 0202a(u, 0)(X,-) = 0.
The assumption on || X || implies

(70) T3] < e(lgf? + €210, X + IE[210:81 + | X 2loel).

The term T5 : Again add twice zero in the 2" equality (as above) to get

€ Ts = T(X + &% oglagu,x+e)00kaw, X + & — T(X)*ogla(u,x)o0a(u, X)
— Ao (T + 76 0lagu, x 47 oDhatu, X +76))
= (T(X + & laux+e) — T(X) 0Gla(u,x)
— AT (X) oG lagu, x))o¢ ) odhatu, X)
+ TX + " Glaqux +e) ((9ta w, X + &) — Bya(u, X) — at(aw(u,x)og))

+ (TOX + &7 0Glagu,x+6) = TO oglau,x) ) o0h(Baa(w, X)ok)
=I+1I+111
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Using lemma 5.0.9, equations (51) and (52), adding zero and moving a term
in I11 containing 9;£ to I1, we obtain

1]
< o(X,€) 1% 01a(u, X)oOpu + Dra(u, X)o0, X |
< o(X,€) ¢ e(X) (e + 0, X] )

|III - (T(X + f)*g|a(u,X+f)82a(uaX) - g|u) 8tf|

<|TX+£*g|auX+§)_T *g|auX|
- |0102a(u, X)o(Opu, &) + D202a(u, X)o(0 X, &)|

+ | (=T X)*gla(u,x) 02a(u, X) + glu) O]
< (X, ) (I + €12 19X |+ X P 0ne))
11T + (T(X + &*glau,x+6 0201, X) — glu) |
< ‘ X + 6 glagux +0 (3161 u, X + & — da(u, X) — 8231a(u,X)§)3tu‘

T+ lagu x4 (92000, X + &) = doatu, X) — dodhatu, X)€ ) 9, X |
+ [T + &7 glaqu,x-+6) 20w, X +§0hE — gludsé]
< (X, €) (I + €17 X+ |X + €2 - [aig))

where we used a result derived in the proof of the fundamental quadratic
estimate theorem 5.1.1, namely (59) which states that

X)*g|a(u,X)82a(ua X) — g|u

is of order | X|?. The assumption on || X||s implies

(7)) IT < ee (K + PIaX| + [EPag] + 1X210kg]).

The term Ty : Add twice zero in the 2" equality (terms 1 + 5 and 6 + 7)
to get

Ty = T(X + &) Vb, X +£,Y + 1) — T(X)=Vibu, X, V)
— &, (TX 479" Vibw, X +76,Y + 7))
= (T(X +6" = TX)" - d(Tlf%)of) oVibu, X,Y)
FTX + 5)*o(v;b(u, X +&Y +n) — Vibu,X,Y)
— | (Vibu, X +7E,Y + m)))

+(T(X+£)*—T(X)*) L), Vibu, X + 7Y + 1)
=T+ IT+1III
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We need to compute

—Vib(u, X,Y)
= —(8s + =T au,x) (Osa(u, X)), -))oT*I(X>*o(w +Y)
(72) = —dT xo(0: X, w +Y) = T HX)* (95w + 9,Y)

+ la(u,x)° (81a(u, X)oOsu + Oha(u, X)o0s X |
T X eow + V)
and
Vib(u, X +£,Y +1)
= dT My o(0:X + 08, w + Y + 1)
+ T UX 4+ &%(dsw + 0,Y + 0sn)

(73)
— Dluu, 00 (B0, X +€oyu + Daatu, X + €00, X + 0,8,
T-1X + &) w+Y+n>)
as well as
(74)

A1, Vib(u, X +7EY +71)
=4 0(83(T (X +7H%w +Y + 1)
— Dloqu,x+r¢) (Osau, X +76), T X + 1) w—l—Y—i—Tn)))
= T Y5ol0s X, 6w +Y) +dT  Hio(0s&,w +Y)
+dT 5 o(€, 05w + 05Y) +dT o (9sX,n) + T 1(X)* 05
— o) (3ga(u, X)o, Dy a(u, X)odyu + dsa(u, X)od, X,
T~ ot + )
— Tl (8182a(u X)o(Dstt, €) + oBrau, X)o(Ds X, €)
+ Baa(u, X)o0s€ , T xo(w + Y))

— Dlagux) (910, X050 + daau, X)0,X,dT € w+Y) + T 1(X)*)

where we used %‘083- = 0s di”o as well as equations (51) and (52). Using
lemma 5.0.9 and equation (72) we can estimate I

1 < IT(X +€)* = T(X)* = dT k€]l [Vib(u, X, V)|
< cl¢f(1+10,X| +10.X] - [V] + Y] + |,
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where we used || X||o < ¢f,/2. In what follows we transfer the terms con-
taining dsn from 11 to I1 so that they will disappear. Equation (74) leads
to

(LT =T (X +€)* T~ (X)" 0y + Oy
SITX + 6" =T X)) - | 2|, Vib(u, X + 7Y + )|
< (X, €) [¢] e(X) (J¢] - 19.X] + €] - 0, X - [
+ 10,€] + Y] 10,81 + 1€ + Il - [:Y] + In] - 10,X] +0
I+ 1€l Y|+ 10X - Il + 9] - [¢] - [¥] + 10,€] + [0s¢] - 1Y

€1+ €] Y]+ 10,X |- el + 19X - €] V] + ] + 10, X - 1n])
< clel (€] + 101 +[€] - [2,X] + €] 10, | + [n] + 0
0l 10X |+ €] V] + 10:€] - [Y |+ [l [V [, X] )

where in the last step we used || X | < ¢/,/2. Now we estimate term IT
using equations (73), (72) and (74) as well as lemma 5.0.9

|II + T(X + 5)*T71(X)*8377 - 8577|
<X, 8) [Vib(u, X + &Y +1) — Vib(u,X,Y)
— |, Vib(u, X +7€,Y + )|
< (X, ¢€) (0 H|THX + 6" = TH0* —dT ot || - 105w + 8, Y|
+ AT xpe — dT ' = T xof|| - 10X - |w + Y|
+ | aT Wspe — dT || - 10:X] - In]
AT e —dT K| - 105€] - [w + Y]
+ ‘F|a(u,X) (ala(u, X)oOsu + Oga(u, X)o0, X, T % (w + Y))
— Dlagu,x4) (D100, X + €00y + dhatu, X + €00, X, T~ i glw + V)

+d(F|a(u’X) (ala(u, X)oOgu + Oga(u, X)o0, X , T L (w + Y))>o§

+ _F|a(u,X—|—§) (81a(u, X 4+ £o0su + oa(u, X + £)o0s X, 77! |i§(+§077>
+Tau,x) (81a(u, X)oOsu + daa(u, X)o0s X, 7—71|§(o’]’]) ‘
| Tlagu ey (Boa0u, X + 00,6, T 0w +Y))

o, x) (o0, X0, T io(w + 7))

+ ‘dT*1|§(+g(835,n) ~ Tl x+) (32a(u,X + f>°355’771|}+5°77) H)
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where the last term in the sum is less or equal to

(X, ) [ X +&]-10:¢] - Inl < e(X,€) Inl - 9] (1] + 1X]) -

Inspecting the estimate above term by term leads to

1] < e(X,€) (0+ € (1+10,Y]) + €10, X[ (1 + [Y])
+ Il 10X - In] + [¢] - 0s¢] (1 + 1Y)
HIEP(L+ Y]+ 10X + 10X - [Y]) + €] - Inl (1 + 10,X])

161 10,1 (L + Y1) + (1] + 1X1) [9:¢] - )
< cl&1(10] + Il - (L4 [D:X] + Y] +105Y]) + [n] (1 + [0, X )
0+ [¢] 10, Y]+ 10,61 (1L+ YD) +elnl - 101 (Ie] +1X])

where we used || X || < ¢);/2. The estimates for I, IT and II1 give

1l < clel(i(1+10.X1+ 10,1 ]+ ¥ +0.¥1) + oug
(75)

10461 [¥1+ 1l (1+10.XD) ) + clal - o:e] Il + 1x1).

The term T> : This term is quite similar to T, we therefore only give the
results of the calculations. Add twice zero in the 2"? equality (terms 1 + 5
and 6 + 7) to get

Ty = —Til(X + g)ogil|a(u,X+§)ov:b(u’ X+ 5’ Y+ )
+ Tﬁl(X)ogil |a(u,X)°vrb(u’ X’ Y)

+ T xo(€, 9 lagu o Vibiw, X, 1))
+ T (X)o |, (g—l loux 47600V ib(u, X + 76, Y + m))
= —(T*I(X +OH-T 'X) - dT*1|Xo§) o0 a(ux)oVibw, X, Y)
— T YX 4 &)
(9_1|a(u,x+§)ovi‘b(u, X+EY +m) = g aqu,x)oVibw, X,Y)
= #1060  atux 0oV, X + 7Y + 7))

- (T_1|X+£ - 7-_1|X)°% 0(9_1|a(u,X+r§)Vfb(U,X +7EY -|-7'77)>
=IT+1I+111I.
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Using equation (72) with s replaced by ¢ together with lemma 5.0.9 and the
fact that ¢g~' is an isometry we get

1) < (X, €) [ [V5b(u, X, V)]
< (X, €) € c(X)<|8tX| +0:X|- Y|+ 1+|0Y]+1+]Y]
+|0,.X] +10:X] - Y1)
< cleP(1+10:X] + |0 X - Y] + Y]+ [2Y])

where we used || X || < ¢);/2. To estimate term IT] we need to calculate

% 0 (gil|a(u,X+T§)V:b(u, X + Tf, Y + 7.77)>
(76) = dg_l |a(u,X)o (82a(u, X)of, Vrb(u’ X, Y))
+ gil|a(u’X)o % ‘Ov:b(ua X + 7'£, Y + ).

Now replace the terms involving b by equations (72), (74) with s replaced
by t and transfer two terms from I11 to I1, then

T+ (T X +6 =T 'X) g HNaux)T X))
< clel(1€1(1+ 10X + 10X Y]+ Y]+ [0,

+ 1008 + 1068 - 1Y + Il + [ - |80 X] +0)

where we used || X||s < ¢);/2. To estimate term IT insert equations (73)
and (72) with s replaced by ¢ as well as equation (76) to get exactly the same
estimate as for term I7 in T} just with s replaced by ¢ (the extra metric term
present here does not contribute additional terms to the final estimate)

1T — (T X +6=T'X) g7 awx) T~ (X)* O]
< cl&1(1&1 (410X |+ 0X] - [V + Y]+ 19 ]) + 0] - ¢
10 (L4 Y1) + [l (1+ 18X 1)) + ¢ | X 9y
+c ol - 1] (Ig] +1X1)

where we used || X [|oc < ¢);/2. Note that the terms containing 9;n appeared
as follows:

(77" )9 oty T X" 0 — ™" L)

+ (T X 409 v T X+ + g~ u0m)
= h1(X) + ha(X).
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Now use that h1(0) = 0 and dhi(0)X = 0 and so h; contributes |X|?|0;n|
and hy contributes |X + £|?|0;n|. These results together imply

ITo) < cJel (11 (1 + 10X + 19X [Y] + Y|+ 18 Y ) + |9im] - €]

(77) 1) (14 Il + YD) + Il (1 + 12X )

+ X1 (106 - Il + |0 - |1X)).

Estimates for V,F; and V} F>
Using the same notation as above for F; = Ty + Ty + T3 and Fy =
Ty + 15 + T we obtain

| Vo Fi |:| Ou F1 + F(u)(aau,Fl) |§| aa(Tl + T +T3) | +c | Fy |

and similarly for V,F5. We derive estimates for the individual terms 0,75,
however in some cases interactions between them have to be taken into
account. Moreover, we only indicate the main steps of the calculations as
they involve the same techniques as in the case of the F;’s considered above.
The difference is that the extra partial derivative 0, considered here blows
up the number of terms involved by a great factor and full details would
require some extra thirty pages — of local calculations.

The term 8,Tg : As we derived above Tg = 0 and so
(78) 0aTs = 0.

The term 8,7 :

0aTr = 0o (T X+ = T~'(X) = dT ™ xo8) oBs0(u, X))
+ Oa (T*I(X + &0 (Dsa(u, X + &) — dsau, X) — 05(dra(u, X)of)))

+ O0a ((T‘I(X + & — T HX))o005(0a(u, X)og))
=: 0ol + 011 + 0o 111

and straightforward calculation leads to

0aT| < c(u, X, €, Oyu, 0u) [€] (10a£1(1 + [0,X])
 1E](1+ 102 X] +10:X[(1 +10aX1) ).
Moving a term from II11 to 11 we get

10011 + 00 (T HX + &daa(u, X)95& — 05€)|
< c(u, X, &, Oyu, GSU)(If'IZ(I@aﬁI + |000sE| + |00 X|(1 4 |0:X]) + |020: X )
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+ 11 (I€1(1 + |0a0sul) + [05€](L + |0aé| + 10aX]) + 105X [|0aé| + |0aX])
+ | X[ (100X | + |0a] + 05| (1 + [0aé| 4 00 X]) + €] - |0a05])
+1X210a04¢)

and
0011 — 00 (T H(X + &)02a(u, X)0s& — 95¢])
< clu, X, 00, 05 (&1 (1] + 10a0:€] (1 + 00 X )
+ 06X (1 + |05 X|) + |05 X| + 0005 X )
+ [€1(1€]10a0sul + [9a€] - 05 X1)
X 105€1(1+ [0a X)) + X1 0ast]).
Altogether we obtain
(79)
|0aT1] < c{u, X, €, Ott, Os11, 0 D) (€12 (10a0:] + 10aX1(1 + |0, X])
+ 10005 X 1) + €[ (J] + 10a](L +10:X]) + [9:€](1 + |0a&] + [0 X))
+ | X[ (|00 X[ +10at] + [9sE[(1 + [0a€| + |0 X]) + [€] - [0a05€])
+ X000, ).
The term 8,T5 : A similar calculation as for term 0,77 leads to

|0aT5| < € c(u, X, & Byu, Bou, DaOyu) (|3a€| 10 (1 + 0. X1)

o) <+ 1€1(1€] + 9611 + 10 X1) + 18a€1(1 + 2:X ) + [2a94¢])
+ 1X1 (100811 + 90X 1) + (1X] + D101t

161+ 00D (10,1 + 0L+ 10, X1) + 2,0, )

The term 8,73 :

0Ty = ~0 (T 71X + 8 = T 710 = dT o) VVilagu)
— 0 (T X + O0(TWilagux+6) = VVila(ux) = AV Vil x))5€) )
—a, ((T*I(X 1 — T*I(X>)od(vw|a(u,x))og).

Now compactness of M implies that |VV;(p)| is uniformly bounded for all
(t,p) € S' x M. Similarly such a uniform bound exists for |(0,VV;)(p)| in
case @ = t. For a = s this expression is zero anyway since the potential
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V' does not depend explicitely on s. Now straightforward application of
product and chain rule leads to

(81) 9aT3] < clu, X, &, 0au)lé](I¢] + 19a€] + 10X ).

The term 8,T> : Note that 0,14 is quite similar to 0,15 except for the
missing metric term ¢g~' in front of it and partial s-derivatives instead of
partial ¢-derivatives. In what follows we underline all terms which vanish in
case of 9,Ty. Let us now get started

Th = Oq <—TI(X + f)gil|a(u,x+g)vrb(u, X +E£Y +1)
+ T X9 agux) Vibu, X, Y)
+ % 0 (Tﬁl(X + T§)971|a(u,X+T§)V2‘b(u, X +7Y + Tn)))
=t 0ol + Ol + OalII

where

Ol = —0, ((T—l(X +O =T ' X) —dTx€) g agu,x) Vibu, X, Y))

Ol = =0, (TI(X + &) (gil|a(u,X+§)V:b(ua X+&6Y + )
- gil|a(u,X)v:‘,kb(uaX7Y)

_ % 0(9_1|a(u,X+T§)V,’fb(u,X +76Y + 7.77))>

+(T' X+ - T‘1<X>)g‘1Ia(u,X)T‘l(Xfam)
and
O IIT = —0, ((T_1|X+§ — T 'x)

% 0 (gil |G(U,X+T§)V:b(u’ X+ 7—57 Y + 7_77))

— (T ' X +¢6- T1<X>)glla(u,X)T1<X>*8m>-

The first term 0,1 clearly is the easiest one, with w = g(u)d;u and
¢ = c(u, X, & Oyu, Oqu, w, Oyw, Ogw, O Opw)

we arrive at
Onl
Ooll < 1 el (1 4+ ¥+ 1011+ 1Y) + o)
+EPA+ [YD(L+10:X] + |0aX[(1 + 10, X]) + |020:X])

+ €2 (|0 Y [(L + 0aX]) + [0aY (1 + |0:X]) + [0a0,Y]).
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The term 0,111 should be rewritten as follows
OaTTT) = |~ (AT [x £(0X + 0a8) = AT~ |x0aX)s
)|

dgil|a(u,X)(
+ ‘—(T‘l(X +6 - T X))o

<d2g_1 |a(u,X) (aaa|U,Xa a2a|u,X€a Vrb|u,X,Y)

+dg_1|a(uX (00 (02a]u,x &), Viblu,x,v)
+dg ™ au,x) (920, x €, 0aViblu,x,v)
+dg_1|a(uX (a a’|u X5 gr ‘gvt

)

— g atux) (Gt x T—1<X>*am)> |

|~ (AT L (0aX + 0a) = dT " |x0aX)o
(97 agux) 4= o Vib@w, X +78,Y +7)
— g o) T~ (X)*0m)
—(T7HX +6-T7'X))o
(97 agu,x)0a 3= |, Viblu, X +76,Y + )
— g Maqx)dT 5 0a X, 0m) + T~ (X)*aaam))\

in order to obtain

Ou 111
PoTI < o204 1y (10,101 + 190 XD + 10X 10+ 8.7 ) + |9000X]

+ |8a8tY|) +@(|atY| 4 18Y|(1 + |8tX|)>
I+ YD) (€] + 19611 + 102 X]) + |8a] (1 + |0 X])
+10a0k€])
€1 (12611 + 12aYT) +10a] - 10| + I
+ 0l (19:X1(1 + |82 X1) + 180 X | + 1020, X 1) + [0l (1 + 10X 1))
1021 (J01(L+ Y1) + [nl(1 + 18,X]) )

The term of greatest complexity is 9,11, which we rewrite as follows

OpII = a1+ as + a3+ ay
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where

a1 = —dT [ x1+£(0aX + 0af) (g_l|a(u,X+f)v;fkb|u,X+§,Y+n

- g_1|a(u,X)v;£kb|u,X,Y - dg_1|a(u,X)(a2a(ua X)¢, V:;b|u,X,Y)
- g_1|a(u,X) %‘Ovrb|u,X+T§,Y+Tﬂ + g_1|a(u,X)T_1(X)*at77

- g_l |a(u,X+§)T_1(X + 5)*8t77>

a =-T "X +¢) (g1|a(u,X+§)8aV:b|u,X+§,Y+n =9 Nagu,x)0aVib
- dgil |a(u,X) (82a(u, X)¢, 8o¢vrb|u,X,Y)
- 971 |a(u,X)8a % ‘Ovrb|u,X+'r§,Y+'rn - 971 |a(u,X+§)dT71|§(+§(8a£a o)

- g_1|a(u,X+§)T_1(X + 5)*8048”7 + g_1|a(u,X)T_1(X)*8a8t77>

az = —T_ X + f)( a(u,X +¢) (8 a(u, X +f th|u X +€, Y—|—77)
_dg_1|auX (8Ocau X) vtb|uXY)
— d°97 o, x) (Oaau, X), O2au, X)€, Vibly,x,v)
- dg_1|a (u,X) (aa(OQG(U X)€ Vt b|u XY)
_dg_1|auX (aoza( )s d‘r‘ovt

)

_dg_ |auX+§)(aZGu X + 6048, T X+ 8t77)>

and

|a’1| = ‘dT1|X(aOzXa gil|a(u,X)7-71(X)*atn)

—dT Y x+e(0aX. g o xr6T (X +6*0m)
— (T ' X +6H-T X))o

(™ lagu ) (Brats, X0, T 5c01m) + 9™l ) dT 50X, 0m) )

+ (T_1|Xg_1|a(u,X)T_1|§( - T_1|X+§g_1|a(u,X+§)T_1|§(+§)8a8t77
—dT MX + (008, 9 MNaux+oT (X + &%)
— T "X + 69 aux+0dT X + & (9at, 9m)

=T X +6dg o, x+6) (20, X + 06T (X + 5)*@77)‘

< cl¢] - [0 (L + |00 X]| +10at]) + ¢l X| - |04 - |0ag]-



5.2. QUADRATIC ESTIMATE 1 105
Moreover, we obtain
jar] < eléP? (102 X1 + 10a81) (1 + 12X+ [YI(1 + |8,X]) + |91
+ cl€] (100X + [9ag]) (191(1 + 10X] + |91€]) + 101 (1 + [Y]))
+ clnl (10X + 0at]) |00¢] - | X]
and
12 < 62 (19011 +19X)) + 196811+ [¥]) + 2007
11+ V) (0610 + 19aX1) + (] + 10a8] + 102 XD(1 +[2:X])
+ 1€1(100€1(8an] + 106 Y1) + 106&1 - 10| + [9](1 + 106X )(1 + |0,X )
1€l + 106X (1 + 0] + [0 (1 + 9 X1)) + Ban] (1 + |0 X]))
1] (111 + 190 X| + 18a€]) +10a€1 (L + Y ]) + 0an] - 1X1)
+ 0] (10a1(1 + 10:X]) + 0061 (1X| + €]) + 8001 X | - [¢])
10X - 0a€1(1 + | + Y1),
The estimate for a3 turns out to be

< Jga+ D (I + 12X 1+ 10aX1) +101€](1 + 100X

10811+ 12X 1) + Inl(1 + [0, X1) + |94n])
€1 10a€] - 10| + Il - 0a€1(1 + |2,X )
0] 1961 (1 + 100X | + 1068 (1 + Y])-

Altogether these estimates lead to

9aTol < clé? (10Y] +10aY1(1 + 18, X]))
+ cl0at|(1+ [Y]) (j00¢] + 10X )
el (1 + V) (10X] + (02 X] - 10| + 1020, X| + |00,V )
(82) +lél(10aX1 (10461 + 9] + 1811+ 18,X])
+10anl (1 + [0:X| +[04€]) +10:€] - 10aY | + |0ag] - 0:Y]
+ 10| (10:X| +10a€|(1 + | X)) + [0ag] - 10:¢]
+ [0l (106X |1+ 12X ]) + |0205| + 000X ) )
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o el€l(L+ YD) (J&]+ 1011+ 102 X1) + 10a] + 10a01]

+ 102 X1(1 + |8,X]) + o]
o clé] - rl(L+ [Y )L+ 10,X1) + 1X] (1] - 10| + [0a0r¢] - n])
o+ cln| (1€](1 + 102 X] + 10aED) + 10a€](1 + |8:X1) ).

The term 8,T, : We drop all the underlined terms in the estimate for
0T (they come from the extra metric term present there) and replace all
partial derivatives d; by Js to obtain

0aTs] < clg10aY (1 + 10,X]) + |21+ ¥ ]) (10, X
102 X] - [0,Y | + |020:X | + 10005V |)
o+ cl€) (102 X1(10:81 + 1051] + 10, 1) + 10t - 10Y |

+ [0an| (1 + [0s X | + 05]) + 10a] - 105¢]
+105€] - 10aY | + 105m] (10X | + |0a€|(1 + | X1))

(83) + 19] (102 X] (1 + 10, X]) + |020:] + 10605 X]) )
€I+ YD) (€] + 19811+ 180X 1) + |0at]
+ 10a04¢] + 102 X[ (1 + [0, X))
el Inl(1 +10:X]) + 1X|(105¢] - 0an] + [0a05E] - In])

+l0a€](1 + V) (105¢] + [05X1)
+clnl (10:€] (L + 100 X] + [0a]) + 10a8] (1 + 0:X])).
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5.3. Quadratic Estimate II

The following quadratic estimate is an essential qualitative ingredient to
carry out the induction step in the Newton method.
The theorem follows from the pointwise estimate 5.2.2 via integration as
described in remark 5.0.8. Note that the conditions on ||€|lec and || X
are necessary in order for the local constructions to be well defined. The
other L*°-conditions only serve to simplify the expressions. We underlined
the worst terms with respect to rate of convergence in the existence part of
the Newton method. Moreover, the theorem actually holds for any cylinder
with appropriate smoothness and asymptotic convergence properties.

THEOREM 5.3.1. (Quadratic estimate II) Let p > 2 and u be an
element of the moduli space M°(z~,z7), where z—, + € Crit Ty, define
w = g(u)dyu and denote

, , F,
dFNV(Z)o¢ — dFP(0)oC = < 1) :

Then there exists a constant ¢, > 0 such that for Z = (X,Y) € C°(R x
SLurTM & w*T* M) with || X ||ls < th;/2 and ||Vl + IViX ||loo < /Gp/2

£l < epll€lloo (IIVtXHp F Vs Xp 1 X loo + Y]], + HVtYHpIIXHoo)

+ epll Xl (Il + Vel + I175€ 01 X oo + [l

IBslly < cpll€llo (€ 219Xyl Xlloo + 195X + 1)

+ el Xlloo (€2 (1]l + 194 N1 X 1) + 1Vl + Il )

and

IVaFill,
< pl1lloo (1X1lp + 1V X1l + IV Xl + [V Il + [ VaY T
+ (I llp + 19 1) IVaX oo + IVaVeX I + [VaVoX ]I X |
oo (Il + 19680y + IVatlly + 1V Vié]ly)
+ &l X oo (I8 + IV &l + nllp + [ Fanlly + IVaY 1l 7i€ oo
+ IV Vit + [ Va Vst 1 X 1
+ ol (19Xl + 1Va Xl + IVaVeX 51X o)

+ ol Vallloo (1Y llp + IV Xp) + oI Vi€ oo (1Y llp + Vo X1l
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as well as

IVaFsllp
< e 2Uelloo (N llp + 1968l + 1Ky + [ Va Xl + V0 Ve Xl Xl )
+ oo (1Y llp + VXl + V0 Y [l (1 + 1V Xloc) )
+ ¢ 21 Xloo (IVellp (1 + 1V Xlloo) + [ Vatlly + I Va Vit €] )
&l X oo (Illy + 1958y + 190X 1758 oo + [V atllp (1 + 1V X 1) )

+ 6 VaV o Xl (IX oo 17lloe + €1l ) + €I VaV sl (1 X lloo + €]

+epllnlloollVsXllp + ol Veélloo (1Y 1l + 11V Xlp)
+ el Vallloo (1Y 1l + VX I5)

for e € (0,1] and ¢ = (&,n) € CP(R x SLu*TM & w*T*M) with ||¢]lee <
/2 and |Inllse < \/Gp/2.

Next we state and prove the pointwise estimate.

LEMMA 5.3.2. (Pointwise estimate II) Let u € Py, x, y smooth
loops in M, and denote

riv riv T+ T
a2 - art o = (1)

forZ = (X,Y), (= (&,n) € CPRx S w* TM&u*T*M). Assume || X ||o <
/2, then in a local coordinate chart (U; C Vi, ;) as above the following
pointwise estimates hold: There exists a constant ¢ > 0 such that

|f1 +f2|
<l (IR1+ 1081 (1 + 1K) (1+ 1) +10, %] - ||+ ¥] + 0] - 1 F])

+ e XI(10€1(1+ [¥1) + 10,61 1X] + Inl (1 + 12:X)))

and
Ty + Tl < c |1 (10,1 (1 + 7)) + )
e |X| (2 (1 + X)) + e o] -1 X]
1081 (1 + [¥]) + 171 (1 + [2,%]) ).
for e € (0,1], where |-| = |- |1, M and an arrow on top of an object

indicates that it is represented in local coordinates and is evaluated at the

point (s,t). The estimates for covariant derivatives of fl + fg and T:o, + ﬁ
are as in theorem 5.3.1.
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PRrROOF. (of lemma 5.3.2 — pointwise estimate II) Throughout the
proof we use the notation introduced in remark 5.0.10. The main point is
again that we are working in a local coordinate chart and therefore may use
simply calculus in R”. Let us first specify the terms 7T;. Set

w = g(u)du
and denote

Filu, X,Y) = 0sa(u, X) — g7 au,x) Vib(u, X,Y) = VVi|o(,x)
fo(u, X,Y) = Vib(u, X,Y) + € %(9a(u,x)a(u, X) — b(u, X,Y))

then

Ty = dT " xo(é, fi(u, X,Y)) — dT " oo(é, f1(u,0,0)

T, =T"'X dT‘ filu, X + 7Y +1n) — dT‘ fi(u, 7€, 1)
TSZdT|X°(£ fo(u, X,Y)) — dT |50 (&, fa(u,0,0))

T, =TX dT‘ fo(u, X + 7Y +110) — dT‘ fa(u, 7€, ).

The term T3 : Note that we have already a linear factor €.
I T5| = 1T 1x (€, fatu, X, Y)) = dT[5(&, fo(u, 0,0)|| = [T + 1T + I11]].

Use (51), &ra(u,0) = 1 and lemma 5.0.9 in the following two estimates.
Moreover, the performance of the quadratic estimates will be crucially im-
proved, if we consider certain terms in term I of T3 and T} together (simi-
larly for I11 and I). In order to do so, we subtract a term here and add it

to I respectively 111 and I of Ty. Call the modified terms ﬁ, ITT and 1.
ENITI| = 11 = dT 1% (€ glagu,x) B2alu, X)0,X))|
= |dT 1% (&, 9lau,x) Ora(u, X)) — dT[5(£, gw)Opu)
—dT % (&, gla(u,x) 020 (u, X)o01 X) ||
= HdT|X &, glaqu,x)01a(u, X)oOu) — dT|0(fa9|u3tU)H
< o(X) |X] - [¢]

and

|11 = 62HIH+dT|§((§ TLX)Y)|

_\|—dT|X§T w+Y)+dT|3(§,w)
+AT % (6T ! H
= ||—dT 1% (&, T7" )+dTI’6(£,T‘1<0>*ow)H

< o(X) [XT]- €]
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Use formula (72) for Vib(u, X,Y) to get

1] = 1T + T X dT Y5 (€, 0,Y)|
< |dT 5o Vib(u, X,Y) — dT [§oViw — dT ' 505Y || - €]
< HdTB(oT_I(X)*oas’LU — dT|6083’LUH . |£|
+ || =dT 5o agu,x) (010 (u, X)oOsu, T~H(X)*w)
+dT|6°F|a(u,0) (81@(’[1,, 0)083’[1,, T_I(O)*w) H ' |€|
+ | dT 5 odT o (05X, w + Y) || - €]
+ | dT 5o T 1 X) 0, Y + T 1 X)"dT 5 0,Y | - 14| (=0)
+ || =dT 5ol agu,x) (F2a(u, X)o0, X, T H(X) w) || - [¢]
+ ‘|_dT|§(F|a(u,X) (ala(uaX)asu + (920(U,X)85X, T71|§(Y) H ’ |£|
< e(X)Ie](1X] + 1 X] +10,X] (1 + Y1)
+ X110 | + [0,X| + Y (1 +]0.X]) )
< e(X)[€)(1X] + [0, X (1+ [Y]) + [¥])

Using the assumption || X || < ¢/,/2 these estimates imply

(84) T+ II+1II|<c |§|(e_2|X| F19,X| (L + |Y]) + |Y|).
The term T4 :
|T1| = ‘dT?1|X°(§7fl(uaX7 Y)) - dT?1|0°(§7f1(u7070))‘
= | +1I+1III|.

Use lemma 5.0.9 to get

|III| = ‘_dT_1|X(€aVW|a(u,X)) + dT_1|O(£aVVi|a(u,0))‘ < C(X) |X| |£|

I respectively I work step by step the same as I respectively I in term
T5. We therefore only state the results. Note that we are moving a term
from I here to I in T5 and one from I here to I15 in T5.

17— dT " [x (&, d2a(u, X)0sX)|| < c(X) |X] [¢]

VT +dT 15667 oy T~ (X) 07| < e(X)e] (|X| Y]

+IX]- X1+ 7))
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and, using || X||oc < ¢),/2, we get

(89 i) < elel(1X1(1-+ 011+ 7)) +1¥1)

The term T5 :
To] = |T 100 ], (e, X +7¢)
— g auxsre) Vb, X +7EY + ) — VWIa(u,X+Tg))

— =l <3sa(u, 76 = 9 Ha(u,re) Vb, 7€, 7) — VW'“(“’T@) ‘
= |I+1II+III].

Applying lemma 5.0.9 to ITI, I and (52) with ¢ replaced by s to I we get

(11| = |[=T " (X)odV Vi, x)002a(u, X)of + AV V| q(y,0)002a(1, 0)of
<X )IXI 148

Carrying over the disturbing term from I in T we get

[T +dT x (¢, Orau, X)0sX)|
‘7’ X))oy (82@ u, X of’) (aga(u,O)oé’) +dT*1|X(£,82a(u,X)8SX)‘
= 7100 (15000, X)o(6, Dyu) + Badhacu, X)o(€, 0,X) + Buatu, Xpods€

—-TY )(8182au 0)o(&, Osu) + daa(u, 0)00d f)
+dT | x (¢, D2a(u, X)0,X)|
< e(X) (1X] - 18]+ X - [l 10, + [ R(X, 0,6)X | - 9:¢] )
where the curvature in the last term of the sum arises as follows: Let
kK(X) = T (X)dhatu, X)ds¢ — s¢,
then k£(0) = 0 and

dk(0)X = dT o(X, 0s€) + Gadra(u,0)(X, 0s¢) =0
d’k0)(X, X) = R(X,0:0)X

Here we used results from appendix A. Similarly for the term involving 0; X .
Let h(u, X) = =T 1(X)og * |a(u, x> then together with the term carried over



112 5. QUADRATIC ESTIMATES

from I1 in T} we get

1T —dT ' x (&9 o) T (X)*0Y)]

= =T X0 |y (9 Hauxsre) Vi, X + 7Y + 1)

+ 400 Hare Vibw, 7€ mm) —dT Hx (9 Hax)T (XD 0:Y)|
< =T 1 Xdgau,x) (G2, X)€, Vibw, X,Y)) + dg 'y (€, Viw)|

+ |h(u, X)o 2| Vibu, X +7E,Y + 1)

—h(u,0)o ‘gvt u, 7€) — AT Hx (6,9 o) T (X)) 0Y))|

=TTy + T (X)dgagu,x) (O2a(u, X)&, T H(X)*0,Y)]

+ [T = T H(X)dg ™ aqu,x) (Baa(u, X)&, T H(X) 0,Y)

—dT Mx (6,0 a@x) T (X)*0Y))]

where we moved a term from I to I1;. Estimate exactly like I in term T3
with s replaced by ¢:

|III + Tﬁl(X)dgil |a('u.,X) (820,(’[1,, X)¢, Tﬁl(X)*atY”

(86)

< e(x) (11 (1+ 10011+ 1)) +171).
Use formula (74) with s replaced by ¢ for %‘OV b(u, X + 7€, Y + 1) to get
(87)

IT| = [Ty — T (X)dg ™" [au,x) (B2a(u, X)&, T~H(X)*9,Y)
—dT Mx (6,9 Maqx)T 1(X)*9,Y)
< B, X)od? T 5 (8, X, 6w + V)|
+ | h(u, X)odT % (08, w) — h(w, 0)odT 1[5(8,¢, w)|
+ |, X)odT M5 (06, Y) — h(u, X)odT !5 (014, Y))|
+ | hu, X)odT % (&, Opw) — h(u, 0)odT (£, yw)|
+ | heu, X)dT M5 (6,0,Y) = T Hxdg Hag,x) (O2a(u, X)&, T H(X)*9,Y)
—dT x (&9 Mo T (X)) 0Y)|
+ |heu, X odT_1|}(8tX n) — h(u, X odT_1|}(8tX,77)‘
+ ‘h u, X)oT "1 X)*o0yn — h(u, 0)oT oam‘ (= 0 by lemma A.1.11)
+ ‘— (u, X) °F|a(u,X) (82a(u,X oatg,’r w)
+h(u,0)oF|u(8t§,w)‘
+ | =R, X)T g, x) (O2atu, X)06, T H(X)*Y) + heu, X)dT x (0:€,Y))|
+ ‘—h t, X)oI'| g, x) (81a(u X))oy, d771|§((§,w))
+hu, 0)T |y, (Opu, dT [, w) |
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+‘— , X)oD | o, x) (B10(u, X )oOpu, dT L% (€, Y)‘
+ [=hu, X)oD|agux) (O2a(u, X100, X, dT 5 (€, w + V)|
+ ‘— (u, X (u, x) (dra(u, X yopu, Tt X)*n) +h(u,0) F|u(8tu,n)‘
+ [=hu, X)Dau,x) (O2a(u, X)o0, X, T*H}n) + h(u, X)dT 5 (0. X, n)|
+ ‘— ty X)ol'| 4, x) (01 02a(u, X)o(, Oyu) ,T_I(X)*w)
+h(u, 0 oF|u(8182a u, 0)o(&, Opu), )‘
+ | =R, X)oT |, x) (O1B2a(u, X)o(€, Bpu), T~ H(X)*Y) |
+ | =R, X)oT |, x) (O202a(u, X)o (€, 8, X), T~ H(X)'Y) |
+ ‘—h(u, X)odl| 4, x) (D2a(u, X)of, Bra(u, X)olu, Tﬁl(X)*w)
+h(u, 0)odT |y, (€, pu, w) |
+ ‘—h(u, X)odl| 4, x) (82a(u, X)o€, O1a(u, X)oOsu, T_I(X)*Y) ‘
+ | —h(w, X)dT o, x) (O2a(u, X)E, doatu, X)0, X, T~ (X)*w +Y))]

where we combined terms 3 and 9 in the sum so that term 3 results in a zero
contribution and — calling term 9 k(X), we get k(0) = 0 (use results from
appendix A) — term 9 in one of order ¢(X) | X|-|0;¢|-|Y|. Moreover, in term
5 we profited from transferring the inconvenient term between I1; and I1s.
Similarly we combined terms 6 and 14 so that the former one contributes
zero and the latter ¢(X) |X| - |0;X] - |n|. Note also that the terms carried
over to Iy appear in term 5 of the sum. Denoting that term by k;(X)
one readily computes using lemma A.1.11 that k1(0) = 0 and so we get a
contribution ¢(X) |¢] - | X| - |0;Y|. We get (keeping the order of terms)

ITD] < e(X) (10:X] - [€(1 + Y1) + [ X] - |¢] + 0+ X] - [¢]
Il X 1040+ 0+ [X] - 1] +[9ng] - [¥] - |X |
IX ] €]+ (€] Y] + 12X - 1L+ [Y]) + X - [n)
10X < ] 1X] +1X] - Ig] + €] - Y

1€ 1OX N+ YD) + X - J¢]+[€]- Y]+ €] - 10X |1+ Y1)
< o(X) [El(IX] + 19X (14 Y] + Y]+ |0Y] -1 X1)
(X)X (100€] (1 + Y]) + Il (1 + 10, X])).

These estimates together with the assumption || X ||oc < ¢/,/2 finally give

e E1(1X] + 9 X] (1 + Y]) + 1X] - 10,X] + Y]+ |0, - | X])
e X1 (1] (14 [Y]) + [05€] - [X] + [l - (1+ 18X )
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The term Ty :

ITy| < ‘T(X)* £, (v:b(u, X +76Y + 1) + € gl x1re) 00, X + 7E)
— 6_2b(u, X+7Y + 777))
—d 0 (V:b(u, TE,TN) + ef2g|a(u,T5)8ta(u, 7€) — € 2bu, 7€, 7")7)) ‘
=|I+1I+II1|.

Recall that according to our modification of terms I, I1 and 111 of T3 we
have to add here what we subtracted there. Denote the modified versions
of I, I respectively I11 here by I I1 respectively II1. We may use result
(87) with t replaced by s to estimate I

[T = T(X)"dT [ (&, 05Y)]
= |71 1y Vibtw, X 4+ 76, + i) — 4|, Vibow, 76,7
— T AT 5 (€, 0,Y))
< o(X) &l (1X] + 9,X] (1 +[V]) +[V])
- e(X) X] (10581 (1+ Y ]) + Il (1 +10,X]) ).
Moreover, we get
E[IIT| = 11T — dT|5%(&, T H(X)'Y)|
—-T(X)" % 0 (T_I(X + 7% (w+Y + 7'7’]))
|y (T 08 ow + ) — aTI5 (€, T X))
< =T X odT o€, w) +dT 5o (£, w)]
+ [T X)) odT o€, Y) — dT % (€, T H(X)'Y)]|
+ ‘_T(X)*OT_I(X)*O”I’] + T]‘
< (X)) |X] - [¢].

To see that the second term in the sum vanishes apply the formula dA~! =
—A7'odAoA~" which holds for any smooth family of matrices A4 : R* —
L(R™). Moreover,

ETT| = |TT +dT % (&, glagu,x) 20, X),X)|
= ‘T(X)* %‘0(g|a(u7x+75)8ta(u,X + Tf))
- % ‘0 (g|a(u,7'§)ata(ua 7-5)) + dT|§((§, g|a(u,X)82a(ua X)atX)‘
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< ‘T(X)*odg|a(u7X) (82a(u,X)o§, 81a(u,X)o(9tu) — dg|u(§, 8tu)
+T (X)*ogla(u,x)00102a(u, X)(Oyu, &) — glyo0102a(u, 0)(su, f)‘
+ ‘T(X)*odg|a(u7x)(82a(u,X) &, 0va(u, X) 0, X)
+ T(X) oga(u,x)0(202a(u, X) (9 X, )
+dT % (€, 9lau, x) 020, X)9: X)|
< () (1X] - [¢] + X2+ 90g] + 1X] - 19X ] - [¢])
Clearly in these estimate we used lemma 5.0.9 in combination with the re-

sults of analyzing the relation between exponential maps and parallel trans-
port in appendix A section A.1. Using the assumption || X ||oc < ¢/,/2 and

the estimates for T, IT and ITT gives

[T+ 17+ TTT) < e X] (¢721¢] (1 + |0,X) + € 2[h¢] - | X]

(89) + 10,1 (1+1Y1) + Il (1 + [0, X))

el (+aX T (1+[Y]) +]Y1).

We skip the proof of the estimates for V17 + V,I5 and V, T35 + VT4
because the way to proceed is similar as in quadratic estimate I above. [
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CHAPTER 6

Transversality

In section 6.1 we discuss transversality theory from a fairly general point of
view and isolate the input which varies case by case from the mechanisms
that are intrinsic to the general theory. As it will turn out, conditions
(F) and (A) below, as well as the degree of differentiability of the section
involved, is the external input to be checked in a particular situation.

Verifying these conditions for the classical action Zy and the symplectic
action Ay in section 6.2 leads to the transversality theorem for loops 6.2.1
which states, roughly speaking, that both functionals are Morse functions
for generic potential V.

6.1. Thom-Smale transversality

Let A, B be smooth Banach manifolds modeled on separable Banach
spaces and such that they admit a countable atlas. £ — A x B denotes
a smooth Banach space bundle and F a section of £ of class C*, k > 1.
Assume F has the following two properties

(F) dFp(a) : To A — Eqpy is Fredholm for all a € .7:1)_1(0) and dF,(b) is
bounded.

(S)  dF(a,b) : ToA X TyB — Eq 0y is surjective for all (a,b) € F~1(0).

Note that F, : A — & is defined by a — F(a,b) and similarly for
Fa. Moreover, the above differentials are to be understood as the ordinary
differential followed by projection onto the fibres of £. Here we use the
natural splitting of the tangent space of £ at the zero section

T(a’b;o)g ~ T(a,b) (Ax B)® g(a,b)-
Condition (F'), lemma 6.1.5 ) below and
dF(a,b) = dFy(a) ® dF,(b)

imply that dF(a,b) has a closed range. In order to verify (.5) it is therefore
sufficient to prove that Ran dF(a,b) is dense. It is a consequence [Br83,
corollaire 1.8] of the Hahn-Banach theorem that this is equivalent to the
triviality of its annihilator (Ran dF(a,b))*

(4) {v* e Elap) | v*(v) = 0 Vo € RandF(a,b)} = {0} V(a,b) € F~1(0).

117
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Plug the Fredholm (F) and surjectivity (S) properties of F into
lemma 6.1.5 to obtain that dF(a,b) admits a right inverse for all (a,b) €
F~1(0); in other words 0 is a regular value of F. The implicit function
theorem C.3.4 then implies that the universal moduli space

X =77"0)

is a C*-Banach manifold. It is locally at (a,b) modeled on the separable Ba-
nach space ker dF(a,b) and admits a countable atlas. Define the projection
onto the second factor

m: X =B
and observe that for any (a,b) € F~1(0)
dm(a,b) : Tiqp) X = ker (dFy(a) ® dFa (b)) = T,B , (A,B)— B
is a Fredholm operator by lemma 6.1.5 i7) with

Ind dr(a,b) = Ind dFp(a).

Hence 7 is a Fredholm map of class C* between Banach manifolds and so we
can apply the Sard/Smale theorem 6.1.4 to its representations with respect
to the countably many coordinate charts of X and B and obtain that the
set of regular values of 7 is of the second category in B for

k > max{1, Ind dFy(a) + 1}.

DEFINITION 6.1.1. A subset of a complete metric space is said to be of
the second category in the sense of Baire if it contains a countable intersec-
tion of open and dense sets.

Recall that by Baire’s category theorem, every set of the second category is
dense; for references cf. [RS1, Notes to section IIL.5]. The crucial step is
now to observe that

LEMMA 6.1.2.
{regular values of T} = {b € B | dFy(a) ontoVa € F, 1 (0)}.

PROOF. Because 7 is a Fredholm map, the kernel of its linearization
automatically admits a topological complement (lemma C.2.2) and so we
have

b regular value of 7
& dr(a,b) onto Y(a,b) € 7~ (D)
& dr(a,b) onto Va € F;1(0)

(90)
& Va € F, ' (0) VB € TyB JA € T, A with (4, B) € T X

such that dm(a,b) <g> = B.



6.1. THOM-SMALE TRANSVERSALITY 119
On the other hand
1) b e{b/ € B| dFy(a) onto Ya € F;,(0)}
& Va € F, 1 (0) Ve € Epy JA €T, A : dFy(a) A

€.

(91) = (90): Let a € F; '(0), pick B € TyB and define e = —dF,(b) B.
By (91) 34 € T, A such that

dFy(a) A =e=—dF,(b) B.

(90) = (91): Here surjectivity of dF(a,b) for (a,b) € F~1(0) enters:
Ve € g(a,b) H(AI, B,) €Ty A X Ty :
!
dF (a,b) (g,) — dFy(a) A + dF,(0)B' = e.

Let now a € ]:b_l(O) and pick e € (), then by surjectivity of dF(a,b)
there exists (A’, B") such that

dFy(a) A"+ dF,(b)B' = e.
For this B’ there exists by (90) an element A such that (A, B') € T(,;)X;
ie.
dFy(a) A+ dF,(b) B' = 0.
A as required in (91) is now obtained by setting A = A’ — A:
dFy(A) (A — A) = ¢ — dFa(0)B' + dF,(b)B' = e.
U

For the sake of completeness we recall the theorem of Sard /Smale [SS73]
as well as two technical lemmata used above.

DEFINITION 6.1.3. A metric space is called separable if it admits a dense
sequence.

THEOREM 6.1.4. (Sard/Smale) Let X and Y be separable Banach
spaces and U C X be an open set. Suppose that f : U —'Y is a C*°-smooth
Fredholm map. Then the set

Yieg={y €Y | Randf (x) =Y for allz € U with f(z) =y}
of reqular values of f is of the second category in the sense of Baire. More

precisely, this continues to hold if f is of class CF with k > max{1, Indf+1}.

For a proof using a local Kuranishi model we refer to [Sa96] theorem
B.13. The next lemma may be found there, too (lemma B.5).

LEMMA 6.1.5. Let X,Y,Z be Banach spaces. Assume D : X =Y is a
Fredholm operator and L : Z — 'Y 1is bounded and linear, then

i) the bounded linear operator D& L : X ® Z — Y has a closed range
with a finite-dimensional complement.
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i1) if D @ L is onto, then ker (D @ L) admits a topological complement
(i.e. D& L admits a right inverse). Moreover, the projection on the second
factor

M:ker(D®L)— Z
18 a Fredholm operator with
ker1l ~ ker D , coker Il ~ coker D
and hence Ind1Il = Ind D.

LEMMA 6.1.6. Let (X, | -||) be a normed linear space, then

i) if V.C X is a closed and W C X a finite dimensional subspace, then
V + W is a closed subspace of X.

i1) if V. C X is a closed subspace with finite dimensional complement
and W C X is any subspace, then V + W is a closed subspace of X.

PROOF. (of lemma 6.1.6) i) Assume W # {0} and VN W = {0}.
Otherwise consider V 4+ W' = V + W, where W' = W \ (V. N W) and
dim W' < oo, W'NV = {0}. Let {, = v, +w, € V+ W be such that
¢, > ¢ € X for v — oco. We have to show ( e V+W. If ( € V we are
done, so assume the contrary. It follows lim,_, w, # 0 since otherwise
Vouv =(—w — (for v - co. Because V is closed we get to the
contradiction ¢ € V.

Compactness of the unit ball By in W leads to the existence of a subse-
quence such that

Wi kj)O w € Byy.
Wy, |

We conclude that {|w,,| : k € N} is bounded, because otherwise a further
subsequence (same notation) converges to +o0o and so

V 5 Ul/k. — Cl/k. _ wl/k. k—o0 0
wy | Jwi | Jw]
Hence w € VNW = {0} — a contradiction to w € By . Taking a further

subsequence if necessary we may assume |w,, | = wp € R\ {0} for & — oo.
Closedness of V' implies

— w.

) w
‘/9 Vg :Cllk o Vg kj)oi_wev
|ka- | |ka | |ka | wo

and so

. ¢

(—wyw=wy| =——w]) V.
wo

Therefore

¢ = (¢ —wow) +wow € V + W.
i1) Writing

V—i—W:V—F(%F‘IW)
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reduces the problem to part 7) because X/V is finite dimensional and so is
(X/V)nw. O

PROOF. (of lemma 6.1.5) i) As Ran D is closed with finite dimensional
complement lemma 6.1.6 i7) applies and yields closedness of

Ran (D @ L) = Ran D + Ran L.
Because Ran D C Ran (D @ L) we obtain

Y c Y
Ran (D@ L) ~ Ran D

where the latter is finite dimensional.

1) As D is Fredholm dim ker D < oo and so we can choose a topological
complement X; by lemma C.2.2. Ran D closed with finite dimensional
complement coker D implies that we can write Y = Ran D & coker D.
Because D@ L : X & Z — Y is surjective it follows coker D C Ran L and
so we can choose a basis {Ley,... ,lex} of coker D, where {ey,... ,en} is
a set of linearly independent elements of Z.

Our claim is that W := Ran T is the required topological complement of
ker (D @ L), where the linear map T is defined as follows (actually 7" is a
right inverse of D)

T:Ran D ® coker D — ker D ® X1 ® Z
N

(y1,92) = (Oaﬂfl,zkueu)-
v=1

Here z; is determined uniquely by y; = Dx; and yy = Z,]Ll MoLe,.
W closed: W = X + Span(eq, ... ,en) and so lemma 6.1.6 i) applies.
W Nker (D@ L) = {0} : Let (0,21, %", A\ye,) € W Nker (D& L), then

v=1

N N
(0,00 =(D®L) (0,21, Avey) = (Dz1,»_ A Ley)
v=1 v=1
and so z1 = 0 (because D is injective on X;) and A\, = 0 for all A €
{1,...,N} because {Ley,... ,Ley} is a basis.
W+ker (Do L) =X®Z: Cis trivial. To see D pick (z,2) € X ® Z, write
x = (z9,71) Eker D® Xy and Lz =y + Zfl\f:l M Le, € Ran D @ coker D.
Note that ¢y’ = Dz’ for a unique 2’ € X;. Now

N
(QI,Z) = (anxlaz) = (an;l +£BI,Z)\V€V)

v=1

N
+ ($07 _l‘laz - Z Ayeu) S W + ke?" (_D b L)

v=1
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It remains to check

N N
(D& L) (zg,—2', 2 — Z)\,,e,,) =0—Dx'+Lz— ZA,,Lel, =0
v=1 v=1
because Dz’ =v/.
The above proves that W is a topological complement of ker (D & L). Now
assume (z,2) € ker (D @& L), then
(x,2) €ker 1 & 0=1II(z,2) =z
< D=0
& x € ker D.
This proves ker Il = ker D & 0. Define
LY (RanD):={2€ Z|Lz= Dz for some z¢€ X},
then RanTl = L~ !(Ran D) and this set is closed: Ran D is closed and so is
its preimage under the continuous map L. Finally we obtain
Y Ran L Z 7
Ran D~ RanDNRanL =~ L~'(Ran D)~ Ranll
where in the second step we used D @& L onto and so
Y ~ RanD+ Ran L Ran L

RanD Ran D " RanDNRan L’
To see the third step observe that

coker D ~ ~ coker 11

A
ker L

LY (Ran D) ~

so that
A Z Ran L

L' (Ran D) ~ ker L® (Ran DN RanL) Ran DN Ran L’
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6.2. Transversality for loops

In this section we prove that the classical action Zy and, equivalently,
the symplectic action Ay are Morse functions for generic potential V €
CF(M x S',R). Throughout let us fix an integer k > 2.

Recall that AM = W1H2(S' M) and

ANM ={x € AM | Zy(z) < a}.

Note that the definition of A*M depends on the choice of V. As the critical
points of Zy and Ay are canonically identified we denote them by Crit. Let
Crit, == Crit N A®M.

On the other hand, in the language of the previous section, we have a

smooth Banach space bundle £ over the smooth Banach manifold 4 x B =
W22(S1, M) x C¥(M x S',R) together with a C*~l-section
Fz,V) = —-Viz — VVi(x).

The fibre of £ at (z,V) is given by £, vy = L?(z*T'M). Smoothness of &£
and A x B comes from the smoothness of (M, g), whereas V € C* implies
VV € C*! and therefore F is only k — 1 times continuously differentiable.
A is modeled on the separable Banach space W22(S!,R?) and admits a
countable atlas whereas B = (C*¥(M x S',R),|| - ||c+) is a separable Banach

space itself. The differential of F at a zero (z,V) followed by projection
onto the fibre of £ is given by the bounded linear operator

dF(z, V) : W?2(§', M) x C¥(M x S',R) — L*(z*TM)
(&, V) = dFv(2)¢ + dF(V)V
where Fy () = F(z,V) and F (V) = F(z, V).

The relation between both formulations of the problem, namely analyz-
ing critical points of a functional or zeroes of a section, is as follows

Crit = {x € AM | dTy(z)¢ = 0,Y¢ € WH2(*T M)}
= {z e W»*(S', M) | F(z,V) = 0}
= {z € C*Y(SY, M) | =Vi — VVi(z) = 0},

where V € CF(M x S',R) with k¥ > 2. We are ready to state the main
theorem of this chapter.

THEOREM 6.2.1. ( Transversality for loops ) Fiz an integer k > 2.
i) The functionals Iy and Ay are Morse functions for any V € foeg,
where

V,’?eg :={V € C¥(M x S",R) | dFy () onto Vz € Crit}

is a subset of the Banach space (C*(M x S1,R), ||-||cx) of the second category
in the sense of Baire.
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i1) Fiz a € R, then the restricted functionals Ty : A°M — R and Ay :
AT*M — R are Morse functions for any V € Vﬁég, where

VEG = {V € C*(M x S"\R) | dFy(x) ontoVx € Crit,}

is an open and dense subset of (C*(M x SU,R), | - |lck)-
iti) Fiz o € R, then the restricted functionals Ty : A°M — R and
Ay : A°T*M — R are Morse functions for any V € V2, ,, where

reg’
Vieg =1V € CF(M x S'R) | dFy(z) ontoVz € Crit,}

is an open and dense subset of the complete metric space (C®°(M x S*,R), d)
with
o
L |IVi —Vallew
d(Vi,Ve) := — .
(1, V) kzo 26 14+ Vi — Vallcw

i) The functionals Iy and Ay are Morse functions for any V € Vieg,
where

Vieg :={V € C®°(M x S',R) | dFy(z) onto Yz € Crit}
is a subset of (C®°(M x S, R),d) of the second category in the sense of Baire.

It suffices to prove the theorem for 7y , because its Hessian at a critical point
is nondegenerate iff the corresponding Hessian of Ay is.

Transversality in the C*-category. Recall that
dFv(z)§ = —=ViVi€ — R({,2)% — VeVVi(z)

is the perturbed Jacobi operator analyzed in appendix B.2. We called
dim ker dFy(z) nullity, which turned out to be finite (Morse index theo-
rem B.2.8). dFy (x) proved to be selfadjoint and so

ker dFy(x) =~ coker dFy (z),

which means that the operator is Fredholm and its Fredholm index is zero.
Note that this is true at all zeroes (z,V’) of . The operator dF,(V)V =
—VV(z) is bounded

1
|dF,(V)V| 72 = /0 (VVi(2), VVi(z)) dt < |S'] - |VIIE: < IS IVI2k

and so we have verified the Fredholm assumption (F') in section 6.1. Assume
for now the surjectivity assumption (S) was true, too.

Let us summarize the results of the general theory of section 6.1. The
universal moduli space X = F~1(0) is a Banach manifold of class C*~! mod-
eled on a separable Banach space and it admits a countable atlas. More-
over, the projection onto the second factor 7 : X — C¥(M x S',R) is a
C*~LFredholm map with Ind dn(x,V) = Ind dFy(xz) = 0. The condition
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k—1> max{l,Ind w} in the Sard/Smale theorem reflects precisely our as-
sumption k£ > 2. Now the set of regular values of 7 is of the second category
in the sense of Baire and by lemma 6.1.2 coincides with

{V e C*(M x S",R) | dFy (z) onto, ¥z € Fy;' (0)} = VL.

So to prove part 7) of the theorem it remains to verify surjectivity (S) which
is a consequence of condition (A4): V(z,V) € F~(0)

{n € L*(z*TM) | (n,€)2 = 0VE € Ran dF (z,V)} = {0}.
PRrROOF. (Condition (A) holds) We have to show that
(n,dFy (z)§) =0 V& e WH*(z*T M)
and
(n,dF,(V)V)=0 VV e CFM x S' R)

together imply n = 0. The first condition says that n € ker dFy(z). So it
satisfies a second order ODE with coefficients of class C¥~2 and therefore
n € C*(z*TM). Now assume by contradiction that there is ¢y € S' such
that n(to) # 0. In five steps we are going to construct V; € C™ such that

(n, VVi(z)) 12 # 0.

As our construction will be local, we may choose geodesic normal co-
ordinates £ = (&1,...,&") around 2y = z(tp). Let ¢ denote the injectivity
radius of (M, g). The piece of the loop z(¢) which lies inside the coordinate

—

patch is represented by £(¢) € R via

z(t) = expy, g(t)

Clearly &(tg) = 0. An arrow indicates quantities represented in our local
coordinates. (-,-) denotes the euclidean inner product on R” and | - | the
associated norm.

STEP 1 Because z(t) is continuous, we may choose a constant §; > 0
sufficiently small such that

|E(t) 1< /2, VEE [to—d1,t0 + 1.

STEP 2 Because 7 is continuous and 7(tp) # 0, we may choose a constant

09 > 0 sufficiently small such that

(n(t),q(to)) >0 , VteE [ty — da,to + o).

STEP 3 Set § = min{d;,d2} and choose a cut-off function v €
C*(RR,[0,1]) such that

to—0 to+o
’)’(t): 1 7t6[ 2 2 ]
0 Lt ¢ [to— 0t + 4.
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STEP 4 Choose a cut-off function 5 € C*®°(R, [0, 1]) such that

STEP 5 We are ready to define V;

=

. - &2 (7 12,2
Vh(eapnd) = {g(t) BUER) &) 1€ P<s

Putting everything together we get

1
1.9V = [ g (n(0). 9ViGot)) at
1
- /0 AV (2))om (1) di

v, .
- /{t1|€(t)<b} 8—53 ewpagE(t) (1) dt

to+d . . B
= [ (20 FUER) € ). o)
(1) B EP) (i) (1)) ) dt

to+90
= [ o)ttt de > o

The third equality follows from the definition of V; (Step 5), and the fourth
one from Step 3 (supp y) as well as a straight forward calculation. In the
fifth equality we used that for ¢ € [to — 6, to+ 0] Step 1 implies | £(£) |2< 12/2
and therefore, by Step 4, 8/ = 0 and 8 = 1. Step 2 gives the final strict
inequality. O

To prove part i7) of the theorem we observe that
(92) Vieg C Vreg:

where the former space is of the second category in (C*(M x SU,R), || - |lc*)
and hence, according to definition 6.1.1, the bigger space Vr¢g is, too.
Openess of V,’fég in (CF(M x S",R), || - ||c+) is harder and relies on com-
pactness of Crit, for regular V: Pick V € V,]fég. This means that dFy (z)
is onto for all z € Crit,. Equivalenty, 0 is a regular value of Fy on
W22(SY, M)NA®M, so that by the implicit function theorem Crit, is a man-
ifold of dimension InddFy (xz) = 0. In view of the a-priori action bound a we
derived in remark 1.2.1 compactness of Crit,. Because X% = F1(0)NA*M

is open in X, restriction of the projection 7 yields a Fredholm map of class
Ckfl

Tq: X® — CF(M x S',R).
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Now

. (V) = {(z;, V) | {z1,... ,an} = Crit,}
consists of finitely many elements p; = (z;, V) around each of which we may
find an open neighbourhood U; in X* such that

(",V"YeU; = dFy(z') onto.

Continuity of 7, then allows to find an open neighbourhood W of V in
C*(M x S',R) such that =, ' (W) C U;VZI U; and therefore W C V,I?e’g.
It remains to prove openess of the surjectivity property of dFy (z;) in X%,
which allowed us to choose the U;’s above. Note that for (z',V’) near
(z;,V) the operators dFy (z;) and dFy(z') differ (after representing them
with respect to a common trivialization) by a bounded operator. In view of
the subsequent lemma we get

dim ker dFy:(z') < dim ker dFy (z;) =0,
where the last equation follows from the surjectivity and selfadjointness of
dFv(xj). For the same reason we obtain

0 = dim ker dFy:(z') = dim coker dFy(z').

LEMMA 6.2.2. Let X,Y be Banach spaces and D : X — Y be a Fred-
holm operator. Then there exists an € > 0 such that for any linear map
L:X =Y with ||L|| < e

dim ker (D + L) < dim ker D.

ProoOF. Following [BB85, 1.5.C ex.9], let X; be a topological comple-
ment of ker D. We prove

ker (D + L) N X; = {0},

which implies our claim in view of ker DX, = X. Because D:X 1= RapD
is a bounded bijection between Banach spaces, it has a bounded inverse pil
by the open mapping theorem. Let x € X; Nker (D + L), then x = —DLzx
and so

lzllx = ID™" Lalx < ID7H|-ILI -l x < cellallx.
For 0 < € < ||[D7"|| it follows = 0. O

Transversality in the C°°-category. To prove part iii) of the
transversality theorem let us start with density of V., in (C*°, d): Given any
V € C*®°(M x S',R) we have to construct a sequence V; € C*°(M x S',R)
such that

Ve>0 TFkoeN Vk>ky : dV,V)) <e.

The idea will be to approximate V by regular V}’s in the C*-topology and
then approximate Vj by smooth regular elements V; in the C*-topology.
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Finally we make use of the observation that in order to control the metric
d we essentially have to control only finitely many C*-norms in its series,
because the strong weights 1/2* take care of all the other ones.

STEP 1 Because V,]?e’g is dense in (C¥(M x S',R),|| - ||cx) for any integer
k > 2, we can find V}, € C¥(M x S',R) with |V — Vi|lcx < 1/(2k). For
k=0,1 let us define Vy =V, = V.

STEP 2 Because V,’fég is open in (C*(M x S',R), || - ||cx) for any integer
k > 2, we can choose 0 < ¢, < 1/(2k) sufficiently small such that B, (V}),
the open eg-ball around Vj, is contained in V,’fég.

STEP 3 Because M x S' is compact, C>®°(M x S, R) is dense in (C*(M x
SLR), || - |lck) for k € Ny, cf. [Hi76, theorem 2.6]. Hence we can find
VieC®NB, (V) for k> 2. For k=0,1 we define Vj = V/ =V.

Now pick € > 0 and choose 1y € N sufficiently large such that f(v) =
> esoi1 277 < €/2. Choose kg > max{ry,4/e} and observe that by Steps
1,2 and 3 for k > 2

IV =Viller IV = Villor + IV = Vil

IN

L]
— € —.
2% K=

Note that this implies [|[V — V}/||cv < ||V = Vi|lgr < ¢ for any 2 < v < k.
We get for any k& > kg

<1/k <1

Yo

—TN— -
LV =Viller L V=Wl
dV,V)) =) — v :
(Vi Vi) EZ?lHW—W%f%E:QVLWV—W%k

v=0 v=rp+1
< g + - <e
~ k2
Openess of Vi,  is easier: Pick V € V[, and set k = 2. Exploiting
openess of Vzé‘; in (C>(M x S, R), || - ||c2) we are able to choose a constant

€0 > 0 such that for any V" of class C? with ||V — V"||c2 < € it follows
V'"e V,?é‘;. Now define

Lo
41+ ¢ ’
Let V' of class C* be such that d(V, V') < e. Therefore each term in the

series on the left hand side has to be strictly smaller then ¢, in particular
the second one

€E =

L V=Vle: ___1 &
= €=— .
2 T+ [V =V 11+e

But this is equivalent to

IV =V'|le2 < €

and therefore V' € VE&Z. Finally Vy,, = ,?é‘; N C>®(M x S',R) implies
V'€ Vi,
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We prove part iv) of the transversality theorem: As Vy,, is open and
dense in (C*,d) it is of the second category in the sense of Baire. The
identity

00
Qa
Veeg = [ Vieg
a=0

implies the claim, because by Baire’s category theorem any countable inter-
section of sets of the second category is again of the second category.
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APPENDIX A

Linearization and trivialization of operators

In section A.1 foundations are laid to carry out the geometric analysis in
the main body of this text; particularly to get optimal quadratic estimates
in chapter 5. The crucial nonstandard results (at the level of textbooks) are
formulae for derivatives of the exponential map and the parallel transport
of vector and covector fields.

Section A.2 contains a detailled calculation in local coordinates of the
linearization D; of the e-dependent nonlinear elliptic equations at a solution
w. In other words we linearize the Banach bundle section

. Lp
Fe:EP — 73%_795+

at a zero w € F, 1(0). Somewhat implicitely contained is a formula for DY
the linearization of the parabolic operator Fj at a zero 4.

Using results from section A.1 about the parallel transport we derive in
section A.3 a formula for the derivative at (0,0) of .7-":%” — the representative
of F¢ in a local trivialization of the Banach bundle at any w. This will be
done intrinsically. It turns out that the formula for dff,%”(o,()) coincides
with the one for Dg;.

Finally section A.4 provides simpler formulae for the linear operators Dg
and Dy in orthogonal respectively unitary frames.

A.1. Some Riemannian geometry

We recall fundamental concepts in Riemannian geometry, such as Levi-
Civita connection and curvature tensor (A.l.1), exponential map (A.1.2)
and parallel transport (A.1.3). Throughout let (M",g) denote a smooth
Riemannian manifold of dimension n and I'(T'M) the set of smooth sections
of TM — in other words smooth vector fields on M.

A.1.1. Levi-Civita connection and curvature tensor. The Levi-
Chwita connection V on the tangent bundle TM — M with respect to the
metric ¢ is the uniquely determined connection on T'M which satisfies the
conditions of being torsion free

(93) T(X,Y)=VxY -VyX - [X,Y]=0 ,VX,Y eI'(TM),
where
(X,Y]=XY -YX,

131
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and being compatible with the metric (i.e. a Riemannian connection)

(94) Xg(Y,Z)=9(VxY,Z)+g(Y,VxZ) ,VX,Y,Z eT(TM).

Let V* denote the associated connection on T*M defined by
(Vin)¥) = X(n¥)) —=n(VxY) , VXY e (TM),n € T(T"M).

If u € C°(R x S', M) there are induced connections on the vector bundles
uw*TM and u*T*M. By abuse of notation we use the same symbols V and
V* for these induced connections and occasionally we will even use simply
the symbol V to denote any one of them.

Let {z!,...,2"} be a system of local coordinates on an open subset
UCM and & = (z',... ,2") represent a point 2 € M. Then we have the
natural bases {8y = 0/0z"}7_, of the tangent space and {dz’ }i—q of the
cotangent space to U at z. Expressing X, Y and n with respect to these
bases as X = X'0;, Y = Yjaj and n = njdmj we get

oYk
or?

v,V = X' ( T @) Yj> O , where T% = da* (vaiaj)

O .
Vin=X" (GZJZ - Ffj(i‘) 77k> dz’ , where — Ffj = (V’éidwk) 0;.

The quantities Fi—“j are called Christoffel symbols and they satisfy

(95) Fi_cj(x) — 1gM ) <3gil($) dgji(x) 3gij($)> ‘

0xJ or? Ox!

The curvature tensor R is a skew-symmetric bilinear form R, : T,M X
TyM — End(T,M) defined by

(96) R(X,Y)Z =VxVyZ -~ VyVxZ — VixyZ

for X,Y,Z € I'(TM). The riemannian condition on V (compatibility with
the metric) implies R(X,Y) € so(T'M) for all X and Y (cf. [Sa96] se. 2.1).
Note that there is no agreement in the mathematical literature concerning
the sign in the definition of the curvature tensor. In local coordinates

(97) (R(X,Y)Z)™ = R} X'YT ZF
where

L@ Tl (x
(98)  Rjj@) = 59’; - 53’;; L 4T @)D — T ()T ().

Moreover there is the following consequence of the first Bianchi identity

(99) gJ(RX,YZ,V) = g(R(Z,V)X,Y) .
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A.1.2. Exponential map. On a Riemannian manifold (M™,g) one
has furthermore the concept of an exponential map, which is defined as
follows: Let u € M and & € T, M, then define

expy§ = (1)
where y(t) is the (unique) solution of the 2"¢ order initial value problem
v0)=u , Oy(0)=¢ , Vidy =0,
i.e. y(t) is the geodesic emanating from u in direction £. Clearly exp,0 = u.

Before studying the derivatives of the exponential map let us consider two
initial value problems which are closely related: Fix 7 > 0, then

Yru(s =0)=u Yiut=0)=u
(*T) 83'77,u(0) =7 (*1) at'Yl,u(O) =¢
Vsas'YT,u =0 Vtat'}’l,u =0

where s, t € [0,00) for compact M.

LEMMA A.1.1. Let 7, be the solution to (x;) and 7, be the one to
(*1), then Y74 (8) = y1,u(sT) for all s > 0.

PROOF. Uniqueness of the solution of (x;) implies that it suffices to
show that f(s) := v1,,(s7) solves (x,):

f(0) =71,u(0) =u
asf(o) = 8s'Yl,u(ST)|s:0 = at'Yl,u(O) T = 7-5
Vs0sf(s) = T2Vt(9t71,u(t) =72.0=0.

O

This lemma is the crucial ingredient in calculating the derivatives of the
exponential map, which we will also denote by

a(u,&) = exp,&.

Note that 77) in the following proposition, more precisely dexp, (0) = idr, ar,
implies that there exists a constant ¢, > 0 such that exp, : T, M D B,,(0) —
expy(B,,0)) C M is a diffeomorphism (inverse function theorem C.3.2 in
appendix C). ¢, is called injectivity radius at u. If M is compact, then
there exists + > 0 such that exp, is injective on the ball B,0) C T;,M for all
u € M. ¢ is called injectivity radius of M.
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PROPOSITION A.1.2. In local coordinates @ = (u',... ,u™) on M the
following statements are true for any i,j,k,l € {1,... ,n}

D) a(@0)f =uF

i) Oa(d,0)F = 6% = dya(a,0)"

iii)  0101a(ii,0)5; = 0102a(if, 0)f; = 9201a(ii, 0)}; = 0
) 0xdhalii,0)f; = —TF;i)

. Ok (i)
v)  0Bhdha(d, )y = ——4;

vi)  0y0101a(d,0)f;; = 0.

PROOF. i) has been shown above. To prove ii) use the definition of
exp,7E = v,(1) as well as lemma A.1.1 to compute

—

da(@, 0 &' = L| _ a(@ )" = L| _ (expar€) = L| _ yra()F

= oo 1a()" = 9y a(0)F = ¢F
and

3161(17,0)/;-c o' = % Tzoa(a’+ 7-:1‘5’,0)”c = % o (uk + T:Ek) — .k

Similarly we obtain the first statement in 4i7)

ok i
O 01a(d,0);; x'z! = 45

. (u¥ 4 T2F) = 0.

7=0

Commutativity of partial derivatives in R implies that to prove the other
two statements it suffices to show

k
— k L7 g
D102a(1,0); &'2? = %‘;ro %‘720 <€£Epa*+uf7'€>

_d d k_ d d k

= i, E‘Tzo Vryitpz(1)” = @‘uzo E‘Tzo Y1,z (T)
d k_ d k

= =0 at’Yl,ﬁ-i-uf(O) = @‘Mzof =0

We prove iv)

R P 2 S\ k 2
0a0pa(ii, 0)f; ¢ = o (65151911‘75) =4 o Yra(1)*
2
=4 . N,a(T)* = 0:0:71,2(0)F

= —Ik() 9:71,2(0)" Oy ,a(0)) = —Th @) €7
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7(t,0
T oM 700, 1 ™

F1GURE A.1. Parallel transport of vector fields along curves

where we used that v, z(7) satisfies V,:0;v 4(7) = 0 V7 > 0 as well as
9-71,4(0)" = ¢'. Finally use iv) to get v)

020001 a(il, 0)f;; ' €'¢T = 010202a(ii, 0)5; £'¢7 2!

_ d d?
= 2
du =0 dr

dr¥; -
= — i li 7'

—

a(@ + p@, 7€)k = % o F§j|ﬂf+uf ¢el

7=0

and i7) to get vi)
020101a(i, 0)5; 2’27 ¢! = 010102a(i, 0)f; € a'a?

i
_ a2 a > 2 L~ E\k
 dp? §=0 dr T:()a(u—i-,u,J?,T )
_ 4 20,7 0k el — 42 kel _
= a7, Doa(t + pz, 0)] & = |, 6 & =0.

O

A.1.3. Parallel transport. In this subsection we follow closely the
exposition in [St88], Teil 1. Let v € C*°(R, M) be a curve and &y € Ty )M,
then we define the parallel transport of the vector & along ~y to be the linear
map

T(T, 0) : T’y(O)M — T,Y(T)M
o > &(7)

(cf. figure A.1), where the vector field £(7) along + is defined by the initial
value problem

(101) V:£=0, £(0) = &.

In local coordinates we have a linear system of n first order ode’s with n

(100)
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initial values given
(102) 0.5 (m) + T (Yo (N (r) =0, () =& , k=1,... ,n.

By the existence and uniqueness theorem for ode’s T (c,b)7T (b,a) = T (¢, a)
and T (a,a) = id, a,b,c € R. Being a linear map we may represent 7 (7,0)
with respect to the basis of coordinate vector fields {0i,...,0,} by

(103) T(rok e =¢5r), k=1,... ,n.
LEMMA A.1.3. &£| _ T(r,0)5 = —T%(y0) 0-7'(0) for all k,j =
1,... ,n and more generally

0-T(7,0)§ = —Tji(y(m) 9,7 (7) T (7, 0)}.

PROOF. &(7) = T (7,0) & is parallel along v, i.e.
0= 0:£5(7) + T} (y(m) 9y () € (7)
= 0, (T(7,0)f &) + T (v(m) 9.9 (r) (T (7, 0)] &) -

Setting 7 = 0 and using 7(0,0)¢ = §¢ the first statement follows. O
d k _ d k
LEMMA A.1.4. &£| _ T(0,7)5 =— 4| _ T(r,0)%.

PROOF. Apply % o to the identity 7 (r, 0);?07-(0, T){ = 6F. O

-

PrROPOSITION A.1.5. Let £ be a vector field along vy, then
% =0 T(Oa T) 6(7-) = (VT§)|T:0 .

PRrOOF. The kth component of the LHS equals
(], TO, 7)) €0) + 6 0:67(0) = Th(v0) 9,7 (0)¢ (0) + 8:£5(0)
= (VTg)k(O)
The first equality holds by Lemma (A.1.3) and Lemma (A.1.4). O

The parallel transport of the covector n° € T;‘(O)M along ~y is defined to
be the linear map

1o 1 ()
where the covector field n(7) along 7 is defined by
(105) Vin=0,n(0)=n",
or in local coordinates for j =1,... ,n

(106)  3rny(7) = Ti(y(m) 97 (1) me(r) =0, 1;(0) = nf.
Again T*(c,b)T*(b,a) = T*(¢,a), T*(a,a) = id for a,b,c € R and
(107) T 05 nk =ni(r) , j =1, .
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LEMMA A.1.6. Let n,& be parallel (co)vector fields along v, then
dr(n(r),€(1)) =0
where (-,-) denotes evaluation of covectors on vectors.

PROOF. The left hand side equals
Brj(m) € (1) + mp(m) DR (T

=T (v(m) 0v'(r 57 (1) T (y(m) 0ry'(m) € (7)
The second equality holds by using the assumptlon on 1, ¢ to be parallel, cf.
(102), (106). O

LEMMA A.1.7. T*(7,0) = T(0,7)* , T*(1,0){" = T(0,7)™
PROOF. Lemma A.1.6 implies
e = (€0,n°) = (&(r),n(r)) = (T(7,0) &, T*(r,0) n°)
= T, 0146 T* (7, 0)}mf
for all {y € T,y M and 1)° € Ty M. This is equivalent to 7*(r,0)*7 (r,0) =
Tor T*(7,0),T(,0); = 6. O

LemMMA A.1.8. [ | _ 7%(r,0)5 =T (y0) 0.4 (0) | Vk,j = 1,... ,n

ProOF. To the LHS apply first Lemma A.1.7, then use Lemma A.1.4
and Lemma A.1.3. O

PrOPOSITION A.1.9. Let n be a covector field along 7y, then
o TH0,7) m(r) = (Vin)|,—
PROOF. Use lemma A.1.7 to get
oo (T O m(®) = ]y (T 0% melr)
= —TF(7(0) 37 (0) 7, (0) + 87 97y (0)
= (Vzn);(0).

The second equality follows by the product rule and lemma A.1.3. U

LEMMA A.1.10. Let 6 be a curve in T5yM such that 0(0) = v and
0(t) =n°, v and T* as above, then

DI THr,0)0(r) = ".
component of the LHS is given by
o (T (05 0(7)) = T (3(0) 8} 6,(0) 0, (0)

= (&1, T (7,005 ) vk + 85 . — T, (0) vy € = 1
where the last step follows using Lemma A.1.8. O

a4
dr 7=0

PROOF. The jtB
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The next result is essential to derive the fundamental quadratic estimate
in chapter 5 section 5.1. Note that until the end of this subsection the curves
along which we transport (co)vectors are geodesics of the form ~¢(7) =

a(u, 7€) = exp,TE.

LEMMA A.1.11. In local coordinates {u',... ,u"} and for 7 > 0, £ €
TuM and k,l =1,... ,n it holds
(108) T (T’ 0)56 = glr|a(u,T§) T(Ta O)Z QSk(u)
and

o) 8 r j r s
0=~ 0,7 (r. 0 + 2|, ) (o, 76) &) T(r,0); g™

- glr|a(u,7‘§) Fij|a(u,7'§) (820,(11,, 7€) 5)2 T(Ta O)g QSk(u)

which for T =0 reduces to

0 o
0= gy T (O + St w) &9™ w) = givw) i) €' )
Moreover,
2
d? * k 0 Gir ic7 rk
8gl7' ] s rk aglr i i sk
8]_—‘7" 1 k r i s¢em gk
— gir(u) 6 5 T ) + gir (u) Tij(u) D, (u) 7™ 7% (u)

+ ng z] £Z ms f‘m Sk(u)'

PROOF. Assume that (108) holds and take the derivative with respect
to 7, then the second statement follows using the product and chain rules as
well as lemma A.1.3 in the last term of the sum. Evaluation at 7 = 0 gives
the third statement. The last one follows by taking another 7-derivative of
statement 2 and evaluating at 7 = 0. We use again lemma A.1.3 as well as
proposition A.1.2 7v).

To prove (108), let n° € T M and set

n(r) = T*(7,0)f ng du
Y(T) = gl?“|a(u,'r§) T(T’ 0)18" QSk(u) 77]2 dul'

Both are covector fields along the curve 7 +— a(u, 7€) = exp,7¢ and n(0) =
n° = Y (0). By definition 7(7) satisfies V,n = 0 and n = Y will follow once
we have shown V.Y = 0 (uniqueness of solution to initial value problem of
a system of 1% order ODE’s). Consider the j* component of V,Y and use
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the definition of Y in the second equality to get

(V2Y)(m) = 0:Y5(T) = Tjlaqure) (Orau, 76)" Yi(7)
ag ir
= 5T la(u.re) (9ratu, ) T (1,05 g*F w) .
+ ng|a(u,T§) (a’rT(T? 0)2) QSk(u) 7713

- Fijk|a(u,7§) (aTa(uv Tf))z (gkr|a(u,7'§) T(Ta 0); QSl(u) 77?)

g, .
- { agqu' — il — glrrgj} la(u,re) (Ora(u, 78))" T(1,0)q g*F )y n?
=0

where in the third equality we replaced 0,7 (7,0)} according to lemma A.1.3
and renamed several indices. The fourth equality follows as the term in
brackets (the covariant derivative of the metric tensor) is zero, which may
be shown by direct calculation using formula (95) for the Christoffel symbols
in terms of derivatives of the metric. O
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A.2. Linearization at a zero

Let u € C®(R x S', M) be a smooth cylinder in M and w € T'(u*T*M)
a smooth covector field along u. The coordinates on R x S' are denoted by
(s,t). Recall the nonlinear equations

i) Qs — g W)Viw —IVV (t,u) =0,

(109) ;
i) €Viw + gu)du —w =10 .

Our goal is to linearize these equations. To do so we represent them in
local coordinates and linearize the local expression. In order to get back to
intrinsic quantities it will be crucial to use the nonlinear equations during
the linearization procedure. One way to think of this is interpreting (109)
as a zero of a section F, in a Banach bundle and then linearizing the section
at this zero.

Let now u be represented in local coordinates by @ = (u!,...,u")
and w € T, M in the hereby induced coordinates on T*M by (@,v) =
(u',...,u"vy,...,v,). With respect to these coordinates the equations

take the form

. - — Vit
i) Ogu — gy (3tvz _ F?;(U)(@UUW) — iy a(ul ) _ ,

(110) . .
ing(@w—r%wwmmw)+mﬂm@w—wzm,

for k =1,...,n. Assume that (i, ) solves (110). Let (d,,07), 7 € (=9,0),
d > 0 small, be a variation of (i, ), that is it satisfies

(ﬁ07770) = (_‘7 77) )
(111) oL =,
%(U’T? UT) =0— (£a y) .
Note that varying # gives the vector E, but varying ¢ will not give us a
covector, it just gives a local quantity 7 without intrinsic meaning. Later on
we will replace y; by 7, + ka(u)fkvj in order to interpret the linearization of
(110) as a section of u*TM & u*T*M.
Replacing (@, ¥) in (110) by the variation (@, ) and applying % |r=0 we
get (from now on we simply write u instead of )

. o kl . )
i) 0," — Zet (Do — T (0o, )
112 Kl ar?l|“ i j A j A i
(112) — g (u) <atyl T T ou & (O’ )ox — Djylu(0e€? Jox — Fjl|U(atuj)y/\)
0" w) OV gy 9PV

&=0,

§ — g (u)

out oul Oul o’
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y OT ) g o i i
i) €05y — 6257]“[§l(8su Jvuj — EQsz )(0s&")v; — 62ng( )(0su’)y;
0
+ 98sz & ol + g0 —yp = 0.

Now we define the component of a covector (using that we have fixed a
solution (@, ¥)) of (110))

(113) m =y — Twé'vy

and replace y; in (112) by this new quantity. Moreover we are going to use
the identities

gl w) 4, 0guu)
(114) g~ o Y
( = ﬁ) as
well as
115 o)) (w) Uy ¢ A i A, i
(115) Oy = Oy + 8u (Opu”) &' vy + T3 ) (04" )va + Tip(w)€" Opvy

(apply 0; to (113)) to get
(116)
b kv R .
) o é—k kl/ (u) ga Eu) pl (u 61’ <8t’1)l — F?l(u)atujv)\)

T | | |
(9t77 + 8Zl( )(atu )gzy,\—i—rf‘l(u)(atgl)v)\ +Fz/\l(u)§z(8tv)\)>

( B & (0! Jox + Tjy( )(@fj)v)\)

(F S (u 3tuj )TIA +F 1w )(3tuj)rf>\(u)§ivs>

89“ (u) OV kl 0’V Vi(t,u) i
ou? ¢ 8u —g ) 8ul8ui€

. ' j j . OV(t,u
+ I e’ <3suj — @l wdy + ¢ W) T w) (8u®)oy — ¢/ () 8(ul ))
=0,
.. T (u N Z_ i
'LZ) 62 (8577k; + al,l];z(/ )(asu )f (%Y + Fi‘k(u)(asf )’U}\ + F;\k(u)f (880)\))
8sz( )

A Doy — T ) (D€
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— ¢ (FZk(w(asui)nj R SAOICRT) DY
3gkz r ! A i _
5 (Opul) + griw) 3" — (e — Th(w)€'vy) = 0.

Note that in (116)i) we have added in the last but one line the nonlinear
equation (110)i) as this is zero (here we have to use the fact that we are
linearizing at a zero of our nonlinear map). The additional terms coming in
are essential to identify the global expressions V¢ and —VIVV (1, u):

k _ k k i | (18 h : :
(117) (Vs€)" = 056" + T, 0su? = (1 P+ 14™) term in (116)i) ,

AOVV)Fdt,u)
oul

,where (/VV)¥(t,u)y =g

RWE (IVV) (¢, w)

oV (t,u)
kl )
(u) ol
OV (t,w)
oulou’

—(VEIVV () = — ¢

189’”( u) OV t,u)

oo OV (t,u)
k l )
— Iy’ (U)W

=(12" + 13" 4+ 17" (last)) term in (116)i) .

(118)

Moreover term 6 and 9 of (116)i) cancel and

(119) —g~' @ Vin =~ g"w) (Om — Ty (@ )nn )
=(4" + 10™) term in (116)i) .

Subtracting from equation (116)i) the terms involved in (117)-(119) its lhs
reduces to

9 v 7 v 0 v
" () gaZf we Dy — g™ () ga”i W T (w)(9pu? v
8I"-\(u) v\ gi i
(120) — g ) azy (Opu”) &My — gFl T w)E Sy
. BI‘;Z(u) :
+g (u)Wﬁ (O vy + g™ )F () (Oyu? )T ()€

— gl T wE Oy + g7 ) TF )Ty w)é (Opu® vy

and we are going to show that this equals the curvature tensor defined in
equation (96)

(121) (RO, €)g~'w)" = Rl w)(9u’) 7 g™ vy .

First of all we observe that the sum of terms 1,4 and 7 in (120) is zero
as was to be expected, because they are the only ones containing a factor
Oyv;. That their sum is zero may be seen as follows: Replace the Christoffel
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symbols according to (95), then rename the appropriate summation indices.
So (120) equals

; 0gsp(u)
oa& (Bu*) g (u) (—Mg“ (W', )

ouk oul

o\ L Ol
ou’

Forg? (D) (" @) ) + g™ @l )
ou’

A L IR
ouk ouJ

. 0q:, (U
(122) =0)& (Byul)g ) (—2sz<u>rzy<u> + g“ﬂ(u)Mrzy<u>)

- 0gsi(u
+ & () g" () (—g”“(u) %;L T,

+ A& (Opu®) (+g“(u) 7w, (u) +gs”(u>1‘§-s(u>F2y(u>) ,
here we replaced

Ogsu(u) 9gju(u) 9gsj(u)
_uv 2 — _9TV, uv I L uv J
g (U)iauj 2w + g (U)iaus g (u)iauu
(coming from (95)) in the first term of (122). We also need to compute the
sum of terms 2,3,6 of the right hand side of (122)
0giu(w) 0gs;(u)
s v I _ s i J sV l
g (u)g (U)iaus (u)g (U)iauu + 97 (Wl (w)
9g;ju(w) 9gs;(w) Ogsr(u)
__ s v JK ls Vi J sV Ir
=g (wg W= 5 Wy (W= " T3 Wg (W= 5
0gir(u sv r 9gsj(u
(124) + %gsu(u)glr(u) gajui ) _ %g (u)gl () Gsj(U)

ou’
L 09ur(w) | Ogujw) _ 89]'1"(“))

oul ou’ Out

(123)

=g wI'%.(w)

In the first equality we replaced the Christoffel symbol according to (95),
the second equality follows by renaming indices, the third one again uses
(95). We proceed by replacing these terms in the right hand side of (122)
and get

oud ouk

. ory - or,
A& (Opu®) g (u) (—Fﬁy it F?l, . J )
=& (Opu”) g (u) R (w)
(25) =0 @uh)g g an Rigjrw)
= — & (0uF) g (w)g" (u) Rk (w)

. . l
=— (R(u)(&ﬂ Oyi » (OpuF) O )g“(um@ui)

=— (Rw)(&, 3tu)9_1w)l :
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Summarizing the results obtained so far gives the first component of the
linearized equation

(126) V& —g 'Vin— R, 0u)g 'w — VIVV(tu)=0.

Now we are going to analyze the second equation (116)ii). Terms three
and six cancel each other. The first and seventh term together give the
covariant derivative

(127) EVan = & (D — Ty (Do) ) du” |
term 11 clearly is
(128) —n = —nkduk

Ignoring terms 1,3,6,7,11 and replacing €205vy in term 4 by the second
nonlinear equation (110)ii) the lhs of (116)ii) reduces to

or?
I (0, gy

—i—f (eZF?V(u) Yoy (Osu” vy — g,\r(u)Ff‘k(u)atur + Ff‘k(u)v,\>

. O™ (u
—625%( ZED g + (0 )T >>

OGrr )
+gk fat + g0 — T w)élvy

O (w) AT (w)
our du’

(129)

=62§ivx(6sur)( + I )T () — T, )Ty (u ))

ou’
= — R, (wE (Dsu" oy + £ (Opu") grs (TS (1) + grs(w)OE*
=g (R, (WE (Dsu) (g7 (yy) + grsw) (€ + T w) (Opu” )€Y
= gr;(u) (R(&, Osu)g™ " w)” + grs(u)(V1£)* .

The first equality follows just by putting the terms in appropriate order and
observing that terms 4 and 9 cancel each other. In the second equality we
use the identity (98) for the curvature tensor as well as the following fact

Ogr(u)

. Ogkr
+ &' (Opu") ( Irrlth) gAr(U)Ff‘k(U)> + grr(u)Ot!

v I T ()
_ Ogkr(u) w1 Ogri(u)  Ogii(u)  Ogpi(u)
(130) ol Ar()29 ol ouk oul
(09w | Ogritw)  Dgritu)
>\ ol du” ouk

= grs(w)'};(u) ,
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where we used (95) in the second and fourth equality. The third equality is
induced by

— R}, (w) = — g™ (W) Ripir (w) = g™ () Rygir (w)
(131) N )
=M (w)grj (W RI ()

Now the second linearized equation is given by

(132) 62V;‘17 + EZQR(f, 8su)g*1w +gVi€E—n=0.

Setting € in the nonlinear equations (110) and in the linear ones (126),(132)
formally zero we get

z)asu — V0 — gVV(t, u) =10

133
(133) i1)v = g(u)Oyu

and therefore
’L)st -V Vi€ — R(f, 8tu)8tu — V§QVV(t, u) =10
it)n = gu)V€.

The riemannian geometer observes immediately the occurence of the geo-
desic curvature in (133) 7) and the Jacobi equation in (134) 7). In many
textbooks one term of the Jacobi equation differs in sign. This is a conse-
quence of the nonexistence of a standard sign convention in the definition
of the curvature tensor. Note that in the second term in (134) i) we used
(setting X = Oyu)

(134)

LEMMA A.2.1. Let X, £ €e I(TM), n e (T*M), g : TM — T*M the
metric isomorphism, V respectively V* the Levi-Civita connection on T M
respectively T*M , then

1) g~ eV (9€) = V¢,
it) Vin = goVx(g7'n) -

PROOF. ad 1)

O(gir(w)Er)

(g7 weVi(98)” = g* () (Xj o

— kX7 (glk(U)fk)>

; 08 ok si [ O9ik(W) !
= X/ J 5t — -,
- 0¢s .

— YJ Jekps

=X 50 + X7E T (u)

= ng )
where in the last but one equality we used (95).
ad 4i) Apply g from the left to i) and set & = g~ 1. O

REMARK A.2.2. (Linearized flow satisfies linearized equations) Ignoring
the terms involving s-derivatives and setting ¢ = 1, the nonlinear equations
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(109) reduce to z = X, (2) = —JyVH;(z) for a smooth loop z in T*M. As
was shown above, linearizing this equation at a solution z leads to

—9~ (@)Vin = R(&, &)t — VeVVi() =0

9(@)Vil —n =0
where (§,n) € T'(¢*TM @ 2*T*M) and z = 7;;2. On the other hand Xy,
gives rise to the time-t-map ¢; on T*M and z(t) = ¢i2p for zy = z(0) and
2 = Xm,(z). The crucial fact is that its linearization dp;(2g) : Tp, T*M —
Ty 2o T* M along the solution z satisfies the linearized equations (135) for
any initial condition (£p,79). To prove this we work in natural coordinates
and pick a particular variation of 2 = (#,%) in (111). Namely, let 2(0) =
Zy = (Z0, o) and

(135)

(Z7,§7) = Gi(@o + €0, o + Tig)
then
(2°,5°) = @&, 50) = (£, 9)
|0 @7.57) = Ay | g0) (E001).
Setting (£,77) = 4| o (£7,§7) we obtain a variation of the form (111)
and the result follows.
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A.3. Linearization in a local trivialization

Recall that the section F : P;f’ o+ — EP is given for a smooth cylinder
w in T*M by

_ (0su — g7 (u)Viw — VV (t,u)
Felw) = ( Viw + e 2g(u)dpu — e 2w

where

u(s,t) = Tpyw(s, t)
and 73, : T*M — M. As we have seen in the former section its linearization
D5, = dFc(wp) is well-defined at a zero wy € F,'(0) = M¢(z~,2z") and it
is a linear operator on the space C$°(R x Y, u*TM & u*T*M).

Locally trivializing the bundle of maps, the section F, induces a nonlin-
ear map between linear spaces: Fix any smooth cylinder w, then define

Fv: CR x S',u*TM & u*T*M) O

(136) (g) . (7'((()),1) T*(%,1)> oF. (T*(lif)”ﬁim)

where T (1,0) respectively 7*(1,0) denotes parallel transport of covec-
tor respectively vector fields along the geodesic v¢ : [0,1] — M, 7 —
erPy(s,nTE(S,t).  Note that, strictly speaking, fﬁf;f’v is defined only for

(&n) € C§°(R x §',u*TM @ u*T*M) such that sup, perxst [€(5,1)] < o,
where ¢ > 0 denotes the injectivity radius of M.

THEOREM A.3.1.

df-triv (0 0) 5 — ng - gilv:n - R(f, atu)gilw - VgVV(t, U’)
ow A Vin+ gR(E, Osu)g™ w + e 2gVi€ — e 2

This means that for any smooth cylinder w the linearization of .7-"2;};" at
0 coincides formally with the linearization D§,, of F, at a zero wy € F.(0).
Prior to proving the theorem we are going to introduce the concept of two-
parameter maps.

Two-parameter maps (cf. [O’N] Ch.4)
Let D C R? be an open set such that horizontal or vertical lines intersect
D in intervals (or not at all). A two-parameter map is a smooth map

(137) f:D = M,
the s-parameter curve t =ty of f is s — f(s,t0),

the t-parameter curve s = sg of f is t — f(so, ).

The partial derivatives

asf(sat) = df(sat) as ) atf(sat) = df(S,t) 8t
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are vector fields on f, i.e. Tp00sf = f, where T3y : TM — M denotes the
tangent bundle. If f lies in the domain of a coordinate system (u',... ,u"),

ie. f=(feee )
afi
ot

af’
0s

If Z is a smooth vector field on f, we denote by

D o
(138) —Z=V,5=V,Z= (asz’c + Ffj(f)asleJ) Bk

asf(sat) = (Sat) 82 ) 8tf(3,t) = (Sat) 82 .

the (partial) covariant derivative of Z along s-parameter curves. %Z is
defined analoguously.

LEMMA A.3.2. ([O’N] Prop. 4.44) (1) If f is a two-parameter map into
a (semi-) riemannian manifold M equipped with the Levi-Civita connection
V, then Vsatf = Vtasf.
(2) If Z is a vector field on f, then VNV Z — NV NsZ = R(0sf,0.f)Z.
(3) If n is a covector field on f, then ViVin—V;Vin = goR(0sf,0:f)g~'n.

PROOF. ad (1): In local coordinates we have
Viohf = (00" + T5 (N0 f0ufT) 0
Vid,f = (9:0uf* + T (Fonf 0,17) 0

The result follows by commuting the partial derivatives in the first term and
the symmetry of I‘fj in the lower indices.
ad (2):

(VsViZ — ViV Z)*
= (Vi Z) + TSN (Vi 2Y 05 f' = 0V Z2)F =TV Z)Y O f!
= 0,(02" + Thu(HZ"0f™) +T5) (077 + Tl NZ"0S™ )0 f°

= 0,(0,2" + Th(NZ"0f™) = Th()) (027 + Do H1Z"0,S™ )01

i | r7m ar§m 8Fi€m k v k v
=0sf'of'Z —(f) = =50 + T (O () = T (O ()
ou oud

= 0, f'O f1Z™RE ;= (ROsf, 01 2)" .

We got the first two equalities by expressing the (partial) covariant derivative
in local coordinates as in (138). The third equality follows by carrying out
the partial derivatives with respect to s and ¢, using the product and chain
rule; note that Ffj depends on f(s,t). Now use the local expression (98) for
the curvature tensor.
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ad (3): Define ¢ = g~'(f)n and apply (2) to get

Q_I(V:V;U - V:V:U) = sttf - vsvtf
= R(0sf,0:f)§
= R(0sf,0uf) g~ 'n.

To pull g~' through the covariant derivatives we used Lemma A.2.1. Now
apply g from the left. O

PROOF. (of Theorem A.3.1) Consider the two-parameter maps given
by f(s,7) = expyyT(s) (here we assume ¢ = const) and h(t,7) =
expy(yT(t) (here we assume s = const). As dexp,(0) = id it follows
0-f(s,0) = &(s) and 0;h(t,0) = &(t). Fixing s and ¢ we define the ge-
odesic 7¢(7) = exp,7E; note that 7¢(0) = w and 0;7:(0) = & T (1,0)
respectively 7¢(1,0) denotes parallel transport of (co)vector fields along -y,
from v¢(0) = u to v¢(1) = exp,&. We observe that

dy_—triv 0’0 £>
0.0 (5
— i triv T§
- dr 0 ]:f’w <7‘7’]>
_ Al (T 0\ o et
dT =0 0 7;* (05 1) ¢ r*g(la 0) (’LU + 777)

2N ) (i)

The last equality follows because parallel transport along a curve does not
depend on the parametrization of the curve, i.e. T;¢(0,1) = T¢(0,7) and
similarly for 7*.

15t term: Z(s,7) = 0s(expy(s)TE(s)) is a vector field on f. Using proposition
A.1.5 in the first and lemma A.3.2 (1) in the third equality we get

% =0 7(0,7) Os(expy7§) = (VTZ)|T:0
= (V’rasf”'r:[]

(vSan) |'r:[]
V£

274 term: Z(t,7) = —g '(exputE) Vi (T*(7,0) (w + 77)) is a vector field
and 0(t,7) = T*(7,0) (w4 7n) is a covector field on h. Using proposition
A.1.5 in the first, Lemma A.2.1 in the third and Lemma A.3.2 (3) in the
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fourth equality we get
— o TO.7) g™ ewpure) Vi (T(5,0) (w +70)) = (V- 2)],g

= =V, (97 () Vi(T*(,0) (w+ 7)) )
= _g_l(u) Vikrvrm’r:()
=—g~ ' (V;Vi0+ g R(0;h,0:h) g'0)|
= —g7'Vin— R(& du) g~ w.

To get the last equality we employed Lemma A.1.10.

3™ term: VV (y(m) = ¢* (1) 25 (y(7)) 9 is a vector field along . Using

aul
proposition A.1.5 in the first equality we get

d T(0,7)(=1)VV (exp,7€) = =V VV(v(1)|,—o

7=0

7=0

dr 7=0
=— 2| _ (YV) (v(m) O — T (7(0) 8:5'(0) (VV)7(0) Oy
A(VV)k . . .
= - ( (auj) (0) 8- (0) + T} (u) £ (VV )J<0>> O
= —VVV.

4t term: 0, (s,7) = Vi (T*(7,0) (w + 7)) and 62(s,7) = T*(1,0) (w+77)
are covector fields on h. Using proposition A.1.9 in the first, Lemma A.3.2
(3) in the third and Lemma A.1.10 in the fourth equality we get

L] T 0,7) Vi (T(5,0) (w+ 7)) = (7560,
= (VIVia)|, =
= (ViVi0y + g R(0:h,05h) g~ '65)]
= Vin+g R(¢,05u) g~ w.

7=0

5th term: 0(¢,7) = g(expy i TEWD)) O(expyyTE®)) is a covector field on h.
Using proposition A.1.9 in the first, Lemma A.2.1 in the third and Lemma
A.3.2 (1) in the fourth equality we get

£ o T7(0,7) e %g(exp,TE) Oy(expyTE) = € *(Vi0)|

dr 7 7=0
= 6_2v;k' (g(h) ath) ‘7’:0 - 6_2g(u) (VTath)‘T:(]
= 6_29(’[1,) (vtaTh)‘T:() = 6_29(’[1/) th

6" term: %‘720 T(0,7) (=1)T*(7,0)e 2(w + m0) = —€ 2. O
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A.4. The linear operators represented in frames

Our first claim is to represent the linear operator
Dy : CP(R x 8", u*TM) — C°(R x S, u*TM)

(139 €= Vb — ViVik — R(E, )i — VeVV (£, u)

where u € C®(R x S', M) with u — 27 € Crit Ty, for s — Foo uniformly
in ¢, as an operator acting on R”-valued functions

Dy : CP(Rx 8"\ R") - CP(R x SR , £ Dyt

If the Riemannian manifold (M, g) is orientable, then there exists an orthog-
onal trivialization
¢ : (RxS")xR* = u*TM
(140) . .
(5,8,8) = (5,85 (s, £)).
Orthogonality here means that ¢(s,t)*g = (-,-). Let {e1,...,e,} be the
standard orthonormal basis of R” and define

Zi(s,t) = ¢(s,t)e; ,i=1,...,n

then {Z1(s,t),...,Zu(s,t)} is an orthonormal basis of Ty M. In the
nonorientable case we construct an orthogonal trivialization over [0, 1] with
boundary condition as discussed briefly at the end of subsection B.1.8 in
appendix B.

REMARK A.4.1. (Existence of ¢ ) We first construct ¢ for a fixed
value sg of s and then extend it to s € R via parallel transport of the
Z;(s0,t) along curves s — u(s,t) or by the same argument as in the proof
of lemma B.1.13. Actually we prefer the parallel transport method in order
to get rid of terms V,Z; in later computations. Cover S' by finitely many
intervals {I;} Y, over which orthogonal trivializations ¢;(t) : R* — Tu(soyM
exist. On I; N I; = (t;,t;) we patch ¢ and ¢; as follows: choose any smooth
map 1;; : R = SO(n,R) such that

1 , t near t;
2/’z‘j(t) = {qbil(tj)()ﬁéj(tj) , t near t;

then define for ¢t € I; N I;

¢i(t) ,t<tiand t € I;
bji(t) = < di(t)orhij(t) , t € (ti,t;)
;(t) ,t>t;and t € 1.

Note that this construction works as the orientability of M allows us to
reduce the structure group of the riemannian vector bundle from O(n,R) to
SO(n,R), which is connected.
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With respect to the orthogonal trivialization ¢ of uw*T M (parallel with
respect to s) the covariant derivatives Vg and V; are represented by

Vil = 'Vi(g8) =06, Vil =0 Vi) =af+ AL, E=Ce
where the connection potential A € C®(R x S*, L(R",R")) is defined by
(141) A(s,t)e; = ¢~ (s,1)Vi(s, t)e;.

Note that A(s,t)*e’ = —A(s, t)e;, which follows from the formula for intrin-
sic partial integration in proposition B.2.2. Moreover, it turns out that

(142) (05, V] = 0,A = ¢~ ' R(su, Oyu) .
Indeed

(05, ViIE = 0,01 + (0, A)E + A0 E — 0,0,€ — AD,E = (0, A)E
and using [Osu, Qyu] = 0 (cf. lemma A.3.2) we get

¢~ R(Dsu, Opu)p = ¢~ V™' Vip — ¢~ Vi~ Vb
= as(at + A) - (815 + A)as = 0, A.

LEMMA A.4.2. D, as in (139) is represented by

Doé = ¢~ Dy ($€) = 956 — Vi Vi€ — QE|,

where Q@ € C®(R x S, LR™,R™)) with Q(s,t)* = Q(s,t) is given by

Qe; = ¢~ R(Z;,i)i — ¢~ V2, VV (¢, u).

PROOF.

Doé = ¢~ 'Du(¢é)
= ¢ (Vs(€'2i) = ViVi(§'Zi) = R(§' Zi, )i — Vi 7, VV (¢, u)
= 7 ((0:€)Zi + €V Z; — (00:E") Zi — 206V Z; — €V NV Z;
— &'R(Z;,i)i — €'V 7,V V (t,u))
= 0,6 = ViVl — €97 (R(Zi,i)is = VZ,VV (1)
where we used several times equation (141). The symmetry of the first sum-

mand of () may be seen using the antisymmetry properties of the curvature
tensor

9(R(Zi, wyi, Zy) =9 g(R(a, Zy) Zi, 1)
= g(R(Zy, W), Z;).
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For the second summand we exploit that the Levi-Civita connection is tor-
sionfree as well as its compatibility with the metric

9(Vz,VV, Zp) = Z;g(VV, Z) — g(VV,V 2, 21)
= Z, 2,V — (N g, Z1)V
=) 242V — (V 2, Z0)V
O

As usual setting v = 7y,w our second claim will be to show that the operator

Dy : CCR x S, u*TM @ v*T*M) — C(R x S',u*TM @ u*T* M)

<€> . (Vs€ —g 'V — R u)g 'w — VeVV(E, U))
n Vsn+ gR(&,0su)g tw + € 2(gVi€ — 1),

where w € C®°(R x S, T*M) with w — g(zF)8;zT € Crit Ay for s — Foo
uniformly in ¢, may be represented by an operator on R?”-valued functions

D : C(R x ST, R?™) - CS°(R x S, R?™)
(143) (5) L 0E-var ) _[ €
] Q7 + €2 (Vi€ — 17) —B¢
where

Cei = ¢ 'R(Zi,0)g " 'w + ¢~V 1. VV (L, u)
is asymptotically symmetric as C(s,t) — ST(t) for s — Foo and
Be; = (¢*)gR(Z;,05u)g 'w — 0 for s — Foo.
Note that for w = g(u)0iu
B*ej = (¢*)gR(Z;, Oyu)Osu.

To derive (143) we pick an orthogonal trivialization ¢ of uw*T'M as before,
then we define

_(¢ O

) ((Rx SY) x (R* x R") = w*TM @ u*T*M.
® is a unitary trivialization with

o (s,1) (;) = (gﬂ((itt))>

where e/ is the dual of e; and Z7(s,t) the dual of Z;(s,t) under the natural
identification of the vector space with its dual space via the metric (-,-)
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respectively g. We define

. ) iz
D.(§) =0 o (15) =0 e (17)
:< Vs(€'Z;) — IVt(n]ZJ) R(&'Z;,i)g™ ' w — Vi VV (8, u))>
¢*(V (mZJ)Jr6 29V (£'Z;) + R(£1Z;,05u)g 1w — € 2n; Z9)
0,€ = Vi = £¢7 (R(Z, i) g~ w + V 2,V V (1, u))
D5 + € 2(Vi€ — ) + E1¢*gR(Zi, u)g ™" w

where we used (¢*)g¢ = 1 and our frames being parallel with respect to s.
Note that in the special case w = g(u)du we get

- <5> _ 0,€ — Vi Q€|
N7} \owii+ e (ViE —if) ) \~BE




APPENDIX B

Two variational problems — basic facts

We recall standard facts from the variational theories of the symplectic ac-
tion functional in section B.1 and the classical action functional in section
B.2 (usually called energy functional in Riemannian geometry). Their vari-
ational formulae are derived and we discuss the assignment of integers (in-
dices) to their critical points. In contrast to the canonically defined Morse
index of a critical point of the classical action, the Conley-Zehnder index of a
critical point of the symplectic action usually involves noncanonical choices
(of unitary trivializations) in its construction. These are related to the non-
triviality of the first Chern class. However, here the first Chern class of the
restriction of the tangent bundle TT*M — T*M to any closed submanifold
of T*M vanishes and as a consequence the Conley-Zehnder index can be
constructed canonically. Moreover, we give an alternative construction in
this context — avoiding first Chern classes — by exploiting the existence of a
global Lagrangian splitting of TT*M . Throughout we will use the following
terminology for projections: For any manifold N let 7n denote its tangent
bundle projection and 73, its cotangent bundle projection.

B.1. The symplectic action functional

Let (M™,g) be a closed (i.e. compact and without boundary), smooth
Riemannian manifold of dimension n. After discussing the construction of
natural coordinates on TT*M in B.1.1 we introduce certain canonical struc-
tures on the 2n-dimensional manifold T*M. The Levi-Civita connection of
(M, g), which we view in B.1.2 as a bundle morphism K : TT*M — T*M,
called connection map defines a horizontal subbundle T"T*M:; the kernel
of the linearized cotangent projection T'ry, — by 7" we denote the tangent
map — defines the vertical subbundle T"T*M. So we have a natural splitting
TT*M = Ker K ® Ker Tty =: ThT*M @ TT*M. These subbundles may
be identified via T'7}; |7« with TM and via K|pvr«p with T M, respec-
tively; the latter isomorphism however depends on the choice of coordinates.
On the other hand — setting ¢ = 73,p — we have a natural isomorphism be-
tween fibers O(p) = (T (p), K(p)) : T,T*M — TyM © T; M, which we
can view as a change of fiber coordinates. The Liouwille form 6 — in natural
coordinates (qi,pj) given by p;dq’ — and the canonical symplectic structure
Q = —df on T*M are introduced in B.1.3. In B.1.4 we introduce a Rie-
mannian metric G on T*M, whose pullback under 6(p) ! is given by the
product metric g @ g*. Moreover, the metric g on M leads canonically to

155
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an almost complex structure J € I'(End TT*M), i.e. J?> = —id. (G, J,Q)
are compatible in the sense that G(-,-) = Q(-,J-). As we will see in B.1.5
a Hamiltonian function H : R/Z x T*M — R gives rise to the Hamiltonian
vector field Xy defined by the identity dH(-) = Q(Xg,-). It turns out in
B.1.6 that the 1-periodic Hamiltonian orbits Per (H) of X are exactly the

critical points of the symplectic action functional on the free loop space of
™M

Ay : ¢S, T*M) =C>®(S8", T*M) — R
1
z z*@—/ H(t, z(t)) dt.
St 0

Assuming that the set Per (H) = Crit Ay is discrete we are going to define
a map

pez : Crit Ay —7Z

called Conley-Zehnder indez. The naturality of this index will be discussed
in great detail (cf. introduction to this appendix).

B.1.1. Natural coordinates on TT*M. First we introduce local co-
ordinates (u!,...,u"), short notation (u'), on M and compute the trans-
formation formulae under a change of coordinates of the coordinate vector
and covector fields, the coordinate functions of vectors and covectors, the
matrix-valued function representing the metric and the Christoffel symbols
of the Levi-Civita connection associated to g.

Next we introduce natural local coordinates (ui,vj) for p € T*M by
applying the cotangent functor T* to the charts of M. The (v1,...,v,)
indeed transform like coordinate functions of a covector and may therefore
be interpreted as the fibre part, (u1,...,u,) representing the corresponding
base point ¢ € M C T*M. This procedure however fails in the next iteration
step, namely applying the tangent functor 7" to the natural charts of T*M to
get local coordinates (u’, vj, ¥ ;) of TT*M: the £F transform as coordinate
functions of a vector, but the y; do not transform as coordinate functions of a
covector. In fact their transformation formula under a change of coordinates
involves the ¢¥ as well as the vj. There are also second derivatives of the
transition maps involved, just as in the case of the transition maps for the
Christoffel symbols. This leads us to the definition

(145) m =y — Df weko;

and we will show that 7; indeed transforms like a coordinate function of a
covector. In fact we have a natural isomorphism of vector spaces

(146) O(p) : T,T°M - T, M ST, M , q=Typ
given locally by

(147) (ul, v €% ) v (' €8,y — D ) érvy)
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Note the implicit occurence of the metric via the Christoffel symbols. If p(t)
denotes a smooth path in T*M and ¢(t) = 75,p(t), then this isomorphism
takes 9yp(t) € Tp»T™M to the element (0iq(t), Vip(t)) € ToM &T,; M, where
V* denotes the Levi-Civita connection on M acting on covector fields.

Let (U, ¢), (U, ) be two coordinate charts of the manifold M™ and de-
note by (u?), (@') the corresponding coordinate functions

¢o:U—R", Y:U— R,

148
(148) g (ub,. . um), g (at,...,a") .

f(@) = ¢op~ (@ ) = u denotes the transition map of the coordinates. Asso-
ciated to (u’), (4') are the coordinate vector and covector fields {0, }, {0y }
and {du'}, {di’}. They transform as follows (throughout this text we use
Einstein’s summation convention)

LEmMMA B.1.1. Fori,k=1,...,n we have
. of Y )
Z) auz = Taﬁj ) aak = Wauj )
o Ofia O
i1) du' = 8u , du” = Wdu .

PROOF. Part two may be proven by the chain rule: As u’ = (i) we get

du’ = af ( 9L 337, The proof of part one uses this fact as follows: {0,:},{30; }
are bases of T, M, hence they are related by a linear transformation 0, =

A;Caﬁl NOW
i i _ 3]” i\ (al _ Of'ay
0 = du'(Oyr) = < 57 d ) (A0;1) = 57
and therefore Ai = %f;(a)‘ O

Any element ¢ € Ty M respectively n € T/M may be written as { =
Eiu)d,i = &(@)d;; respectively = n;(u)dut = 7l () i .

LEMMA B.1.2. Fori,k=1,...,n we have
N P R) S OY
v cj J
/L)g au] g ’g au] 5 Y
. 0 1J( ~ af7(
“)gi: f £]a€k ;;k 5]
PROOF.
. Lemma k
ad i) €0, = ¢ = fa,; P gﬂaf By .
Lemma 1]
ad i) &’ = € = &yt T & W gk
8uk
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Let gij(u) = gy=1(u)(Oyi, Oui), 4,5 = 1,...,n, be the matrix-valued func-
tion on ¢(U) representing the metric g. By F%(u) we denote the Christoffel
symbols of the Levi-Civita connection associated to g. ¢* denotes the dual
metric. Its local representative ¢¥!(u) is related to gij(u) by g wygriu) = 511-“,
i.e. it is the inverse matrix of (g;;).

LEMMA B.1.3. Fori, 5,k =1,...,n we have
. of Y of Ywy.
1) 9ij(u) =~ == Gki(1)
i Ofiw) 0fI @) gy -
ij —
) aff@y (02f )  a  Of M of 1 (u
k _ s
W T = 55\ oaow T 50— au )
o of Yy (02 afl (@) dfT ()
B — s
P =" \Gaow T " ow ow )
PROOF. ad 1) {{fggij(u) = g(&,&) = f’f@gkl(a), now use Lemma

B.1.2i), similarly for the dual metric.

ad i7) Write the Christoffel symbol as sum of derivatives of the metric (95),
then use i) and the product rule to calculate this derivatives. Replace also
g" (u) using i). We get a formula involving only coordinates @. Again using
(95) it may be simplified to the form stated in ii). O

Starting with a chart (¢, U) of M, there is a natural way to get a chart
(&, T*U) of T* M:
O:=T¢:TU — ¢(U) x R"

p e (@, do@)* 'p) , qi=Tip.

The coordinates are denoted by (u’,v;) = ®(p). The v; are exactly the
coordinate functions of the fibre part of p € T*M, i.e. are components of
a covector. This may be seen by investigating the transformation behavior
under a change of coordinates: Let (¥,7*U) be the chart coming from
(,U), then

(149)

(u,v) = ®oU ™" (@, B) = B~ (@), dyp(q)* D)

= (¢otp (@), dpla)* ™ odip(9)*) -

Applying a similar procedure to (®,7*U) we get a chart (T'®,TT*U) of
TT*M with coordinates (u',...,u" vi,...,v,;¢, ... ,(?). Denoting the
last 2n variables by (¢1,...,€",y1,...,yn) we will see that the ¢* transform
as coordinate functions of a vector, but the y; do not transform as coordinate
functions of a covector:

T : TT*U — (p(U) x R") x T(pU) x R™)
¢ = (P, ddg)* 'p; d¥(p)¢) ,

(150)

(151)
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where p = 7r<)¢ and ¢ = 7y,p. The transformation behavior is as follows
(u,v3€,y) = TO(TV) ™ (a,5;€,9)
=T® (d)l(ﬂ), dip(g)*5; AV (p) ! (g))

152 ;
(152) = (f(fn, df (@)* 1 o; dD(p)od W (p) " <§>>

= (f(fn,df(ﬂ)*16;d(f(ﬂ),df(ﬂ>*16) (i)) :
The last term may be expressed as follows

s (f (@), da fa)* o) <§>
(153)

= (daful)é, dy (da f @)~ (daf @)™€) +daf<a>*‘1@7> :

using indices the last expression reads

OV of Py of
(154) Y = ulous Ouk 5 vi—i_Wyka I=1,...,n,
or
@ w af w5 OfT @
(155) =~ gam owrow ok Ui T ggm U

(The notation dj ; indicates that this is the differential with respect to vari-
ables 4 and v).

Hence we see that £ transforms like a vector, but y involves second deriva-
tives in its transformation formula. As we met a similar expression in the
transformation law of the Christoffel symbols, we might be tempted to define
the quantity

(156) m =y — Tl weko; .

LEMMA B.1.4. n transforms like a coordinate function of a covector,
i.€e.

af ()

mziauk e, k=1,...,n.

PrOOF. In the first equality of the next calculation we are going to use
(156), in the second one we use the transformation formulas Lemma B.1.2,
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Lemma B.1.3ii) and (154) for &¥,#;,T% (@) and y;:

(9_liu~ Of S xa
faul( )m = faul( )<yi—F%(U)€jvk>

o "w <6f’“(ﬁ> @@ w 8f”(_ﬁ>§~j5k>

aul o T Tow owouw  ow
Of Vg 0F My (0P |, OF @) Of (@)
~ T ST gwow T 0u  ow

g, (2 S worta 1t of Vw of Y
Yi k outouv ol i oul T

— I ek
= -

It follows from applying 0, to the identity %% = §¢ that the

second summand in the last but one equation is zero. O

B.1.2. Natural splitting of TT*M. Let X (M) denote the set of
smooth vector fields on M. In Riemannian geometry the Levi-Civita con-
nection V =9V is defined as the unique map X (M) x X(M) — X (M) such
that Vf € C°(M) VX,Y,Z € X(M) one has
. C*°(M)-linearity in the first component
. Rlinearity in the second component
. (Leibniz rule) Vy (fY) = (Xf)Y + fVyY
. (torsion free) VxY — Vy X + [X,Y] =0

5. (compatibility with metric) Vzg(X,Y) =¢(VzX,Y) + g(X,VzY).
Following [E67] and [KI] we redefine this concept: First let us recall the
short notation (u’;v;) for (ul,...,u";v1,...,v,) and similarly for vectors
with another number of components. Let the vector bundle morphism K :
TT*M — T*M in natural local coordinates (cf. subsection B.1.1) be given
by

(157) K(u',vj; €5 y1) = (w's 4 — TEE o).
K is called connection map. The Christoffel symbols Fi-“j of V are defined by

=W N

Vo, 04 =T50,% , Vi, j=1,...,n

where (u',...,u") are local coordinates on M. They may be expressed in

terms of derivatives of the metric as in equation (95). The relation between
the two concepts is

Via=KoTa(X) , X,YeX(M) , weQY(M).

Note that 7' denotes the tangent map. For instance for a l-form a :
M — T*M we get Ta : TM — TT*M or in coordinates (u’;&F)
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(u?, aj(u); 3 ((9ukozj)§k). Let 7y denote the projection of the tangent bundle
of any manifold N and 7y the projection of its cotangent bundle. Locally
we have

™  T"M — M
(158) p—yq
(0 05) > (a)

Trepr 2 TT*M — T*M
(159) Crp
(' 05568, 1) = (u50;).

We define the horizontal respectively vertical subbundle of TT*M by

oy 2 TVT*M = Ker K — T*M,

Tpepr 2 TPT*M = Ker Tty — T*M.
In local coordinates

TyT*M = {(u', 05 €, Tigtop) (€1, €") € RS,
TyT*M = {(u',0550,9)|(y1, - - ,yn) € R'},

where ¢ = 75,p is represented in the local coordinate ¢ : M D U — R" by

o(q) = (ul,... ,u™) and p = v;du’ by (u’;v;). It can be seen from these local

expressions that T"T*M and T?T*M intersect in the zero section Op=ys of
T(T*M). As their ranks are n and the rank of T'(T*M) is 2n it follows that
TT*M is isomorphic to the direct sum
TT*M = T"T*M & T"T* M.
Unfortunately the 2™? of the vector space isomorphisms
Tri(p) : TpT*M — T,M
(u', 053 €5, L€ og) > (w5 €F)
(160)
K(p) : T;)T"M —T;M
(u', 0550, 41) = (u'591)
depends on the choice of coordinates as y; does not transform as a coordinate
function of a covector (cf. subsection B.1.1). So they do not provide a
natural isomorphism between Tlﬁ‘T*M ®T,)T*M and TyM @ T; M. However
there is a natural vector bundle isomorphism © between 7p«p; : TT*M —
T*M and the pull-back bundle pry : (75,)*(T'M & T*M) — T*M which,
restricted to a fibre T, 7% M, is in natural coordinates given by

O@p) : LTM — ({pt@T,MOT;M  q=1yp

(161) . . ]
(ulavj;fkayl) = (ulavj;gkarr’l =Y — nggzv])
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Somewhat sloppy we will consider ©(p) to be a fibrewise isomorphism be-
tween T,T*M and T;M @& Ty M. Later on we will express various sections

of bundles over T*M in these new coordinates (¢¥,7;) on T,M & T, M.

B.1.3. Liouville form and symplectic structure. The map
O :TT"M — R
¢ = (rrear ) (T €)

is a 1-form on T*M. © is called Liouwille form. Linearity follows from its
expression in natural local coordinates

O(u',vj; €%, y1) = (u'vjdu?) (u'; ¥ 00) = v du? () = 03¢,

(162)

hence

O, v)) =v;du’ : T,T*M — R
(163) ( i) i ) p .
E%Our + Y10y, — Ujfj.

Note that using the metric g the form © may be written in the form

C-')(C) = g*(TT*MgagOTT]TlC)a

where ¢g* denotes the dual metric of g and in abuse of notation we denote by
the same symbol ¢ also the metric isomorphism TM — T*M : £ — g(&,-),
which in local coordinates corresponds to lowering of indices.

DEFINITION B.1.5. The natural symplectic form Q on T*M is defined
by Q@ = —dO.

Locally we get Q(u’,v;)(-,-) = (du® A dv;)(-,-), hence  is clearly closed.
Nondegeneracy of 2, i.e. Q((,() =0VY( € TT*M = ( =0, may be proven
using the fact that {du’,dv;}7_, is a basis of T, T*M.

LEMMA B.1.6. R ~ ~
i) Q¢ ¢) = 9" (9T, (, K () — g" (K (,goT3, ¢) V(,( €TT*M
1)) is represented under the isomorphism T,T*M = T,M & T,M by

Q& m), (€,7) =€) =n(&) , V(&mn), (& 7) € TyM & T; M.
PROOF. Q(C,{') is locally given at (u’,v;) by
(cu® A dvi) (€5 Dy + Y100y, € O + G10yy) = €1 — i’

=" —yi€! — €T3 v, + €T v,
= " (G — T€vs) — &y — Tji€"vy)
= i — € = 7j(€) = (&)

where we added 0 in the 2"¢ equality (using Fi—“j = Ffz) and used the definition

(145) of the covector n in the 4" equality. This proves ii); to prove i) we
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compute its RHS locally
9" g (i — Ti*v0) — g™ (ye — Thi€ vm) gin "
= €£; — €Ty v — Eyp + ETiE v,
= &' — gl
which equals Q(¢, ¢ ) as we have seen above. In the second equality we used

again Ffj = Ffl ]

In view of ii) we see that € is represented on T, M @ T;M by

oo (()-G)=(G ) 6

B.1.4. Riemannian metric and almost complex structure. The
map

G:TI*MoTT*M — R
(¢, 0) = g" (K¢ KQ) + g(Tr3,¢, TTC)

defines a Riemannian metric on T*M: symmetry follows from symmetry
of the metrics g and g*; the same for positive definiteness. Nondegeneracy
of G follows from the fact that the subbundles T"T*M and T'T*M are
orthogonal with respect to G; hence it follows from nondegeneracy of g and
g*. Note that under the natural isomorphism © in equation (161) the metric
G is represented by

0 *
G|((],p) = (g gl> : (TqM®TqM)X2 — R

OO -0

An almost complex structure J € I'(End TT*M) is determined by the
identities
i)(goTTyr)od = =K

(165) i) Kod = (goT'Ty;).

Applying J from the right to i) respectively i7) and then using i7) respec-
tively 7) shows that J2 = —id. The almost complex structure .J is repre-
sented on TyM @& Ty M by

(166) Jm=(0 @Y. rymery - TMeT M
(p) = g(q) 0 - 1q q q q-

where ¢ = 73,p. This coincides with the natural almost complex structure
on the direct sum of a vector space with its dual space.
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Compatibility of (Q2, G, J)

We call Q and J compatible if Q(-,J-) defines a Riemannian metric,
which is the case - in fact it coincides with G. Let ¢ ,5 € TT*M, then using
the defining equations (165) for .J

Q(¢. JC) = g* (9T 73,C, Ko ) = " (K(, goTTip0 ()
= g(T73,¢, 7€) + g (K¢, KQ)
= G(¢.0)-
On T,M & T; M this proof reduces to matrix multiplication

To_( 0 gy (0 =1\ _(g 0} _
ro-(2 0 )~ 1)

Note that compatibility immediately implies that J is an isometry with
respect to G

G(J¢, J¢) = QJ¢, J2) = —Q(J¢, ) = G(¢, ),
hence
G(J¢, () = G(J2¢, JE) = J*¢, J*) = (¢, {)

and

B.1.5. Hamiltonian functions and vector fields. Consider (time-
1-periodic) Hamiltonian functions of the form kinetic + potential energy,
ie. H: S'xT*M - R
(167) H(t,p) = 39"(p,p) +V(ta) . q¢=Tip
where V' € C*°(R/Z x M, R) is the potential energy. The Legendre condition
in natural local coordinates (u';v;) of T*M reads

0?°H \"
0 7& det (8%81@-)

and is satisfied due to the nondegeneracy condition imposed on the metric
g. Hence the Legendre transform of H is defined globally and we get the
Lagrangian

(168) L(t,q) = p(¢) — H(t,p) , q=Typ-
p = v;du’/ may be obtained as a function of ¢ = (¢)'9,: from

. OH
(@) = 5~ =g" v,
(2

= det (gij)?,jzl
ij=1

i.e. by lowering of indices. Therefore
L(t,4) = vi(q)' — 59" vivj — V(t.q)
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Associated to H and the symplectic structure €2 is the Hamiltonian vector
field X which - in view of nondegeneracy of €2 - is uniquely defined by the
identity
(169) dH () = (Xn, ).
For (e TT*M
= Q(JVH,J*) = Q(—JVH,()
and therefore
(170) Xg=-JVH.
In natural fiber coordinates (161) we have
“VH(t,p) = ( p( Q)> . =Tirp
(171) .
Xnp) = =101V ) = (0000, Y.
—9(@?VV(t,q)
The former identity can be seen as follows: let ¢ = (¢¥,1,) € Tiu,p)T*M and

denote by (¢%,n;) the corresponding element of T, M @ T M; the element
corresponding to V H;(p) we denote by (a,b), then

dH(p) ¢ = G(VH, () = g(a,&) + g7 (b, n).-

We compute now the LHS in local coordinates

o0H . o0H .
W( ' vj) fk + 8—1)[(“27%') Y
ov - 09" (u y
= 3uk (tauz) £k + % gaugc ) ’Ui’Ujgk -|-g”(u) VilY;j

09" (u
= gOVVt,w,€) + 1L

= g(VVt,u), &) + g*(v,m).
In the third equality we replaced y; by 1; +1I'j,vs{", the last equality follows

00 € + g () vinj + g% (w) Vil (WE v,

as the 27 + 4 term is zero (use equation (95)). The statement now follows
from the nondegeneracy of g and the orthogonality of the splitting of TT* M.
Xp generates the 1-parameter group of diffeomorphisms ¢y : T*M —
T*M, t € R, defined by
d .
7Pt =Xmeee, po =id,
ie. if z € C®(R,T* M) is a solution of the initial value problem

{a‘c(t) = X, (1))

(172) o(0) — o0
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then @,zg = z(t). Per (H) denotes the set of 1-periodic solutions of (172).
We denote by Symp(T*M, ) the set of symplectomorphisms, i.e. the set

of diffeomorphisms ¢ of T*M which preserve the symplectic structure, i.e.
Q=

LEMMA B.1.7. ¢ € Symp(T*M,Q) Vt € R.

ProoF. Clearly g = id preserves (2, the idea is now to show that
preservation of  is constant in ¢
d

% (prthoQ:LXHtQ:dl’XHtOQ_i_l’XHtOdQ

t=0
= ddH,, = 0.

The first equality is just the definition of the Lie-derivative L of a differential
form in the direction of a vector field. Then we used Cartan’s formula
Lx =dix +uxd (cf. [AMT78] theorem 2.4.13 iv)), the fact that dQ2 = 0 and
the definition (169) of the Hamiltonian vector field Xy, . O

B.1.6. First variation formula. Let the (perturbed) symplectic ac-
tion functional be defined on the space of free, smooth loops in T*M by

Ay : C®(SL, T*M) — R

(173) 1
z— 2¥0 — / H{(t, z(t)) dt
St 0

where © is the Liouville form (162) and H is a 1-periodic Hamiltonian as in
(167). Let
(174)  Crit Ay = {z € C®°(S",T*M) | dAy(z) = 0on T'(z*TT*M)}.
The next result says that z € Per(H) = z € Crit Ay.

PROPOSITION B.1.8. For z € C®°(SY, T*M) and { € T(2*TT*M)

1
dAy(z) ¢ = / Q2(t) — X, (2(1)), (1)) dt.
0

PROOF. (intrinsic) Denote by Ezp the exponential map of the Levi-
Civita connection ¢V of (T*M,G). Consider the two-parameter map, cf.
(137),

A(ta T) = Empz(t)TC(t)'
A(1) = A(-,7) can be interpreted as a path in C®°(S!, T* M) with A(0) = 2
and %‘720 A(7) = ¢. We define

1
f(T):/O OO AL, 1) dt:/51 A(r)*0
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and compute

f(0) = f(r) = o A(0)"0 = A(7)"©

:/ dA(T)"© = —/ A(T)* Q2
Stx[0,7 S1x[0,7]

]
1
—/ / Q0L A(t, 8), 0sA(t, s)) dt ds
0o Jo

:;/0 k(s) ds =: K(r).

In the second equality the induced orientation on the boundary of S x [0, 7]
has to be used. Note that K(0) = 0. Now

d

7=0
d 1
= — A(T)"© —/ H(t, At,m)) dt
dT 7=0 St 0
1
= lim 01O —/ dHy(z(t) C(t) di
T—00 0

1
= lim KO_KD) —/ Q(Xp,(2),¢) dt
0

T—00

1
1 1
:/ Q(2,0) dt—/ Q(Xn,(2),C) dt
0 0

1
= / Q) = X, (2(1), (D) di
0
where we have used the definition (169) of X, in the third equality. O

PROOF. (local coordinates) We set z = (uf,v;) and { = (ui,vj;é"f,yl),
everything depending on ¢t € R/Z. Now we pick smooth maps z, = (u>,v])

. . T’ ]
such that, (uh, ) = (uf,v;) and | _ (uk,of) = (€5, ).
d i,
dAv(2) ¢ = - » Ay (uz,vj)

d L .

= - 7—0/[] viug — 9" (ur)vjv; — V(t,uy) dt

= /0 y; (! — EQJ(U)W) +vj <§] T2 U gl — 59](@&)%')
oV (t,u)
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We replace y; by 7 —|—F§"ivk§ ¢ (m is an intrinsic object, namely the component
of a covector, cf. subsection B.1.1) and get

1
/ nji! + Thy v ghid — 59" (wwin; — 59”(“>“iF§k(“>”l5k —0;¢
0

—av‘jw vV — 59”(”)”]7’]1 - §gZ](U)UjFik(U)/Ul§ - aul

Denoting by (-,-) the pairing between a covector and a vector, the 15! term
equals (1), dyu), the 2"+ 5t equals —(V}v, £), the 3747 equals —(n, g~ 'v),

the 9 equals —(dV (t,u),¢) and the 4" 4 6% 4- 8" equals 0. The last
statement can be seen by using (95). Hence we have with z = 75,2

¢t dt.

1
/0 (0. 0h) — (m, g~ @)2) — (AV(t, 2),€) — (Viz,€) dt

1
= / (n, 0 — g~ (@)2) + (=&, Viz + g@)?IVV(t, 1)) dt
0

(0 Y (Y (G —gi@e g,
) 1 0 n Viz+g@x)IVV(t, x)

1
- / (¢, A — X (=(ty) dt

0

where in the last equality we used the facts that z € TT*M is rep-
resented by (0yz,Viz) on TuM @& Ty M and Xp,(2) by —J(2)VHyz) =
(g ()2, —g(2)IVVi(x)), as well as equations (164) and (171). O

Let us mention that one can extend the definition of Ay to the free loop
space AT*M of T*M - the completion of C>°(S!, T* M) with respect to the
Sobolev norm

12117 5 = lllZ2 + 1912117

The norms on the RHS are defined via a cover of T*M by finitely may
(natural) coordinate charts (i.e. induced by a finite coordinate cover of
M as explained in subsection B.1.1). Therefore this norm depends on the
cover, but any two such norms are equivalent. As the elements of AT*M are
almost everywhere differentiable, the definition (173) of Ay still makes sense.
Regularity theory techniques are now required to show Per H = Crit Ay .

B.1.7. First Chern class. We are going to show that the first Chern
class of the bundle 7 : E = TM & T*M — M is zero. Hence we need to
introduce a complex structure on E. Then we define a connection V on
E and compute the trace of its curvature 2-form FV, which turns out to
be zero. The result now follows from Chern-Weil theory. Functoriality of

the Chern class implies that for any closed submanifold N C T*M we have
C1 (TNT*M) = 0.
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Starting with a chart (¢, U) of M we get a local trivialization
O (U)=TyM&T;M — UxR'xR"
%1
&m) = (q,dp@8 de@" n)

where ¢ = w(£,n) denotes the base point. Let the canonical almost complex
structure on R*™ be defined by

Jo = (?l _O]l> . R 5 R,

ie. Jo2 = —1. Identifying the complex vector spaces (R*",.Jy) and (C",1)
via the isomorphism

I: (R™.J) — (C,4)
(x,y) +— =z+1iy=:2z,
the complex linear group GL(n,C) is identified with
GLc(2n,R) = {Ae€ GL(2n,R)|JyA = AJy}

. X -Y
= {A € GL(2n,R) | Ais of the form <Y ¥ )}

We observe that ®(q) respects the complex structures

0 _gil(Q) * *
T0 = 0 0 T MOTIM — T,M O TiM

and Jy on R?" ie. ®(q)oJ(q) = JooP(q) hence is a complex isomorphism. Let

(¢,U) be another chart for U C M and f (@) = ¢ogp~ ' (@) = u the transition
map, cf. subsection B.1.1. The transition map for F

s (de@edd Bg) 0
[0 oD ! == B b
(@)o®(q) < 0 do(g)* ' od¢(q)*>

indeed takes values in GLc(2n,R). We define a connection V on E by

(175) Vy (2) _ (g;ff;) X6 € X(M),n e Q' (M)

where V respectively V* denotes the Levi-Civita connection of (M, g) acting
on vector respectively covector fields. In local coordinates we have

- i [(d 0 T;du’ 0
V“HA_(O d>+< 0 —rjduﬂ‘>

where I';du® € Q' (M, End R™) is the connection potential of V, i.e. I‘fj are
the Christoffel symbols. The curvature 2-form is given by

FV=V2 = +dA—Ad+ Ad+ ANA=dA+ANA
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which locally (in the following we use the bundle chart d¢ & dqé*_l) reads

R _ _ Zgz;duj/\dui 0
Fiv'duz/\du] = 7 or; . .
J 0 Z—B—gdulf\duj
i,j v
ZFiFjdui/\duj 0
+ (" .y
0 ST dut Adu?
i,]
or; T
—J_Z -1 . .
o 0 — (5425 )+riry)
i<j ou OuJ

Note that FV € O%(M, End R?*™) and it transforms according to the ad-
joint action of GL(2n,R) on End R?", hence taking the trace of FV in
local coordinates is independent of the choice of these coordinates, therefore
tr FV € Q?(M). Now the trace of a commutator vanishes and tr A = tr A,
hence

tr FV =0 € Q*(M).

Moreover Chern-Weil theory asserts that the cohomology class [tr F@] is
independent of the choice of connection (cf. [Jo91] Lemma 1.4.2 or [Sa96]
section 1.4). The first Chern class of E is now given by

def 1
e

(176) c1(TM & T* M) [tr FV] =0 € H2,(M, 7).

THEOREM B.1.9. Let N be a closed submanifold of T* M, then it follows
a(TNT*M) = 0.

PROOF. VERSION A Let i : N — T*M denote the inclusion and 75,/ =
Tyrot : N — M the restriction of the cotangent projection to N, then
A(TNT*M) = e1((af|N) E) = i* (137) (1 (E)) = 0.
O

PROOF. VERSION B Let E = TyT*M, then according to [GHT78] chap-
ter3 section3

c1(E) = —¢1(E*) = —¢; (A"E™)
where A" E* denotes the canonical (complex) line bundle. Now ¢; (A"E*) =
0 if and only if there exists a nonvanishing section s of A" E*. This is due
to the fact that the first Chern class of a complex line bundle equals the

Poincare dual of the zero set of a generic section. Let (£¥,7;) denote the
canonical fiber coordinates of F (cf. subsection B.1.1) and define

zk:§k+7’nk7 k=1,...,n,
then
dz1 N\ ... Ndzp,
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is a nonvanishing and globally defined section of A™E* (as the z; transform
under a change of coordinates by multiplication with an element of Si(n,C)).
O

In the case where N is a closed Riemann surface ¢ (TyT*M) = 0 is
equivalent to TnT*M being symplectically trivial, i.e. there exists a sym-
plectic bundle isomorphism ® : N x R?" — TnyT*M. This statement is a
consequence of theorem B.1.14 in the next subsection.

We would like to mention the following facts: We have a hermitian
structure H on TM & T*M given by

H('v ) = G(a ) + 7:9(" ')a

which is complex anti-linear in the first and complex linear in the second
variable. The connection V is Riemannian (VG = 0)

ﬁXG(a ) = G(@Xa ) + G(aﬁX)a

unitary (VJ =0)

)51 (1 (9) o ()
and hence hermitian (VH = 0)
@XH(-, ) = H(ﬁx, )+ H(., @X)

B.1.8. Conley-Zehnder index of periodic Hamiltonian orbits.
We are going to recall the definitions of the Maslov index of a loop of sym-
plectic matrices and of the Conley-Zehnder index of a path of symplectic
matrices starting at the identity and ending at a matrix which doesn’t con-
tain 1 in its spectrum. Then we introduce the first Chern number of a
symplectic vector bundle E over a closed Riemann surface ¥ and use the
result of the former subsection c¢i(E) = 0 for ¥ C T*M to construct a
well-defined map pcyz : Per (H) — Z.

Maslov index of loops in Sp(2n,R)
Let Mat(2n,R) denote the set of 2n by 2n matrices with real entries.
The symplectic linear group is given by
Sp(2n,R) = {A € Mat(2n,R) | ALJoA = Jp}
{A € Mat(2n,R) | A*wy = wp}

where the standard symplectic structure wy on R?" is in coordinates
(z',... ;2" y1,... ,yn) given by wy = dz’ A dy; and the standard complex

structure Jy by
0 —1
Jo= (H 5 ) |
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It is known that m (U(n,C)) ~ Z (cf. [MS95] Prop. 2.21); an isomorphism
of fundamental groups is induced by the determinant map det : U(n,C) —

S'. Define
U(2n,R) = {(if ?) €GI(2n,R) | X'Y =YX, X'X + Y'Y =1}

Then for any element of U(2n, 1R) the transposed complex conjugate of

X +1iY equals its inverse and so is an element of U(n,C). Moreover,
U(2n,R) = Sp(2n,R) N O(2n,R)

and we have an isomorphism

I :umn,C — U2nR)

. X -Y
X411y — <Y X)

Now U (2n,R) is a strong deformation retract of Sp(2n,R) as there exists a
homotopy
r(t) : Sp(2n,R) — Sp(2n,R)
A — (AAHT24
such that r©0) = 1, »(1)(Sp2n,R)) = U(2n,R) and rt)A = A Vt € [0,1]
VA € U(2n,R). According to [StZi], Satz 5.1.20, ¢ : U(2n,R) — Sp(2n,R)
induces an isomorphism of fundamental groups. Now consider the map

(177) p: Spn,R) "B U@n,R) L5 Um,C) 2 51

and define the Maslov index of a symplectic loop v : R/Z — Sp(2n,R) by

(178) 1symp(y) = deg poy.

psymp Provides an explicit isomorphism 71 (Sp(2n,R)) — Z. Moreover it is
the unique functor mentioned in the next theorem.

THEOREM B.1.10. ([MS95] thm. 2.27) There exists a unique functor
psymp, called Maslov index, which assigns an integer pisymp(y) to every
loop of symplectic matrices v : R/Z — Sp(2n,R) and satisfies the following
arioms
(homotopy) Two loops in Sp(2n,R) are homotopic if and only if they have
the same Maslov indez.

(product) For any two loops 1,72 : R/Z — Sp(2n,R) we have

frsymp(Y1072) = frsymp(11) + Lsymp(72)-
In particular the constant loop y(t) = 1 has Maslov index 0.
(direct sum) If n = n' +n" identify Sp(2n',R) ® Sp(2n'',R) in the obvious
way with a subgroup of Sp(2n,R). Then
psymp(Y © ") = psymp(Y') + trsymp(y")-

(normalization) The loop v : R/Z — S' ~ U(1,C) C Sp(2,R) defined by
v(t) = e*™ has Maslov index 1.



B.1. THE SYMPLECTIC ACTION FUNCTIONAL 173

FIGURE B.1. The Maslov cycles C; and Sp;(2,R)

REMARK B.1.11. For a generic path v we can interpret 215ymp(7y) as
the intersection number of the loop v with the Maslov cycle (cf. [MS95]
section 2.2)

Spi(2n,R) = Spi(2n,R)
k=1

where Spi(2n,R) consists of all

(é g) € Sp(2n,R)

such that rank B = n — k. Each stratum Spy(2n,R) is a submanifold of
Sp(2n,R) of codimension k(k+1)/2 consisting of two connected components,
cf. [RS93] section 4.

As is explained in great detail in Appendix D we can identify Sp(2, R) with
the interior of the full 2-torus (hereby solving an exercise in section 8.5.3
of [Ar88]). The image of Spi(2,R) under this homeomorphism is shown
in figure B.1 - the two surfaces to the left and right (actually due to nu-
merical approximation this is only a sketch of the image). The double-
trumpet like surface there corresponds to C4, the set of all symplectic ma-
trices whose spectrum contains 1. The singular point of C; represents the
identity. Clearly we could also interpret 2/ gymp(y) as intersection number
of a generic loop with C;. C, and Sp;(2,R) touch each other in a curve
through the identity.

Conley-Zehnder index of paths in Sp(2n, R)

We briefly recall the definition of the Conley-Zehnder index pcz(y) of a
path 7y : [0,1] = Sp(2n,R) with v(0) = 1 and (1) € Sp5,, = Sp(2n,R)\ C;.
More details may be found in Appendix D. This index was introduced in
1984 by Conley and Zehnder [CZ84]. Extend by connecting (1) within
Sp3,, (which has two connected components Spin, 1) to one of the two ref-

erence matrices W+ € Sp}

Wt=-1 or W~ =diag(2,—1,... ,—1,1/2,—1,... ,—1).
N———— N————

(n—1) times (n—1) times
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Let 4 : [0,2] — Sp(2n,R) denote the extended path and let @ = r(1)(§) be
the corresponding path in U(2n, R). Setting det ii(t) = '*®) we define
a(2) — a(0)

™

(179) pez () = € Z.

Note that ucz is independent of the choice of the extension and invariant
under homotopies that keep the initial point 1 fixed and vary the endpoint
only within Sp5, . For an interpretation as an intersection number see the
former paragraph (figure B.1) and Appendix D.

Trivializations

The following facts without proofs — including the construction of ¢; —
are taken from [MS95] section 2.6. Let E be a real vector bundle over an
[-dimensional manifold N and w a smooth nondegenerate section of E* A E*,
i.e. on each fibre F; we have a symplectic bilinear form w, varying smoothly
with ¢ € N. (E,w) is called a symplectic vector bundle over N. A complex
structure on a vector bundle £ — N is an automorphism J of E such that
J? = —id. J is called compatible with w if Jy is compatible with w, for
all ¢ € N, ie. wy(Jy,Jg) = wy(+,-) and wy(v, Jyv) > 0 for all nonzero
v € E;,. Let J(E,w) denote the space of complex structures compatible
with w. J(F,w) is nonempty and contractible ([MS95] prop. 2.61). For
any compatible pair (J,w) the bilinear form g;(-,-) = w(-, J-) is symmetric,
nondegenerate and positive definite. A triple (w, J, g) with these properties
is called a hermitian structure on E. E is called a hermitian vector bundle.
A trivialization of a bundle F is an isomorphism from E to the trivial bundle
which preserves the structure under consideration. As two symplectic vector
bundles (E1,w;) and (Fs,ws) are isomorphic (i.e. 3 vector bundle morphism
U : Fy — FE5 such that U*ws = wy) if and only if their underlying complex
bundles are isomorphic ([MS95] thm. 2.60), the notions of symplectic and
complex trivialization are essentially the same. We therefore combine them
by defining a unitary trivialization of a hermitian vector bundle £ — N to
be a smooth map

d: NxR" — FE
(,¢) = g,

where ®(g) : R?® — E, is linear, which pulls back w, J and g to the standard
structures on R?":

O J=Jy, ®'w=uwy, P9 = go.

ProposITION B.1.12. ([MS95] prop. 2.64) A hermitian vector bundle
E — ¥ over a compact Riemann surface ¥ with nonempty boundary 0%
admits a unitary trivialization.

Let ¢ : [0,1] — N be a smooth curve and F — N be a hermitian
vector bundle. Given any unitary isomorphisms &, : R?" — Ec0) and
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o, : R - E.1) at the endpoints of ¢, there exists a unitary trivializa-
tion ®(t) : R — E.4) of ¢*E which extends the ones at the endpoints
([MS95] Lemma 2.63). This is a consequence of the pathwise connected-
ness of U(n, C), i.e. any two points are homotopic.

Replacing the curve by a cylinder, a corresponding result clearly cannot be
expected to hold: The reason is that two loops in U(n, C) are not homotopic
in general. Moreover, the first Chern number of any symplectic vector bun-
dle E — %2 (as defined below by cutting 3 in pieces) could be arranged to
be zero.

LEMMA B.1.13. Let Z = {(r,9) € [0,1] x R/2xZ} be the cylinder in
polar coordinates and EE — N be a hermitian wvector bundle over an I-
dimensional manifold N. Given a smooth map v : Z — N and a uni-
tary trivialization ®¢ : R/21Z x R?" — ~4*E over one end of Z, where
Y (9) = y(r,9), there exists a unitary trivialization ® : Z x R*™ — +*E
which extends ®.

PrOOF. We give a parametrized version of the proof of Lemma 2.63
in [MS95]. We first extend the trivialization ®; to a small neighborhood
[0, €] x R/27Z of 0 x R/2nZ: For ¢ € R*"™ let ®o(d)¢ = 3, sjo(d)¢7, where
{sj0(8) ?”1 is the given symplectic, orthogonal frame of E. g »). We have to
construct 2n sections s; of E which satisfy g(sj, sp) = 0k, w(sj,Sj4n) =1
and w(sj,s;) = 0 for all other values of j and k. {sj(r,ﬁ))}?il is called
a unitary basis of E,9). Choose a Riemannian connection V on E and
consider the parallel transport 5;(r,¥) of sj0(}) along the curve r — y(r,9)
for fixed 9. For small (%) and fixed ¥ the first n vectors s;(r, ), ... , Sp(r, 9
will be linearly independent over C. As R/27Z is compact this also holds for
all 9 € R/2nZ (choose r smaller than minyg r()). Now apply Gram-Schmids
over the complex numbers to obtain a unitary basis

Sj, 8 — w(s;,
Sk(’l" 19 g Y\°jy9k) k 5j — Z M JSj y Skan = J5p
|5k| |5kl = 13kl
where £k = 1,... ,n. Cover the annulus Z by finitely many annuli 7; =
[ak,bg] x St, k € {1,... ,m}, over which such a unitary trivialization @y

exists. We may assume that Dy (1, 9) coincides with the given one @y (1) and
Zi N Zy # 0 if and only if |k — k’| = 1. Starting at £ = 0 we apply the
following procedure successively to all trivializations ®: Pick two adjacent
trivializations &, and ®p, ;1 : Zjq x R2" — 'Yk+1E (where v, = 7|z,) and
consider the transition map Wy j 1 := <I> Lo®ry1 : Zp N Zgy1 — Sp(2n, R).
We can associate a Maslov index to \le’k+1 by picking any v p4+1 : St —
Z N Zk+1 generating m(Z, N Zy,1) = 7Z and setting ,ugymp(\ilk kil) =
,ugymp(\llk k+19Yk k+1)- Now plck a loop B in Sp(2n, R) with psymp(B) =
pi5ymp(Wk k1) and replace pp1(r,9) by Ppii(r,9) := Sppr(r,9) o BW) 1,
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then
Wi k1 i= (i)];l 0Py = &)I;I o 'i)k-i-l o B71.

Clearly ft5ymp(Vk k1) = thsymp(Vk k1) — prsymp(B) = 0 and we can define
a map

Apgrr ¢ [akgr,bp] X R/20Z — Sp(2n,R)

(r9) 1 , for r near agy1,
r?
Uy k+1(r,9) , for r near by.

Then ®(r,9) := 'i)k(r, $)oA(r, 9) agrees with ®}. near ap+1 and with @ near
br. This way we get a unitary trivialization over Zy U Zx11 = [ag, br11].

For k = m — 1 we end up this way with a trivialization ®; : R/27Z x R?" —
vi E over the second boundary component. We see that ®; is determined
by ®p up to homotopy: we can arrange to end up with any ®;0B where

MSymp(B) =0. U

First Chern number

Since the set of isomorphism classes of symplectic and complex vector
bundles coincide, these are both characterized by the Chern classes. We
are only interested in the first Chern class ¢y, which is an element of the
integral 2-dimensional cohomology of the base manifold. For bundles over
2-dimensional bases, ¢; is completely described by the first Chern number,
which is the value taken by c¢; on the fundamental 2-cycle of the base.

THEOREM B.1.14. ([MS95] thm. 2.67) There ezxists a unique functor
¢1, called the first Chern number, which assigns an integer c¢1(E) € 7Z to
every symplectic vector bundle E over a compact oriented Riemann surface
31 without boundary and satisfies the following axioms
(naturality) (E,w) ~ (E',w') & rk E =rk E' and c1(E) = ¢ (E").
(functoriality) For any smooth map ¢ : ¥ — ¥ of oriented Riemann
surfaces and any symplectic vector bundle E — 3

ci(¢E) = deg (¢) - c1(E).
(additivity) For any two symplectic vector bundles Ey — 3 and Ey — X
ci(E1 @ Ep) = ¢ (B ® Ea) = c1(Eq) + ci(Ey).
(normalization) ¢ (TX) = 2 — 29, where g is the genus of %.

REMARK B.1.15. ([MS95] remark 2.68) If E is a symplectic vector bun-
dle over any manifold N then the first Chern number assigns an integer
c1(f*E) to every smooth map f : ¥ — N where ¥ is a compact oriented
Riemann surface without boundary. The axioms imply that this integer
depends only on the homology class of f. Thus the first Chern number
generalizes to an integral cohomology class

c1(E) € H*(N,Z)
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which is called first Chern class.

Theorem B.1.14 is proven by explicitly defining c;: let 3 be a compact
oriented Riemann surface without boundary, choose a splitting

Y =% Uc 29

such that 0¥ = 039 = C. Orient the 1-manifold C as the boundary of ¥;:
a vector v € T,C is positively oriented if {v(g),v} is a positively oriented
basis of T, where v : C' = T'Y is a normal vector field along C' which points
out of X;.

Let E be the symplectic vector bundle over ¥ and choose symplectic trivi-
alizations for k = 1,2

Y xR™ 5 E

of E over ¥1 and X5. By proposition B.1.12 they exist as 9%, # 0 for
E=1,2.
The overlap map is defined by
v:C — Sp2n,R)
g = i@ o Pa(q)

Using the map (177) p = detoI*or(l) : Sp(2n,R) — S! we define ¢;(E) to
be the degree of po¥ : C — S!

l
(180) c1(E) = deg po¥ = Z NSymp(\Ilonj)'
7=1

Le. ¢1(E) equals the sum of the Maslov indices of the loops Wovy; : R/Z —
Sp(2n, R), where [ is the number of components of C' and each component is
parametrized by a loop y; : R/Z — C such that ;(t) is positively oriented.

Conley-Zehnder index of periodic orbits

We present two methods of canonically associating an integer to any
nondegenerate 1-periodic Hamiltonian orbit z € Per H. Although the first
method is very much along the lines of the standard one in Floer theory,
we need to use the second construction in the main part of this thesis as
it allows for an comparison between the Fredholm operators DY and D,
appearing there.

METHOD 1 Let z € Per (H) be a 1-periodic integral trajectory of the
Hamiltonian vector field Xy, on T*M. We identify S' 2 R/Z and denote
the local coordinate by ¢t. Let A,T7*M be the connected component of the
free loop space containing z. Pick a reference loop zy € A,7*M and a
unitary trivialization

B, : S"XR™ 5 ZTT*M
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FIGURE B.2. The reference loop zy and z € Per (H)

(this exists as U(n,C) is connected). Now choose a homotopy u between
2zp and 2z (the homotopy parameter is denoted by s € [0, 1]) and extend the

trivialization of 2;TT*M to w*TT*M by Lemma B.1.13. We get an induced
trivialization

b, : S'xR™ - FTT*M.
Denote by ¢; the time-t-map induced by Xp,, i.e. 2(t) = ¢;2° where
20 = 2(0), then define
A : [0,1] — Sp(2n,R)
t = Bt odpy [0 o y(0).

Clearly A(0) = 1 and det (A(1) — 1) = det (dp1(2°) — 1) # 0 ; hence we may
define the Conley-Zehnder index of the Hamiltonian orbit z by

(182) |1c7(2) = pes(A).|

First of all we show that this is independent of the choice of the homotopy
u. Here the crucial point is our result that the first Chern number is zero.
Let 4 be another homotopy between 2y and z with corresponding unitary
trivializations 'i)ZO = &,, and <i>z. u and u fit together to form a torus
T? = u#,,.% C T*M (figure B.2). Now

0=ci(Tr=T"M) = N'Symp(q);()loi)zo) - NSymp(q)z_loi'z)
= H’Symp(]l) - :U*Symp(q)z_loq)z) = _,UfSymp(\I/z,u,ﬁ)

(181)

where the minus sign comes in as we need to run through z in the oppo-
site direction; the last equality is just the definition of the transition map
Y, ud = <I>Z_10(I>Z. Using this we get ®, = ®,V¥, , ; and therefore

nez(A) = pez(®.)7" dez ,(0)
= pez(Vowa® ™ ot dpz® ©,(0) U 4.5(0))
= 2p5ymp(V, 0 o) + oz (@) dez® B,0)) + 0 = pez(A).
Note that in the third equality we used the formula
pez(VoA) = 2nsymp(V) + poz(A)
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from [DS94b] (property LoopP) for the composition of a path A and a loop
U in Sp(2n,R).

We observe that our definition of the Conley-Zehnder index depends on

the choice of the trivialization ®,;: These trivializations are characterized
up to homotopy 71 (U(n,C)): the transition map between two trivializations
represents an element of the fundamental group. Our construction is inde-
pendent of the reference loop as long as we extend ®,, along a homotopy u
from 2y to a new reference loop Zy. Differences of Conley-Zehnder indices of
periodic orbits in the same connected component of the loop space, however,
are well-defined in any case. Therefore our construction suffices to express
canonically, as required in standard Floer theory, a certain Fredholm index
as the difference of the Conley-Zehnder indices of two homotopic elements
of Per H.
We remark that in the special case of a contractible periodic solution z, our
construction indeed reduces to the standard one described in [SZ92] section
5: span in a disc u : D? — T*M and trivialize v*TT*M — D?. Any two
such unitary trivializations ®, ® restricted to S = 9D? are homotopic as
&~ 'o® : ' — U(2n,R) is smoothly homotopic to the identity (as the first
Chern class is zero). So we have a natural trivialization at any periodic
orbit.

METHOD 2 In the main part of this thesis we would like to compare the
Conley-Zehnder index of z € Per(H) with the Morse index of the underlying
perturbed geodesic. As the latter is a well-defined integer, there should be
a natural choice for the trivialization ®,,. Now to trivialize the Jacobi-
operator (187) we need to assume that M is orientable. Let z € AT*M and
x € AM be its base component. Choose any orthogonal trivialization

b+ SEXRY = *TM

which exists, precisely because M is orientable and SO(n,R) is connected.
Let qb‘,’;*l be the dual trivialization, then define

D, (1) = (%I ¢*01>  RTPRY™ — "TM & *T*M
x

and A € C%([0,1], Sp2n,R)) as in (181). Another orthogonal trivialization

¢r leads to transition maps 1,(t) = ¢, 1(t) ¢.(t) € O(n,R), hence

s (b O\ _ (b O \(th 0)_
o= (G )= (5 ) (5 ) -oer

Now as before pucz(A) = pez(A) because the transition map U(t) €
Sp(2n,R) N O(2n,R) has block diagonal form: therefore W(¢) lies entirely
in the stratum Sp,(2n,R) and so pgymp(¥) = 0 by [RS93] theorem
4.1 (property ZERO). Note that we have reduced the structure group of
2*TM & x*T*M to O(n,R). The underlying principle is the splitting in two
Lagrangian subbundles.
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In the nonorientable case we proceed as above on those connected compo-
nents of AM consisting of loops z such that x*T'M admits an orthonormal
trivialization. On the others we may find an orthonormal trivialization ¢,
over [0, 1] with boundary condition ¢,(0)~ o, (1) = diag(—1,1,... ,1).
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B.2. The classical action functional

Let (M, g) be a closed Riemannian manifold. We introduce the energy
functional of Riemannian geometry and call it classical action functional
throughout this text. The first and second variational formulae are derived
in B.2.1. Its critical points are the (perturbed) closed geodesics and its
Hessian at a critical point gives rise to the (perturbed) Jacobi operator. This
is a selfadjoint operator on an appropriate L?-Hilbert space; the dimension
of the largest negative definite subspace is finite as we will se in B.2.2 and
is called the Morse index of the critical point.

Let AM = WY“*(R/Z,M) be the free loop space of M. For v €
C>(8', M) we denote by I'(y*T'M) the smooth sections of the vector bundle
Y*TM and Wh2(y*T M) denotes, for v € AM, the completion of T'(y*T'M)
with respect to the norm || - [|1 2.

DEFINITION B.2.1. Let V € C*(R/Z x M,R) and

Iv : AM - R
1
v / L9y, y) — V(t,yt)) dt .
0

We call Zy the classical action functional (in Riemannian geometry Zj is
called energy functional). Its integrand L : R/Z x TM — R is called the
Lagrangian; the Lagrangian is the Legendre transform of the Hamiltonian
H:R/ZxT*M — R.

On WH2(y*T M) we have two inner products, namely the L?-inner prod-
uct

1
(183) (€1,€2)0,2 :/0 g(&u), &2(t)) dt

and the W 2-inner product

1
(184) (€1,62)12 = /0 g(&it), &) + g(Vilit), Vila(t)) dt .

PROPOSITION B.2.2. (partial integration) Let &1,& € T'(y*TM),
then

(Vi€1,&)0,2 = (€1, —Vi&2)o2 -

PROOF. In natural local coordinates we have (we drop the argument ¢
in our notation)

1 )
(Viérsaoz = [ auen (& +Thanely') ¢ .
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1 . .- .
61 =Viaoa = [ —auenti (§+Thmelt!) @

09i;(V) -, L T
- /0 ( %Jr €16 + gij )&5%—gijW)&F{dme) dt

The second term is fine, using (95) twice we observe that the first and third
together equal

1 ) .
| i aientivn at.
0
hence we are done. O

B.2.1. First and second variation formulae.
LEMMA B.2.3. (1. variation formula) Let v € C®(S', M), ¢ €
C(v*TM), then

dZy(v) & = / —V0py(t) = IVV (t,v(t)), &) di .

PROOF. Let v, 7 € (—¢,¢€), € > 0 small be a variation of v, i.e. y(t, 7) =
v-(t) is differentiable, v9 = v and %% lr=0= & (cf. [J095], Section 4.1),
then the LHS is defined to be

d d L .
d—Iv(%) =0 / 29 ), - () — V¢, 7, (1)) dt
T =0 Tlr=0J0
1
_ d 1 i _‘9_V i
_/0 = (396007:77) Ty dt

8 7 R Sie g 7 ov s
=/ 3 g] El Y+ g MEF — gis(ng” (7 €° dt
0 ‘97
1 .. .
- / GirNTEMER + g€ — gumOVVE,m)e* dt
0

1
— /0 903, Vi€) — g(OVV (), €) dt
= <—Vt8t")/ - gVV(t, Y)s €>0,2

where in the 4" equality it is easier to proceed in the opposite direction
using (95) and renaming of indices (as there is a symmetry in indices i, 7).
The last equality follows from Proposition B.2.2 (partial integration). [

Note that without using proposition B.2.2 our result was
(185) dZv () € = (Ory, Vi€oz + (=IVV(t,7), o2
This continues to hold if y € AM and ¢ € W12(y*TM).
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LEMMA B.2.4. (cf. [Jo95], lemma 7.2.1)
v € AM with dZy(y) =0 on W2(y*TM)
=y eC®(S'", M) and —V,0;y —9IVV(t,y) =0.

DEFINITION B.2.5. i) v € C®(S, M) with V,9;y = 0 is called a closed
geodesic. We call v € C°(S', M) with

—Viyy = IVV(t,y) =0

a perturbed closed geodesic.
ii) Let v € AM, then we define the L2-gradient of Iy at v by

ATy (y) & = (LP-grad Ty (7))o, VE € WH(y*TM).
iii) Finally define Crit Ty, = {y € AM | dZy/(y) =0 on Wh2(y*TM)} .
Hence if v € C*°(S', M) we have
(186) L2-grad Ty (y) = —=V0py — IVV (t,7) .

LEMMA B.2.6. (2. variation formula) For any loop v € C*(S', M)
with L?-grad Iy (y) = 0 and any &1,& € T(y*TM) it holds

Hess Ty () (&1,&2)
= d*Ty () (&1,&)
1
- /0 g (—ViVi1 — R(E0,4)7 — Ve IVV (1,9), &) db .

PROOF. Let «; be a variation of v as above,

d
Ty ()(&1, &) = Edzv(%)&

7=0

1

d

= / ar 9V (=Vi0ryr = IVV(t,7:), &) dt .
0 T

7=0
Now define F(vy;) = —V 0y —9IVV (t7;), hence we have to linearize the map
F at a zero (and therefore we can neglect the term involving %g(%) l7=0)-
For simplicity of notation let & = &5, then

d

—(dF &)k = - Eﬂ%)’“

7=0

d ) ik
(vf + TVl + 6% (vr)

ov(t, %))
07

dgki () ¢ oV (t,v)
ot oyI

7=0
k

o L) g g
=& Y e +

PV,
kj ) [
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As we already know where we would like to end up, we are now going

backwards: Using (VV (7)* = g*(y) ‘9;/7(7)

(VeVi&)F + (RE)F + (VeIVV i, )P

.0g* oV
= (Vi)* + TEA (Vi6) + hﬁw + ¢

9yt oyl

0*V
+€Z kl % ]l k£z
Moy

ory; _— OV iy
= (& + o VA F%(—anﬂ’"vs —9' 508+ rh4iél)

(Fzﬂ i+ THD A E)

ork ork

(8’}’ a j + lel gl ]I/ zl)g 7 7

18 Kl 8V i o0’V ;0
iy 9 1 ¢ig Kl la g Jlp kg

In the last equality we used F () = 0. Now terms 1, (5 +6),8,12,13 are the
ones we are looking for. The remaining terms cancel in pairs: (2 4+ 9), (3 +
10), (4 + 14), (7 + 11). O

PROPOSITION B.2.7. The bilinear form
ETyey) () : D(y*TM) x T(v*TM) = R
18 symmetric.

PROOF. We have to check that V&,& € T'(v*TM)
1
| 9t=9uVits = Bea i~ VeIV, 60)
0

1
=/ 9(&1, —ViVila — R, 1)y — V&, VV(t, ), &) di
0

The first term is fine which follows from partially integrating twice, Propo-
sition B.2.2. The curvature term is also fine

( gla 7a€2) = (R(’Yaf2)£1,’7) ( 521 7a€2)

The first equality uses the identity (99), in the second we get two minus
signs. It remains to check the potential term

9(Ve, IVV(t,7), &) = &1&VE,y) — (Ve &2)Vit,y)
=64V, — (Vel)VE, )
= g(V&IVV (L, 7), &) .
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The second equality follows from the connection being torsion free, we also
used g(9VV(t,v),&) = dV(t, 1§ = &V (t,y) several times. In local coordi-
nates the integrand is

o .0V o OV
el ij 3
gZT‘£1 (8'}/l (g 8 j ) Flsg a j ) 52

(A g e,

where we applied (95) as well as (114). The first factor is symmetric in [
and r. O

B.2.2. Morse index. We may define a linear map A, : I'(y*TM) —
C(y*TM) — called the perturbed Jacobi operator — by setting V&;,& €
L(v*TM)

d*Tyv(y) (€1,&2) = (=ViVié1 — RE1L, YT — Ve, 'YV, 7), E2)0.2
=: (A,61,8)0,2 -

Symmetry of d®Zy(y) implies symmetry of A, with respect to the L?-inner
product (-,-)p2. Now we may take the closure of I'(y*T'M) with respect
to the L2-inner product (completion, cf. [RS1], thm 1.3) and denote it by
L?(y*TM).

As A, is symmetric on I'(y*T M) and this is a dense subset of L?(y*TM),
A, is closable ([RS1], section VIII.2). The closure is denoted by A, and it
is defined on D(A,) C L?(y*TM). One may think of A, as the operator
whose graph is the closure of

(188) graph Ay = {(¢, A, &) | € € T(y*TM)} C L*(y*TM) x L*(v*TM)

(187)

with respect to the norm on L?(y*TM) x L?(y*TM) given by
(189) (€1, &) I (y=ranyx 22 (y=rary = |11 ll2 + [[€2]l2 -

As [|(&, AvE) L2 (y=Taryx L2 (v=Tar) 18 equivalent to the W?22-norm of £, we
observe that A, is a bounded operator

(190) A, : D(A)) = W*2(y*TM) — L*(y*TM) .

As it suffices to check properties of a closed operator on a dense subset, we
see that A_7 is symmetric. Moreover, as the first term —V;V; of A, is a
Laplacian, which is known to be selfadjoint on L2(y*TM) with dense do-
main W22(y*TM), and the curvature and potential terms (being bounded
operators) are —V,;V;-bounded with relative bound 0, the Kato-Rellich the-
orem (cf. [RS2], theorem X.12) implies that A, is selfadjoint. Hence A,
has real eigenvalues. In what follows we denote A, for simplicity by A, .

THEOREM B.2.8. ( Morse index theorem ) Let v € Crit Zy, then
the dimension of the largest subspace of W22(y*T M) on which d*Ty () (-, ")
is negative definite is finite. We call this number Ind () the Morse index
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of v. The dimension of the largest subspace on which d*Ty(y) (-,-) vanishes
Null (7y) is called nullity of v and is also finite.

ProOOF. The following beautyful and surprisingly direct proof may be
found in [J0o95], Lemma 4.3.2. Assume by contradiction that there is
an infinite dimensional subspace W of the domain W?22(y*T M) on which
d?Ty (y)(-,-) is negative semidefinite. Recall that our Hilbert space is
L?(y*TM) and W22(y*T M) is the dense domain on which d?Zy (y)(-,-) and
A, are well-defined. Now let {X;};cn be a set of elements of W such that

(X3, Xj)o2 = 0ij -
Using our assumption we get
0> dZIV('Y)(XnaXn)
= (Vi Xy, ViXpn)o2
+ (=R(Xpn, %)Y, Xn)o2 + (=Vx, I VV(t,7), Xn)o2

and hence

||thn||0,2 S| <R(Xnaf.y)fann>0,2 | + | (VXngVV(t,’Y),Xn>0’2 |
<RI - [llo2 - I Xnllog +IDIVVE, I - 1 Xnll§ o = const .

Here [|R| is the norm of the linear operator R(Xy,¥) : TyyM — TyuyM
integrated over the compact manifold M, similar for | DIVV(t,)||. Now

IXnllf2 = [ Xnllf2 + IVeXnllf2 <1+ const
hence by Rellich’s theorem a subsequence converges in L2(y*T'M). On the

other hand this is impossible as we started with an L?-orthonormal sequence.
O



APPENDIX C

A version of Newton’s iteration method

We study a version of Newton’s iteration method of finding a zero of a
continuously differentiable map f given suitable a-priori data. The difference
to the original method (figure C.1) is that we linearize f only once, at the
starting point z( of the iteration process (figure C.2).

In section C.1 we begin with the case of real-valued functions in order to
get familiar with the method in a simple setting. Section C.2 deals with the
general case of maps between Banach spaces. Here a new subtlety arises:
Namely the condition on the linearization D of f at xzp to admit a right
inverse. This turns out to be equivalent to surjectivity of D and the existence
of a topological complement of ker D, which is satisfied for instance by any
surjective Fredholm operator. In section C.3 we apply theorem C.2.9 on the
Newton method to prove the inverse function theorem C.3.2 as well as the
implicit function theorem C.3.4. The latter will, in the regular case, give
the manifold properties and the dimension formulae for the moduli spaces
under investigation M%(z~,z%) and M'(z~,2%) of parabolic respectively
elliptic boundary value problems.

FiGURE C.1. The Newton method
to

(%, 0%))

Xy

‘ VZ %o ”X
(x,f(x))

FiGURE C.2. The modified Newton method

187
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C.1. Real-valued functions

We describe the Newton method of finding a zero of a real-valued con-
tinuously differentiable function f: Start with a point zy such that f(=zo) is
sufficiently small, f'(z9) # 0 and the first derivatives of f do not vary too
much in a neighbourhood of zy. The idea is to find a zero of f nearby zq
by solving the linear equation for &

to(€o) = f(z0) + f'(z0)€o = 0

and then define the new starting point 1 = zg + &. Now iterate this
procedure by solving the equation t,(£,) = f(z,) + f'(z,)&, = 0 for v =
1,2,3,..., where z, = z, 1 + &,-1 (figure C.1). The assumptions on f
guarantee convergence of the sequence (z,)02, to a point zo, with f(z) =
0.

In order to use throughout the same estimate |f(zo)|~" < ¢, we slightly
modify the method: We only use parallel translates of the tangent #y. After
finding the zero z; of %y, we draw a line parallel to ¢y, through the point
(z1, f(z1)) and determine its zero z2 and so on (figure C.2).

THEOREM C.1.1. Let f € CY(R,R) and o € R such that there exist
constants 6,c > 0 with

1

d
f@ll <5« <o s @)= fleol < 5

whenever |z — xo| < 0. Then there exists a unique & with | — zo| < § and
f(@) = 0.

PrOOF. The equation for the tangent ¢y in a new coordinate system
with origin at z, is given by

f (o)
f'(zo)
With respect to the coordinate system z the zero of ¢y is given by z; =
o + &9- The assumptions imply

_ |f (o) el flx
0
2

to(y) =my +b=f'(zo)y + f(xo) ,its zero by & = —

ol <
=0

A

1Fz)] = |f(@o+ &) =F(wo) — F(x0)Eo |
< @ t ! dt :
< [T1 ) - Fald < folg

Now proceed inductively by defining

f(z)
f'(zo)

(191) &y = — and Tyrr =z, +& ,v=1,23,....
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We have to show that
i) 6] <clf(zy)

i) 6] < 5l

1
i) 1f ()] < -6l
imply the corresponding statements with v replaced by v + 1

ad i) |&v+1] 2 [Fzwin)] <c|f(zy41)|

|f"(o)|
| i)

1
ad 'LZ) |fy+1| < C|f($1/+1) < §|§V|

(191)

A

ad it) |f(@vs2)| = [f @01+ i) = F (@os1) — F'(20)Evs1 ]

Svt ’ / 1
< [0 = Pl dt < gléal

Note that 4i) implies |z, — zo| < §, Vv € N, and & = lim, 00, = x0 +
Y reo &k exists as we have absolute summability of the series

ul N s 1 N ) 1
—00
2 &s<)lel<zd .5 = 5 T
v=0 v=0 v=0
We get
14
| — xo| = lim |z, — xo| = lim p| <0
V—00 V—00
k=0
and
YT D i L cnm S L o
[f(@)] = lim [f(z,)] < Vgglo%'wufﬂ < jim = oo =0

This proves existence. Uniqueness follows from the mean value theorem and
the estimate

@) > 7o) = 1F/(@) ~ o) > 5 >0

for all z with |x—xz¢| < 0: assume there was another point  with |Z—z¢| < §
and f(Z) = 0, then there is 2’ between # and z with f'(z’) = 0 (mean value
theorem), which contradicts the above estimate. O
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C.2. Banach space-valued maps

We define the topological complement of a closed subspace of a Banach
space and the right inverse of a bounded linear operator between Banach
spaces. The existence of a right inverse T' of a bounded linear operator D
is equivalent to the existence of a topological complement of ker D and sur-
jectivity of D. It turns out that any surjective Fredholm operator admits
a right inverse. Next we state a replacement of the mean value theorem
needed in the uniqueness part of the proof of the main theorem. This the-
orem asserts the existence of a unique zero of a continuously differentiable
map f between Banach spaces X and Y nearby an approximate zero xzg
under suitable conditions. A crucial condition is the existence of a right
inverse of df ().

DEFINITION C.2.1. Let W C X be a closed subspace of a Banach space
X. A subspace L C X is called the topological complement of W, if L is
closed, WNL={0}and W L =X.

LEMMA C.2.2. Any finite dimensional subspace V' of a Banach space X
admits a topological complement L.

PROOF. (cf. [Br83], se. II.4) Let {e1,...,e,} be a basis of V' and
write v € Vasv = Y. vlej. For i = 1,...,n define continuous linear
functionals ¢;(v) = v’ and apply Hahn-Banach to extend ¢; to a continuous
linear functional ¢; : X — R. Now we set

L={(@) (0.
=1

Clearly L is closed, LNV = {0} and L® V C X. It remains to show
X CL®V. Let z € X and write z =z + zv + 2z, where z ¢ V and z ¢ L.
The latter implies there exists i with (¢;)~'(z) = ¢ # 0, hence z = c-e; € V,
a contradiction. O

DEeFINITION C.2.3. Let D : X — Y be a bounded linear operator be-
tween Banach spaces. T': Y — X is called right inverse of D, if DT = idy
and 7' is a bounded linear operator.

PROPOSITION C.2.4. Let X,Y be Banach spaces. A bounded linear op-
erator D : X =Y admits a right inverse T, if and only if D is surjective
and ker D admits a topological complement in X.

PrOOF. 7<" Let X; denote the topological complement of ker D in
X, then Dy = D|x, : X; — Y is a bijective bounded linear operator. Its
inverse (D1)! : Y — X is bounded by the open mapping theorem. We
define T =i o (D) !, where i : X; — X is the inclusion.
"= Let T € L(Y,X) be the right inverse of D. DT = idy implies D sur-
jective and T injective. X :=14m T is the required topological complement
of ker D in X:
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i) im T closed: Let (z,)yen C X1 =im T be a Cauchy sequence in X, then
x, = Ty, for a unique element y,. Now (y,),en is a Cauchy sequence in Y:
DT=id
lyo = yully = =" IDT(yy — yu)lly <D+ 2y — 2yl x-

Therefore y,, gty y and Ty, gty Ty as T is continuous. On the other hand
Ty, =z, sy z,s0 x =Ty.

i1) Ker DNimT = {0}: Let z € ker DNimT, then z = Ty and y = DTy =
Dx = 0, hence z = 0. R

iii) ker D@ im T = X: Let D : X/ker D — Y denote the bijective linear

operator induced by D. The composition TD : X/ker D — imT is bijective.
O

An immediate consequence is

CoroLLARY C.2.5. Any surjective Fredholm operator has a right in-
verse.

DEeFINITION C.2.6. Let X,Y be Banach spaces and U C X open. A
function f : X D U — Y is called differentiable at x € U, if there is an
element f'(z) € L(X,Y) such that

If (@ + k) — f(z) = f'(2)hl] = o(l|R]]) as [IA] = 0.

The latter symbol means that
If(z +h) — f(z) — f'(@)h]

172

If the LHS is only bounded we write O(||h]|). o and O are called Landau
symbols.

—0 as |h|—0.

Let now I C R be an open interval and v : I — X be a curve in the
Banach space X. The following Lemma, is a generalization of the mean value
theorem for real-valued functions.

LEMMA C.2.7. i) If v : T — X is differentiable at every point in I, then

[v(s) =@ < |s —¢[- sup I+ =) Vs, tel
7€(0,1

ii) If v : I — X is continuous in [t,s|, differentiable in (t,s) and v € X,
then

[v(s) =~(t) —v(s =)l < [s —1]- Sz)pl) 19 (t+7(s = 1) — .
T7€(0,

Proor. ([H6I|, thm. 1.1.1.) i) Fix s, ¢t € I and let 6 > 0, Ms =
d + sup,¢poq7 [V (t + 7(s — 1))|| and set

Es ={r €0, 1] ]Iyt +7s—1t) —yO)| < Ms-7- |t —s[}.

v continuous implies Fj closed and therefore compact. As 0 € Ejs, Fj is
nonempty and so has a largest element 7,x (take the maximum of the
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continuous function [0,1] D Es — R: 7+ 7). If 7 > Tax and 7 — Typax 18
sufficiently small, we have

vt +7(s — ) —(0)]
< ||7(t + 7(s — t)) - 7(t + Tmax(s — t))” + “'}I(t + Tmax(S — t)) - 7(t)||
< Ms - (T — Tmax) (s — t)| + My - Tmax - | — t| = My - T|s — t].

The second inequality follows from the differentiability of v and the fact
that Tmax € Fs. Hence 7 € Eg, SO Tmax = 1. As this holds for any 0 > 0 the
result follows.

ii) We obtain the estimate in i) with supremum for 7 € (0,1) as a limit
of i) applied to smaller closed intervals. If v € X, application of i) to
[(t) = y(t) — tv gives the result. O

CoROLLARY C.2.8. Let f : X — Y be a map between Banach spaces,
differentiable on the line segment [z,y] = {x + 7(y —z) | 7 € [0,1]}. Then
for any S € L(X,Y) it holds

1f(y) = f(z) = Sty —2)| < lly ==l - sup ||f'(z+7(y— =)~ S
7€(0,1)

PROOF. The curve y(7) = f(z + 7(y — x)) — S7(y — z) is differentiable
in 7 on [0, 1] with derivative

V(1) =flz+7y—2) (y—2)— Sy —2).

Now apply Lemma C.2.7 i7) with s =1, ¢ =0 and v = S(y — x). Then use
boundedness of S and f’ on [z, y]. O

THEOREM C.2.9. (Newton method) Let f: X — Y be a continuously
differentiable map between Banach spaces. Suppose D = df (xy) is onto with
right inverse T and there exist constants §,c > 0 such that

J
(192 ol <5 o ITI<e , 4@ - Dl< 5

whenever |z — xo|| < 6. Then there exists a unique & € X with f(Z) = 0,
|2 —zo|| <0 and & —xg €imT.

PROOF. The first step of Newton’s iteration is to define

(193) So=-Tf(zo) , z1=mz0+¢&.
Using the assumptions we estimate
1ol = NTF (o)l < e |lf (o)l
(192) §
ol < S
1
If @)l = llf(zo + &) —f(z0) — D& Il < o [I&ll-
N C

(192)
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To get the last estimate we applied Corollary C.2.8 with S = D, y = zq+ &g
and z = xp:

1/ (2o +&0) — fzo) — D&l < ol o 1df (zo + 7o) — Dl

(192) 1
< — .
< ol

For v =1,2,3,... we define inductively

(194) S = —Tf(l‘,,) ) Tyl = Ty + &b
Assuming that for any v € N

i) &l < cllf ()l

i) el < 3 el

1
wi) | f(zvn)ll < o llvl

we have to show that this implies the corresponding statement with v re-
placed by v + 1:

. 194
ad i) [|epsr |l L ITF (@il < I f (@)
ad i) Il < 5 6

1
ad iti) ||f(@vs2)ll = If (@1 + &1) ZFf (@or1) — D& || < o 1€l

'

(194)

In the last step we again applied Corollary C.2.8 with S = D, y = x,41+&,41
and z = z,41. Note that in estimating the supremum term by 1/2¢ we use
the fact

v+1 v+1 5 v+1 1
s+ & —aoll = | D& < DNl <5 30 55 <
k=0 k=0 k=0

This estimate also shows the absolute summability of the series Y ;2 ;& and
so the following limit exists

V—r00

v
= lim z, =29+ lim ka
V—00 k_O

Clearly ||z — xo|| < 0 and

i) § 1
< — lim — =0,

1) = Jim 1f (sl < lim o= 6] < £ lim o

hence f(z) =0. As &, € im T and im T is closed, it follows & — xo € im T.
This proves existence.
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To prove uniqueness assume there exists another & € X with ||z — 2| <
d, f(£) = 0 and zy — & € im T, i.e. there exist §, § € Y such that the
following hold

ro—=Ty , zo—2=Tg.
Now use the assumptions and apply corollary C.2.8 with S = D, y = Z and
T =T to get

1y — 4l I (@) = f(2) — D(& — 2)]]

< |z =2l sup [|df[s4r@-2) — Dl
7€(0,1)
< 1G9l 5
- 2c
< Sli-al
Therefore [|[g — g|| =0, ie. y=7g,and so 0 =Ty —Ty =17 — %. O

REMARK C.2.10. The uniqueness part in the above proof may also be
demonstrated by using basic quadratic estimates as in lemma 5.0.9 in chapter
5 instead of corollary C.2.8. Assume there are elements %, & € X with

|z — Z|| + [lzo — &[] < 0
1) =0= (@)
and
zo—x=Ty , zo—2=Ty
for some g, § € Y, then
|z =2 =TG- <cllg—gl=clD@ -2
=cl||f(2) - f(&) - D(2 — 2)|
<cllf(@+@-) - f(@) —df|z (& —2)|
+c||(dflzs — D) (& — )|

o e a2 L. .
Sc o@ 1) |lg - 2"+ e o lIE 2]
=(c-(z—2)20+1/2) ||z — |

Here ¢(# — ) is the continuous function appearing in lemma 5.0.9 in chapter
5, hence for § > 0 sufficiently small it follows ||z — z|| = 0.
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C.3. Inverse and implicit function theorem

As an application of the Newton method we prove the inverse function
theorem and as a consequence the implicit function theorem. The latter
states that the preimage of a regular value of a smooth map between Banach
spaces is a smooth manifold. Indeed it can be locally represented as the
graph of a smooth function (figure C.4).

DEFINITION C.3.1. We say that a bounded linear operator D between
Banach spaces X and Y is invertible, if there exists a bounded linear operator
T:Y — X such that DoT =idy and T'o D = idx. In this case we denote
T by D~'. D invertible is equivalent to D bijective.

THEOREM C.3.2. (Inverse function theorem) Let f € CF(X,Y),
k> 1, X,Y Banach spaces, and assume that df (xz¢) is invertible at a point
zog € X. Then there exists a constant € > 0 such that for any y € Y with
ly — f(zo)|| < € there exists a unique x € X near xo for which f(x) =1y.
Moreover, f maps an open neighbourhood U of xy bijectively onto V =

fU)={yeY||ly— f(xo)|l <e€}. The inverse f=' isin C¥(V,U) and

df "' (y) = df ()"
foryeV and x € U with f(z) =y.

PROOF. We assume without loss of generality g = 0 and f(zo) =yo =0
(otherwise pick the function f(z + z9) — yo). As D = df(0) € L(X,Y) is
invertible, it has a bounded inverse T'. Let ¢y > 0 be such that ||T|| < cp.
Continuity of df (z) implies that there exists § > 0 such that

1
ldf (z) = DIl < 5—  for ||z]| < 6.
260

As invertibility is an open condition we may pick ¢ > 0 sufficiently small in
order to guarantee invertibility of df (z) whenever ||z| <.

Now we show that f is a bijection between an open neighbourhood of
zero U C Bf(0) and V = Bg//ZCO(O), i.e. we set € = §/2¢y. Pick y € V and
define

F, : Bf(0) — Y
We would like to apply the Newton method (Theorem C.2.9) to get a unique
zero of Fy. F, has the following properties

L Fy0)=—y = [[F,0)] =llyll <d/2co

2. dFy(0) =df(0) =D = [[dF,(0) —dFy(z)| < 1/2¢c for ||z <4

3. T is a right inverse of dFy(0) with ||T|| < co.

Theorem C.2.9 gives now the unique zero z of F, in B (0). As f is con-

tinuous, U = f~1(V) C B{(0) is an open neighbourhood of 0 € X. Hence
flv : U — V is bijective (cf. figure C.3).
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N\ N\

B(0) ¢ Y V=B, (0)
M bijective
0
U1+>< X Vity
¢

FIGURE C.3. Inverse function theorem

It remains to show that f~' is continuously differentiable in V': pick any
y € V and z € U with f(z) = y. Let T be the inverse of D, = df (z) with
0 < |ITz|| € 1 = ci(x). Continuity of df (-) implies that there exists §; =
d1(z) > 0 such that ||df (z) — df (z + £)|| < 1/2¢; for all £ € Bgf(O). Choose
61 > 0 sufficiently small such that BY ., (y) C V. Let f(z + &) =y +n for

d1/2¢1
neV = Bg;/gq(()), ¢ €Uy := f~1(Vi +y) — 2. Our claim is to establish
(195) 1F =y +n) = f ) = df (@) nll = o(llnll)  for [In]l — 0.

We analyze the Newton iteration for the function
Gy : BX(0) — Y
¢ = fl@+8—(y+n)
We have

1.Gy(0) =—n = [IGy(0)ll = [In]l < d1/2¢:
2. dGy(0) = df () = [|dGy(0) = dGy(&)|| <1/2¢ for [|€]| < 6
3. T, is a right inverse of dG,(0) with ||T,|| < ¢;.

The iteration starts with setting o = 0 and
(196) §o = _TxGy(O) =Tyn
then z1 = zg + & = &
& = —TuGy(z1) = —To(f(@ + &) — ¢ + m)-
Note that
(197) 16l < eillf@ + &) — @ +mll = ollnl) for [In]| — 0,
because
=y =n
—~ N ——
fl&+&) = flz+Ton) = f(z) +df (z) Ton+o(||Tenl])  for [Tenl| — 0

and

1
o 1Tenll < il < 21 - [ Tenl
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The last estimate ensures that if a function is of class o(||T,n||) for | Tn|| —
0, then it is also of class o(||n||) for ||n|| — 0. Recall from the proof of
Theorem C.2.9 that the zero £ of G is given by

oo
1
=zo+ kz—ogk , where [|&] < 5 [|€e—1ll, k€N,
hence the LHS of equation (195) is given by
o
(196)
lz+¢&—a =Tl =" (€ =&l < Il
k=1

=1 (197)
< &l Z o1 =2 1€l "="o(llnll) as |n|| — 0.
k=1

This proves the theorem for £ = 1. The case k > 1 follows inductively. [

DEFINITION C.3.3. i) A Fredholm operator is a bounded linear map D :
X — Y between Banach spaces with the following properties: dim Ker D <
00, Ran D is closed and dim coker D < oo. The Fredholm index of D is
defined by Ind D = dim ker D — dim coker D.
ii) A map f € C¥(X,Y), k > 1, between Banach spaces is called a Fredholm
map, if its linearization D = df (z) : X — Y is a Fredholm operator for every
x € X. Ind D is invariant under small perturbations, hence Ind df (z) is
independent of the choice of z. We denote it by Ind f.
iii) For any map f as in ii) (Fredholm or not) an element y € Y is called
a regqular value of f, if df(x) : X — Y admits a right inverse for every
z € f~(y). Note that by definition an element y € Y with f~!(y) =0 is a
regular value.

THEOREM C.3.4. (Implicit function theorem) Let f € CF(X,Y),
k> 1, where X and Y are Banach spaces. If y is a regular value of f, then
M=fy cX
is a C*-Banach manifold. If f is a Fredholm map, then M is finite dimen-

stonal
dim M = Ind f.
PROOF. Assume without loss of generality ¥y = 0 and 2o = 0 € f~1(0)

(otherwise pick the function f(x + z0) —y). As zero is a regular value of f,
D =df(0) : X — Y is surjective and admits a right inverse T' € L(Y, X).
Hence we have X = ker D @ im T. We define the function

F :kerDdowmT — kerDY
(& m) = (& fEm)

and observe that
ker D ker D

_ ]lk:erD 0 .
dF(f’”)—(agf@,n) anf(f,n)> Poe oo

im T Y
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) imT
f (y)=graph(g)
a(&)

X0 & kerD

FicURE C.4. Implicit function theorem

is surjective at (£,17) = (0,0): the second row is precisely df(0). It is also
injective at (0,0): L., p and 9,f(0,0) = df (0)|im 7 are isomorphisms and
0¢£(0,0) = df(0)|ger p = 0. Therefore we may apply the inverse function
theorem C.3.2 and conclude that F' is locally at (0,0) a diffeomorphism, i.e.
there exist neighbourhoods U(0,0) C ker D@®imT and V(0,0) C ker DY
such that F = Fly,0) : U(0,0) — V(0,0) is a diffeomorphism. Restricting
F~"to (ker D x 0) NV (0,0) gives another diffeomorphism
¢ : (ker Dx0)NV(0,00) — MNU(0,0)
(€00 = F(£0).

This proves the theorem.

Another interpretation of ¢ is as follows: setting F—1(£,0) = (£,¢(5))
defines a smooth function g : ker D D U(0) — im T, where U(0) is the
neighbourhood of 0 € ker D defined by projecting U (0,0) to its first com-
ponent. We get M locally around zy = (0,0) as the graph of g. We have
g(0) = 0 and dg(0) = 0. The last statement follows from

]lkerD 0 - -1 - _ ]lk:erD 0
(dg<o> o)‘dF (0’0)_dF|F1(0’0)2(070)_(8gf(0,0) anf(o,m)

and ¢ f(0,0) = 0 as shown above (figure C.4). O



APPENDIX D

Topology of Sp(2,R) and the Conley-Zehnder
index

The symplectic linear group arises naturally in the study of linear Hamil-
tonian equations (cf. [Ar88])

E(t) = —JoSC(t), Jo = (?1 —0]1>

where S is the Hessian of the Hamiltonian H : R?® — R. The solution ¢
with initial condition (0) = (p is given by

C(t) = e 0S¢ Y aye,

and A(t) is in Sp(2n,R) = {A € Mat(2n,R) | ATJyA = Jy} for any t. For
n = 1 the symplectic linear group coincides with the special linear group
S1(2,R), whose elements have determinant 1 and so are area-preserving.

In 1984 Conley and Zehnder introduced an index for continuous paths in
Sp(2n,R) which start at the identity and end at a matrix whose spectrum
does not contain 1. This index became an important ingredient in the
construction of Floer homology for symplectic manifolds [F89b], [RS95],
which lead to a proof of the Arnold conjecture in considerable generality
(the number of fixed points of an exact symplectic diffeomorphism on a
symplectic manifold can be estimated below by the sum of its Betti numbers
provided that the fixed points are nondegenerate, [Ar65]).

In section D.1 our first claim is to show that Sp(2,R) is homeomorphic
to the interior of the full 2-torus S' x D?, where D? denotes the open unit
disc. The explicit homeomorphism was taken from an article of Gelfand and
Lidskii [GL58], 1958. Visualizing particular subsets of Sp(2,R) in figure 6
we discuss the notion of an eigenvalue of the first and second kind.

In section D.2 we recall the definition of the Conley-Zehnder index. We
interpret this index in the case n = 1 as intersection number of a path with
the Maslov cycle C,, which is a codimension one algebraic subvariety (figure
8). We then introduce a generalized Conley-Zehnder index, where we drop
the condition on the endpoint of the path. A simple example is discussed
(figure D.5). Finally we visualize and discuss another Maslov-type index, the
Robbin-Salamon index, which may be interpreted as intersection number of
an arbitrary path with the Maslov cycle Spy (figure 7), where endpoints only
contribute half. This appendix has been previously published in preprint
form [We98].

199
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D.1. Topology of Sp(2,R)

ProOPOSITION D.1.1. (Polar decomposition) Let Y € Sp(2,R), then
there exists a unique R € Sp(2,R) N SO(2,R) and a unique S € Sp(2,R),
positive definite and symmetric, such that’Y = SR.

PrOOF. YY7 is clearly positive definite, symmetric and symplectic.
The first two properties also hold for S := (YY7)!/2 (functional calculus). S
is symplectic by Lemma 2.19 in [MS95] which says that any real power of a
positive definite, symmetric and symplectic matrix is itself symplectic. Now
we define R = S~'Y’; R is symplectic and also orthogonal: Let =,y € R?and
denote by < -,- > the euclidean inner product on R?, then

< Rz,Ry >=< S 'Yz, 'Yy >=< x,YTS*ITSley >=<z,y > .
The last equation holds, because S 1T g 1 s0
g-1Tg-1_ g-1g-1 _ (YYT)—1/2(YYT)—1/2 = (yY")-!.
Finally det R = (det S) ' -det Y = +1 as S,Y € Sp(2,R) = SI(2,R). O
Hence we may write any Y € Sp(2,R) in the form

[ S11 S12 COS’(/) —Sin’(/)
(198) Y= (812 822> (Sin@b COS’([) > ’
where ¢ € R/277Z and
(199) 511522 — 8122 =1.

LEMMA D.1.2. s11,892 > 0 and s11 - S92 > 1.

PROOF. The last statement is a simple consequence of (199). (199) also
implies that either s11 > 0 and s99 > 0 or s17 < 0 and s99 < 0. Assume
the second case, then the positive definiteness of S leads to a contradiction:
Tr S = s11 + s92 > 0. |

Now (199) implies that sgo is uniquely determined once (s11, s12) € RT x R
has been chosen:
1+ (312)2
s
Hence the set of possible parameters is given by
M =R" xR,

which is diffeomorphic to the open unit disc in R%2. Recall the hyperbolic
trigonometric functions

822(811, 812) =

T —T

. _ _ e’ —e
sinhz = 1(e" —e™®), coshz = L(e* + e %), tanhy = ——

whose qualitative behaviour is shown in figure D.1. They satisfy the relation
(200) cosh? z —sinh?z =1 .
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cosh x i / sinh x
tanh x

FicUrRE D.1. Hyperbolic trigonometric functions

V<

We reparametrize M in the following way ([GL58], §9)
S : (0,00) x R/27Z U (0,0) - M
(1,0) = (s11(1,0), 812(T, 7))
where

i) $11(T,0) = cosh 7 + sinh 7 cos &
(201) 3 o
i1) S12(T,0) = sinhTsino .

The parameter soo(7,0) is then given by

14 (s12)* 1+ sinh? 7 sin? o + sinh? 7 — sinh? 7

S11 - cosh 7 + sinh 7 cos o
cosh? 7 — sinh? 7(1 — sin? o) )
= - = cosh 7 — sinh 7 cos o.

cosh 7 —sinh T coso

PROPOSITION D.1.3. The map S is a homeomorphism. On (0,00) X
R/27Z it is a diffeomorphism onto M\ (1,0).

PRrROOF. Smoothness of S follows from the one of the hyperbolic trigono-
metric functions. S is injective: Assume S(7,0) = S(7',0') , then

Z’LZ) 822(7', 0’) =

(2017) + 44i) = 2cosh 7’ =2coshT = 7' =7,

(2014) — iii) = 2sinh7coso’ "= 2sinhTcoso = coso’ = cosa,
(201ii) = sino’ = sino ,hence 0’ =0 .
S is surjective: Addition and subtraction of s11, S22(s11,$12) leads to a
smooth inverse on R™ x R\ (0,1)
S (s11,512) = (T(811, 812), 0511, 512))
where
s11 + s22(811, 512)
2
(511)% + 1+ (s512)?
2s11

7(s11, S12) = arc cosh

= arc cosh

)
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(202)

S11 — 822(311, 812) )

o(s11, 8 = (sign s arccos
( 1 12) ( g 12) ( h811+822(511,812)
2

2 sinh oarc cos
(s11)> =1 — (s12)?

\/((811)2 — 1 (512)2)"~4(s11)?

= (sign s12) arccos

FIGURE D.2. The argument of arccos in (202)

Note that we used the identity arccoshz = arcsinhvz? —1 for z > 1
and the convention sign 0 = +1. The argument of arccos in (202) is a
smooth function on Rt x R\ (1,0) which is not continuous at (1,0). A
numerical Mathematica®-plot of it is shown in figure D.2. It is identically
+1 on (0,1) x 0 and identically —1 on (1,00) x 0. This corresponds to
o = m and o = 0, respectively. Therefore multiplication by sign sio is well-
defined and the full range [—m, 7] /{7, —7} of ¢ is covered. Finally we define
S~(1,0) = (0,0). O

Rescale 7 by setting r(7) = tanh®’7 ,7 € [0,00), i.e. 7 € [0,1). We
interpret the parameters

(,r,0) € R/21Z x [(0,1) x R/27Z U (0,0)]

as coordinates of the open solid 2-torus (figure D.3).
In this coordinates the matrices

(10 -1 0 (20 (0 —1
(o 2) (0 5) =) e (3 )

correspond to

(0,0,0) , (m,0,0), (0,%,0) : (@

0,0
)7.,0,0)

* Mathematica is a registered trademark of Wolfram Research, Inc.
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q y
A
0 "

FIGURE D.3. Coordinates on the full 2-torus

as follows from their polar decompositions
1 0\ (1 O 1 0y/-1 0
0 1/\0 1)7\0 1 0o -1/
2 0\ /1 O 10 0 1
0 2)\0o 1)°\0 1) &1 0 )"

The condition for Y € Sp(2,R) = Si(2,R) to have non-real eigenvalues is
equivalent to |Tr Y| < 2 as

A b
d— X

TrY £ /(TrY)2 —4
<:>>\1’2: (2 ) .

Ozdet(Y—AE):det<a; >:>\2—>\-T7’Y+1

Using the polar decomposition (198) of Y we get
|Tr Y| =|(s11 + s22) costp| = 2| costp| cosh T
= 2| cos 1| cosh oarc tanh /7 .

LEMMA D.1.4. LetY be as in (198), then |Tr Y| = 2 is equivalent to
r = sin® 4.

PROOF. |Tr Y| =2 implies ¢ ¢ {Z, 3T} and is equivalent to

1 1
+arc cosh = arc tanh /7 < tanh? o + arc cosh =r
| cos 9| | cos 9|
cosh? o + arc cosh ‘CO—{W‘ -1
& =ral—cos’Yp =rasin?yp =r.
cos~2 )
In the third equivalence we used tanh z = sinhz/ cosh z and (200). O

As the eigenvalues of Y € Sp(2,R) come as pairs (A, A\~!),we observe
that

SpecY = {+1} & TrY =2 & sin’¢ =r ¢ € (—7/2,7/2) ,
SpecY = {-1} & TrY = -2 &sin’¢ =r ¢ € (1/2,31/2) .
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We define
Cy ={Y € Sp(2,R)|Spec Y = {+ 1}}.

REMARK D.1.5. Our results so far are visualized in figure 6 , which has
been created using Mathematica' and Geomview'. Note that figure 6 is not
a sketch and it is not obtained by numerical approximation, but represents
exactly the set |Tr Y| = 2 in the coordinates (¢, r,0). The same holds for
figure 8 in the case TrY = 2.

The sets C4 \ {E} resp. C_ \ {—E} are smooth 2-dimensional surfaces;
they are indicated in figure 6 red (dark) resp. green (light). The region
enclosed by them consists of two connected components — corresponding to
the matrices with non-real eigenvalues. The outside region consists also of
two connected components. The one having F in its closure corresponds to
the matrices with positive real pairs of eigenvalues (3,371), g € Rt \ {1},
the other corresponds to the ones having negative real pairs. Note that the
set of all possible eigenvalues of elements of Sp(2,R) is the union of S ¢ C
with the real line minus zero (figure D.4).

FIGURE D.4. Spectrum of Sp(2,R)

At first sight one might be tempted to relate the two parts of S' lying
in the upper resp. lower half plane H* C C with the two connected com-
ponents corresponding to matrices with non-real eigenvalues. This intuition
points the right direction; the relation, however, is more subtle.

DEFINITION D.1.6. Let Y € Sp(2,R) with eigenvalues (A\,A~! = ) in
S\ {£1} and eigenvectors &y, &x. We call X an eigenvalue of the first kind,
if

Im WO({/\af/\) >0 )

and an eigenvalue of the second kind otherwise.

twritten at the Geometry Center, University of Minnesota
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This definition does not depend on the choice of the eigenvector nor on
the choice which eigenvalue was called A resp. A. wpy denotes the standard
symplectic form on R?; in coordinates (x,%) it is given by wy = dz A dy, in
terms of the euclidean inner product < -,- > we have

0 —1
wol(+,+) =<+, —Jo- >, where Jy = TR
As £, is eigenvector of A, &y and &, are linearly independent, hence in view
of the nondegeneracy of wy we have wy(&x,€)) # 0. Moreover this value is
purely imaginary:

wO(g_)\ag/\) =< f:)\a——JOf_A >
=< JOS/\?{)\ >= _wU({/\af/\) .

We used the fact that Jo. = —J;. Now the eigenvalues of Jy are A =4 and
A = —i with corresponding eigenvectors &, = (i,1) and & = (—i,1). As
wo(€x,€)) = —2i, we conclude that i is eigenvalue of the second kind and
hence —i of the first kind. A continuity argument allows us to conclude that
the matrices with non-real eigenvalues which are in the same connected com-
ponent as Jy, have their eigenvalues of the first kind in S'NH~. Analogously
for the connected component containing —Jy.

The notion of eigenvalues of the first and the second kind will become
more important in the case of Sp(2n,R), n > 2, where the eigenvalues come
in quadrupels (A, A~!, X\, A~!). Two pairs of eigenvalues on S' can meet and
leave S', if and only if eigenvalues of different kind meet.
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D.2. The Conley-Zehnder index

In this section we recall the definition of the Conley-Zehnder index pcz
for paths in Sp(2n, R) starting at the identity and ending at a matrix without
eigenvalue 1. This index was introduced by Conley and Zehnder in 1984
[CZ84]. We state the results about the topology of Sp(2n, R) needed to show
its well-definedness. We are not going to prove these results in full generality;
instead we restrict to Sp(2,R) and use the explicit homeomorphism from
section D.1 to visualize them in this case. We shall see that yucz may be
equivalently defined as intersection number of the path with the Maslov
cycle C4. Define

Spt. = {A € Sp(2n,R) | det(A — E) 2 0}, Sp* = Sp* U Sp* ,
P = {v:]0,1] — Sp(2n,R) | v continuous , y(0) = E, (1) € Sp*} .
LEmMMA D.2.1. ([CZ84|, Lemma 1.7) Sp*. and Sp* are connected and
any loop in them is contractible in Sp(2n,R). Moreover, W, = —FE lies in
Sp% and W_ = diag (2,—1,... ,—-1,1,—1,...,—1) in Sp*.
The Conley-Zehnder index
ez + P = Z

is defined as follows: Pick v € P and associate to it a path u = Fy o Fi(7) :
[0,1] = U(n,C), where

Fy: C°([0,1], Sp(2n,R)) — C° ([0, 1], Sp(2n,R) N O(2n,R))
e () = (); }?)
Fy : C°([0,1], Sp(2n,R) N O(2n,R)) —=C° ([0,1],U(n,C))

X -Y )
(Y X>r—> X +i1Y =:u.

Now choose a € C?([0,1],R) such that
det u(t) = e*® |

Of course « is only determined modulo 27. However,

a(l) — a(0)

™
is well-defined. Note that A is additive: A(y; o y2) = A1) + A(7y2),
A(y~1) = —A(y). As by assumption y(1) € Sp*, we can choose a continuous
extension 7 : [0, 1] — Sp* such that 7(0) = y(1) and ¥(1) equals either W
or W_, depending on whether 4(0) is in Sp* or in Sp* . Then define

A7) =

pez(y) =AFoey),
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where 7 o v means: follow first v then 7. Of course one has to show
i) independence of the choice of the extension 7 ,
i1) A(yoy) €Z.
Now we restrict to the case n = 2 and represent the results of section D.1
via figure 8 (cf. remark D.1.5).

Cy+ = Sp(2,R) \ Sp* is called Maslov cycle. After removing the point
E, it is a smooth 2-manifold. In our case u(t) € U(1,C) ~ SO(2,R) ~ S*
corresponds to the matrix R(t) in the polar-decomposition of Lemma D.1.1,
hence

(203)

det u(t) = e¥® |

where 1)(t) is one of our torus coordinates (cf. figure D.3). As v(0) = E, we
have (0) = 2kn, for k € Z. If (1) = —FE it follows (1) = (2] + 1)7 with
l € Z,hence A(yovy) =204+ 1—2k € Z; if (1) = E then (1) = 2i7 with
| € Z, hence A(¥ o) = 2] — 2k € Z. This proves (203ii). Independence of
the choice of the extension 7, follows from the fact that another extension 5

is homotopic to 4 (by Lemma D.2.1 or figure 8 ),hence ’?o'§/_1 is contractible

and we have 0 = A(Jo %/_1) = A(%) — A(7). The first equality follows from
the fact that if 7 is a loop, A(y) is the degree of the map det o Fy o Fy o7y :
S' — S§', and therefore is a homotopy invariant. So if the loop is contractible
the degree is zero.

Similarly it follows that pc, descends to the equivalence classes P

ficz :P=P)~—= 7,
where v9 ~ v < IF : [0,1] x [0,1] — Sp(2,R) continuous, such that
F(Oat) = VO(t)a F(lat) = Vl(t)a F(S,O) =FE, F(Sa 1) € Sp*-
If we assign appropriate orientations to the two connected components
of C4 \ {E}, we can interpret pucz as intersection number of v with C,.
We have to be careful, however, in which direction our path starts off at
7(0) = E:
1. If 30 > 0 such that y((0,d)) C Sp%, then assign to y(0) the intersec-
tion number +1 if the angle ) (t) increases and —1 if it decreases.
2. If 30 > 0 such that y((0,)) C Sp*, then assign to v(0) the intersec-
tion number 0.
3. If 36 > 0 such that v((0,0)) C C, then perturb « slightly (with fixed
end points) to end up in one of the former cases.
For a general continuous path v : [0,1] — Sp(2,R) with v(0) = E we
may define a generalized Conley-Zehnder index

M%’Z : CO (([Oa 1]a0)a (Sp(2,R),E)) — 5L

2

by setting pf.,(v) = pez (), if v € P. Ify(1) € C4\{E}, then let u,,(v) be
the intersection number of v with Cy, where the endpoint (1) contributes

half (i.e. £1). If v(1) = E, then assign to the endpoint one of the integers
—1,0,+1 as above ((0,9) must be replaced by (1 — 4, 1)).
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Example
Consider the path A : [0,1] — Sp(2,R)

w-(: %)

which arises from linearizing the hamiltonian flow along a 1-periodic solu-
tion z of &(t) = Xy (z(t)), where Xy is the hamiltonian vector field on the
symplectic manifold 7*S! = (R/277Z) x R equipped with its canonical sym-
plectic structure dg A dp. H = p?/4x? is the Hamiltonian of a free particle
on S, cf. [We96] section 4. As Spec A(t) = {+1} for any t € [0,1], we
observe that A(t) € C; Vt € [0,1]. A numerical Mathematica'-plot of the
path A is shown in figure D.5. Here we extended the domain for ¢ to [0, 200]
in order to scale the image of A to a viewable size.

FIGURE D.5. The path A()

To compute the generalized Conley-Zehnder index of A we have to per-
turb A keeping the endpoints fixed. Two particularly simple perturbations
of A are given by paths A* with the same endpoints and A*((0,1)) C SP;.
It turns out

g (4) = 1l (AF) = 12,

To see this note that in case of A~ the initial point contributes 0 and the
endpoint 1/2 - intersection number = —1/2. In case of AT the initial point
contributes —1 and the endpoint 1/2 - intersection number = 1/2.
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Remark

As is pointed out by Robbin and Salamon in ([RS93], se.4) there is
another way of constructing a Maslov-type index for arbitrary paths W :
[a,b] — Sp(2n,R), the Robbin-Salamon index prs(¥). For n = 1 it is
constructed as follows: Let V' =0 x R and define

Spe = {M € Sp(2,R) | dim(MV NV) =k}, k=0,1.

a b
=2 )

we get M € Sp; if b =0 and M € Spy iff b # 0. Sp; is a submanifold
of Sp(2,R) of codimension one and prs(¥) may be viewed as intersection
number of the path with the Maslov cycle Sp;. Sp;p is sketched in figure 7
via numerical approximation using Mathematica'. We see that Sp; has 2
connected components. In figure 7 the path of the former example is indi-
cated. After suitably orienting Sp; and counting intersections at endpoints
only half, we observe that this path has Robbin-Salamon index —1/2. Al-
ternatively we compute the index via the intersection form as introduced in
[RS93] and get

Setting

(At =0)y = —y*/4n’ , y R

The intersection form I' has signature —1, hence the index is —1/2.
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FiGure D.6. C_, C4 Ficure D.7. Spi, C4

FIiGure D.8. Maslov cycle C; and path of Conley-Zehnder
index +1
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