
§7. Dimension and Entropy.

This section will first describe several possible definitions for the concept of “dimension”,
and then use related methods to define the “topological entropy” of a compact dynamical
system.

§7A. Box Dimension. There are several possible real valued invariants for a compact
metric space X which can be called the “dimension” of X . Let us first describe two dimen-
sion functions which measure how efficiently X can be covered by balls (or boxes) of equal
size. Following Falconer, I will call these the upper and lower “box-counting dimension”, or
briefly box dimension, of X . The presentation will depend on some elementary inequalities,
which will also be needed in §7C section on topological entropy.

Remarks. This concept of metric dimension has a long history, and has been studied
under a variety of names. The oldest form of the definition, based on studying the volume
of the ε-neighborhood of X as a function of ε , was introduced by Bouligand, generalizing
earlier work by Steiner and Minkowski. (See Problem 7-d below.) More modern forms of the
definition were introduced by Pontryagin and Schnirelman, and later by Kolmogorov and
Tihomirov. (Compare Mandelbrot §39.) It should not be confused with Hausdorff dimension
or with topological dimension. The Hausdorff dimension, introduced by Felix Hausdorff in
1919, is also a real valued metric invariant, but measures how efficiently X can be covered
by balls of varying size. It coincides with the box dimension in many special cases, but
is better behaved in general. The topological dimension, introduced by Lebesgue, Brouwer,
Menger and Urysohn, is quite different, being integer valued, and invariant under arbitrary
homeomorphisms. These other concepts of dimension will be discussed in §7B. (For further
information, see Edgar, and Falconer, as well as the classical book of Hurewicz andWallman.)

Let X be compact metric. Suppose that we can only distinguish points of X to an
accuracy of ε . How many distinct points can we distinguish? Here are three possible
definitions. The distance between points of X will be written as d(x, x′) .

By the ε-covering number Cε(X) will be meant the smallest number k ≥ 0 so that X
can be covered by sets X1 , . . . , Xk of diameter diam(Xi) ≤ ε .

By the ε-separated number Sε(X) will be meant the largest cardinality of a subset
{x1 , . . . , x`} ⊂ X such that d(xh , xj) > ε for h 6= j .

Figure 33. A set X ⊂ �

2 , covered by Bε(X) = 13 ε-boxes. This ε-box number
Bε(X) is relatively easy to compute, while the numbers Sε(X) and Cε(X) are more
difficult to compute.
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7. DIMENSION AND ENTROPY

Now suppose that X is contained in the euclidean space �

n . Then the ε-box number
Bε(X) is defined as follows. Cover �

n by countably many disjoint “half-open boxes”

boxε(i1 , . . . , in) = [i1ε , (i1 + 1)ε) × · · · × [inε , (in + 1)ε)

of edge length ε , indexed by n-tuples of integers. Define Bε(X) to be the number of
these boxes boxε(i1 , . . . , in) which intersect X . Evidently this is a quantity which is
particularly well adapted to computer calculations.

An easy compactness argument shows that the number Cε(X) is always finite. The
number Sε(X) is also finite, with

C2ε(X) ≤ Sε(X) ≤ Cε(X) . (7 : 1)

For given sets X1 ∪ · · · ∪Xk = X and {x1 , . . . , x`} ⊂ X as above, we have ` ≤ k since
each Xi can contain at most one xj , and the left hand inequality is true since the closed
ε-neighborhoods of the xj are sets of diameter ≤ 2ε covering X . Similarly, note that

Cε
√
n(X) ≤ Bε(X) ≤ 2nCε(X) . (7 : 2)

The left hand inequality is true since each such ε-box has diameter ε
√
n , and the right

hand inequality since a set of diameter ≤ ε can intersect at most 2n such ε-boxes.

How rapidly do the numbers Cε(X) or Sε(X) or Bε(X) grow as ε tends to zero?
For many interesting examples, these numbers grow roughly like a power of 1/ε . In other
words, the logarithms logCε(X) ≈ log Sε(X) ≈ logBε(X) are roughly linear functions
of log(1/ε) , so that the ratios

logCε(X)

log(1/ε)
≈ log Sε(X)

log(1/ε)
≈ logBε(X)

log(1/ε)

converge to a common limit as ε → 0 . This limit does not always exist. (See Lemma 7.2
below. ????) However we can always consider the lim inf , which we write as

dim−B(X) = lim inf
ε→0

logCε(X)

log(1/ε)
= lim inf

ε→0

log Sε(X)

log(1/ε)
,

as well as the lim sup

dim+
B(X) = lim sup

ε→0

logCε(X)

log(1/ε)
= lim sup

ε→0

log Sε(X)

log(1/ε)
.

Here the equalities on the right follow easily from formula (7: 1) above. Similarly, if X is
contained in the Euclidean space �

n , then it follows from (7: 2) that

dim−B(X) = lim inf
ε→0

logBε(X)

log(1/ε)
, dim+

B(X) = lim sup
ε→0

logBε(X)

log(1/ε)
.

Furthermore, in this case it is easy to check that dim+
B(X) ≤ n . In all cases, note that

0 ≤ dim−B(X) ≤ dim+
B(X) ≤ ∞

provided that X 6= ∅ .
Definition. Whether or not X is contained in �

n , we will call dim−B(X) the lower
box dimension and dim+

B(X) the upper box dimension of X . If dim−B(X) = dim+
B(X) , then
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7B. OTHER DEFINITIONS

we will call this common value simply the box dimension dimB(X) .

(For a well defined invariant intermediate between the upper and lower box dimensions,
see Problem 7-e.) In terms of information theory, the number logBε(X) can be described
as the quantity of information needed to specify the coordinates a point of X to within an
accuracy of ε . If we use logarithms to the base two, so as to measure information in bits,
and set ε = 1/2k , then the statement that log2Bε(X)/ log2(1/ε) ≈ dimB(X) , means that
we need roughly k dimB(X) bits of information in order to specify a point of X to an
accuracy of 1/2k .

——————————————————

§7B. Other Definitions of Dimension. The box dimension is a rather crude invariant,
well suited to empirical studies. The Hausdorff dimension is a more sophisticated invariant.
For our purposes, it can be defined as follows.

Definition. The Hausdorff dimension dimH(X) of a (not necessarily compact) metric
space X is the infimum of real numbers δ ≥ 0 with the following property: For any ε > 0 ,
X can be covered by at most countably many sets {Ai} with diam(Ai) < ε and with

∑

i

diam(Ai)
δ < ε .

If there is no such number δ , then by definition dimH(X) = +∞ .

Closely associated is the concept of Hausdorff measure. For an arbitrary subset S ⊂ X
and an arbitrary real number δ ≥ 0 , the δ -dimensional outer Hausdorff measure ηδ(S) is
defined by the formula

ηδ(S) = lim
ε→0

inf

{

∑

i

diam(Ai)
δ

}

∈ [0,∞] .

Here {Ai} is to range over all finite or countably infinite coverings of S by sets of diameter
less than ε . It is not difficult to check that ηδ(X) = 0 whenever δ > dimH(X) , and that
ηδ(X) =∞ whenever δ < dimH(X) . Thus this concept of measure is possibly non-trivial
only when δ is precisely equal to the Hausdorff dimension of X .

Definition. Following Lebesgue, the topological dimension dim top(X) can be defined as
the smallest integer n such that X can be covered by arbitrarily small open sets with the
property that no point belongs to more than n+ 1 of these sets. (This is sometimes called
the covering dimension, to distinguish it from an alternative inductive definition of topological
dimension, due to Menger and Urysohn. However, these two definitions of topological dimen-
sion always agree, provided that X is metrizable with a countable dense subset. Compare
[Hurewicz-Wallman].)

As an example, if X is an n-dimensional simplicial complex, then the “open star neigh-
borhoods” of the vertices form a covering with this property, and by subdividing the complex
we can make this covering arbitrarily fine. In fact the topological dimension is precisely equal
to n in this case. (Compare Problem 7-g, as well as 7.1 below.)

Note that all four definitions of dimension clearly have the following monotonicity prop-
erty:

X ⊂ Y =⇒ dim(X) ≤ dim(Y ) . (7 : 3)
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7. DIMENSION AND ENTROPY

The relationship between the four definitions can be described as follows.

Lemma 7.1. The inequalities

0 ≤ dim top(X) ≤ dimH(X) ≤ dim−B(X) ≤ dim+
B(X) ≤ ∞

are valid whenever they make sense. Furthermore, if X is a compact region in

Euclidean n-space, then all four dimensions take the value n .

In fact the inequality dimH(X) ≤ dim−B(X) follows easily from the definitions. (Com-
pare Problem 7-h below.) The proof that dim top(X) ≤ dimH(X) is more difficult, and
will not be given here. It is due to Nöbeling for subsets of Euclidean space and to Szpil-
rajn in general. (See [Hurewicz and Wallman] for further information.) For the proof that
dim top(X) ≥ n when X contains an open subset of �

n , see Problem 7-g. The rest of the
proof is straightforward. ¤

If X can be described as the union of finitely many smooth compact pieces, then it is
not hard to show that these four definitions of dimension all coincide. Thus, whenever

dim top(X) < dim+
B(X) ,

the space X cannot be such a finite union. Following Mandelbrot, it is then described as a
“fractal”. If we want to exclude countable unions of smooth pieces, then we need the sharper
restriction that

dim top(X) < dimH(X) .

However, there do exist interesting examples, such as Cantor sets with dim+
B(X) = 0 , which

seem quite wild and yet would not be fractal by any such test. For such reasons, Mandelbrot
suggests that the term “fractal” is best left without any precise definition.

For fractal sets which occur in dynamics, there is sometimes enough similarity between
different regions and between the same region at different scales to guarantee that

dimH = dim−B = dim+
B .

(See for example [Bishop and Jones], [Pzrytyki].) General theorems of this nature are rare.
However, here is one simple but non-trivial example.

Example 7.2. A Generalization of the Cantor Middle Third Set. Let I be a
closed interval of real numbers, and let

φ0 , φ1 : I → I

be two linear embeddings of I into itself with disjoint images Ij = φj(I) ⊂ I . Then for
each finite sequence j1 , . . . , jm of zeros and ones we can form the image

Ij1···jm = φj1 ◦ · · · ◦ φjm(I) ⊂ Ij1···jm−1
.

If aj = |φ′j | = `(Ij)/`(I) is the length ratio, note that the length

`(Ij1···jm) = aj1 · · · ajm `(I)
tends uniformly to zero as m→∞ . Hence, to any infinite sequence j1 , j2 , j3 , . . . of zeros
and ones there corresponds a single point x(j1 , j2 , · · ·) , where

{x(j1 , j2 , · · ·)} =
⋂

m≥1

Ij1···jm .
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7B. OTHER DEFINITIONS

The compact totally disconnected set consisting of all of these points x(j1 , j2 , · · ·) is the
required generalized middle third set K = K(φ0 , φ1) . It is not difficult to check that the
topological dimension dim top(K) is zero.

Equivalently, we can consider an inverse map

ψ : I0 ∪ I1 → I ,

where ψ coincides with φ−1
0 on I0 , and with φ−1

1 on I1 . Then K can be identified
with the set of all points x ∈ I0 ∪ I1 such that the m-fold composition ψ◦m(x) is defined
and belongs to I0 ∪ I1 for every m ≥ 1 .

Since the lenth ratios aj = |φ′j | satisfy aj > 0 with a0 + a1 < 1 , it follows easily that
there is a unique number in the interval 0 < δ < 1 which satisfies the equation

a δ0 + a δ1 = 1 . (7 : 4)

We will prove the following.

Lemma 7.3. The box dimension dimB(K) is well defined and equal to the

Hausdorff dimension dimH(K) , with

0 < dimB(K) = dimH(K) = δ < 1 ,

where δ is defined by equation (7 : 4).

As an example, choosing a0 = a1 to be any number in the open interval (0 , 1/2) , we get

dimH(K) = dimB(K) = δ = log(2)/ log(1/aj) ,

which can take any value strictly between 0 and 1 . For a0 = a1 = 1/3 , we obtain the
classical Cantor middle third set, with dimH(K) = dimB(K) = log(2)/ log(3) = 0.6309 · · · .

Proof of 7.3. Without loss of generality, we may assume that I is the smallest closed
interval which contains K . (The endpoints of this minimal interval I are just the fixed
points of φ0 and φ1 .)

We will prove that the Hausdorff outer measure of K is given by

ηδ(K) = `(I)δ , (7 : 5)

and more generally ηδ(K ∩ Iσ) = `(Iσ)
δ , where σ = (j1 , . . . , jm) is any finite sequence of

bits. In particular, this will show that 0 < ηδ(K) <∞ , and hence prove that δ is precisely
the Hausdorff dimension of K .

I will call each Ij1···jm an interval of level m . Clearly it suffices to consider coverings
of K by open or closed intervals J . For any interval J , we will prove that

`(J)δ ≥
∑

σ
`(J ∩ Iσ)δ , with equality when J = I , (7 : 6)

where Iσ ranges over the 2m intervals of level m .

First consider the case m = 1 . Without loss of generality, we may replace J by J ∩ I ,
and hence assume that J ⊂ I . Furthermore, we may assume that J intersects both I0
and I1 , since otherwise the required inequality

`(J)δ ≥ `(J ∩ I0)δ + `(J ∩ I1)δ
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7. DIMENSION AND ENTROPY

would be clear.

If J = [a, b] with a < b , then we can compute the partial derivative

∂ `(J)δ/∂b = ∂(b− a)δ/∂b = δ/`(J)1−δ > 0.

Note that this is monotone decreasing as a function of `(J) . Similarly the partial derivative
∂`(J)δ/∂a = −δ/(`(J)1−δ < 0 is monotone increasing as a function of `(J) . It follows
easily that the difference

`(J)δ − `(J ∩ I0)δ − `(J ∩ I1)δ

decreases monotonically as the endpoint b increases through I1 . Similarly, it decreases
monotonically as the endpoint a decreases through I0 . Thus this difference attains its
minimum value precisely when J = I . Since this minimum value is zero by (7 : 4), this
proves (7 : 6) for m = 1 .

For any finite bit sequence σ , a similar argument shows that

`(J ∩ Iσ)δ ≥ `(J ∩ Iσ0) + `(J ∩ Iσ1) .

The conclusion (7 : 6) then follows by a straightforward induction.

Given ε > 0 we can cover K by finitely many arbitrarily small open intervals Jh so
that

∑

Jh

`(Jh)
δ < ηδ(K) + ε.

Without loss of generality, we may assume the each Jh has both endpoints outside of the
set K , and hence outside of all intervals Iσ of sufficiently high level m . Thus, for m
large, each Jh ∩ Iσ is either equal to Iσ or empty. Considering only the 2m intervals Iσ
of some fixed high level m , it then follows from (7 : 6) that

∑

Jh

`(Jh)
δ ≥

∑

Jh

∑

Iσ⊂Jh
`(Iσ)

δ ≥
∑

Iσ

`(Iσ)
δ = `(I)δ .

Since ε can be arbitrarily small, this proves that ηδ(K) ≥ `(I)δ . On the other hand, the
upper bound ηδ(K) ≤ ∑

`(Iσ)
δ = `(I)δ can be obtained by covering K by the intervals

Iσ of some arbitrarily high level m . This completes the proof that dimH(K) = δ .

In order to compute the box dimension of K , choose some small mesh ε , and consider
all intervals Ij1···jm such that

`(Ij1···jm) < ε ≤ `(Ij1···jm−1
) .

Evidently these form a covering of K by finitely many intervals of length satisfying

ε/c ≤ `(Ij1···jm) < ε .

where c is the larger of a0 and a1 . Thus the Hausdorff measure ηδ(Ij1···jm) of each such

interval lies between (ε/c)δ and εδ . However, the sum of ηδ(Ij1···jm) over all such intervals

is equal to ηδ(I) = `(I)δ . Therefore the number N of such intervals satisfies

(ε/c)δN ≤ `(I)δ < εδN .

In particular, the ε-covering number satisfies

Cε(K) ≤ N ≤ c′/εδ
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where c′ = c `(I) is constant. It follows immediately that dim+
B(K) ≤ δ . Since

δ = dimH(K) ≤ dim−B(K) ≤ dim+
B(K) ,

this completes the proof of 7.3. ¤

However, it is certainly not true that these various definitions of dimension always co-
incide. For an example with dimH(X) < dimB(X) see Problem 7-i below. The following
result emphasizes the difference between the upper and lower box dimensions. Let K be any
infinite compact metrizable space with dim top(X) = d <∞ . Note that the set C0(K, �

n)
consisting of all continuous maps from K to �

n has a natural topology, associated with
the “uniform metric” d(f, g) = maxπx∈K d(f(x) , g(x)) . (Compare §8E.)

Lemma 7.4. If n ≥ 2d + 1 , then a generic mapping f : X → �

n embeds K
homeomorphically as a subset f(K) = X ⊂ �

n which satisfies

dim top(X) = dimH(X) = dim−B(X) = d

but dim+
B(X) = n .

It follows from 7.1 and 7.4 that the topological dimension can be defined as the minimum
over all compatible metrics of the values of dimH or of dim−B .

Proof of 7.4. Start with any number k > 0 and form the set Vk consisting of all
maps f : K → �

n such that, for some ε < 1/k , we have

log Sε(f(K))

log(1/ε)
≥ n− 1

k
. (7 : 7)

Then it is easy to check that Vk is an open subset of C0(K, �

n) . We claim that Vk is also
a dense subset. In fact, given any neighborhood of a map f0 : K → �

n , choose any sequence
of pn distinct points xi ∈ K which map close to some single point of �

n . Now deform
f0 to a map f which carries the xi to the lattice points of a very small p × p × · · · × p
grid. If 2ε is the distance between adjacent grid points, then log Sε(F (K)) ≥ n log p . More
precisely, let us choose the grid size so that

ε = p−n/(n−k
−1) .

Then n log(p) = (n − k−1) log(1/ε) , so the required inequality (7: 7) will certainly be
satisfied. We can carry out this construction so that the distance from f to f0 is at most a
constant times the product p ε = p−1/(nk−1) . Evidently we can make this product as small
as we wish by choosing p large. Thus each Vk is dense and open. If f belongs to the
intersection of the Vk , it follows easily that the upper box dimension dim+

B(f(K)) is equal
to n .

Now let Uk be the set of all f : K → �

n such that

log Sε(f(K))

log(1/ε)
< d+

1

k
(7 : 8)

for some ε < 1/k , where d is the topological dimension. We will show that this is a dense
open subset of C0(K, �

n) . In fact, if f0 ∈ Uk and if d(f , f0) < η/2 , note that

Sε+η(f) ≤ Sε(f0) .
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7. DIMENSION AND ENTROPY

If η is sufficiently small, it follows that f ∈ Uk . To prove density, given any f0 ∈
C0(K, �

n) , choose a covering of K by small open sets W1 , . . . , Wp and choose base
points bi ∈ �

n so that each bi is close to the image f0(Wi) . Let 1 = φ1 + · · · + φp be a
partition of unity, where each φi : K → � vanishes outside of Wi . Then the function

f(x) = φ1(x) b1 + · · ·+ φp(x) bp

approximates f0 and maps K into a d-dimensional simplicial complex which is linearly
immersed in �

n . Thus dim±B(f(K)) ≤ d , and it follows that f(K) belongs to Uk for
every k . Finally, for any f in the intersection of the Uk , we clearly have dim−B(K) ≤ d .
Since n ≥ 2d + 1 , a similar argument show that a generic map from K to �

n is an
embedding. (Compare [Hurewicz and Wallman].) Together with 7.1, this completes the
proof. ¤

Remarks. Presumably, there also exist embeddings with dimH(f(K)) = n . In many
cases, there also exists an embedding with dim+

B(f(K)) = d . (Compare Problem 7-f.)
However, I don’t know whether such an embedding always exists.

Further development of these concepts will be formulated as a series of exercises at the
end of this section.

——————————————————

§7C. Topological Entropy. This section will define and study the topological entropy
of a compact dynamical system (X, f) . To begin the exposition, we assume that X is a
metric space, although we will see later that the metric is not really needed. The distance
between two points x, y ∈ X will be written as d(x, y) .

Fix some integer ` ≥ 1 , and define the `-shadowing metric d` on X as follows. Given
x , y ∈ X , let us follow the orbits

x = x0 7→ x1 7→ x2 7→ · · · 7→ x`−1 and y = y0 7→ y1 7→ y2 7→ · · · 7→ y`−1

under f through `− 1 iterations, and set

d`(x, y) = max
0≤i<`

d(xi , yi) .

Thus two points of X are ε-close in this new metric if and only if the orbits of x and y
remain ε-close in the original metric d = d1 through ` successive points of the orbit. We

will sometimes use the more precise notation df` to emphasize the dependence of this new
metric on the mapping f .

As in the §7A, let us suppose that points of X can only be distinguished to accuracy ε >
0 . We ask: how many distinct orbits can we distinguish if we follow the orbits for time ` ?
Using notations from the §7A, this means that we want to compute the ε-covering number
Cε(X , d`) or the ε-separated number Sε(X , d`) for this new metric space (X , d`) . We
always assume that X is non-vacuous, so that these numbers are strictly positive. In order
to study asymptotic behavior as `→∞ , we first note the following.

Lemma 7.5. The inequality

Cε(X , dk+`) ≤ Cε(X , dk)Cε(X , d`)

is satisfied for all integers k , ` ≥ 1 .
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



.32

.04

.08

1

0

Figure 34. An example: For the tent map f(x) = min(2x , 2 − 2x) on the unit
interval, the 6-shadowing distance d6(.04 , .08) is equal to .32 . (Six copies of the
unit interval are shown.)

For if X = A1 ∪ . . . ∪ Ap is a covering of X by p subsets of dk -diameter ≤ ε and
X = B1 ∪ · · · ∪Bq is a covering by q subsets of d` -diameter ≤ ε , then

X =
p
⋃

i=1

q
⋃

j=1

Ai ∩ f−kBj

is a covering of X by p q subsets of dk+` -diameter ≤ ε . ¤

Setting ak = log Cε(X , dk) , it follows that the sequence {ak} is sub-additive, that is

ak+` ≤ ak + a` .

Lemma 7.6. For any sub-additive sequence {ak} of real numbers, the ratios

ak/k tend to a finite or negative-infinite limit as k → ∞ . Furthermore, this

limit is equal to the infimum of the numbers ak/k .

Proof. Using sub-additivity, we see by a straightforward induction on k that
ak ≤ k a1 . Similarly, for any fixed m we have amk ≤ k am . It follows that

amk+i ≤ amk + ai ≤ k am + ai .

Still fixing m , note that any positive integer n can be written uniquely as n = mk + i
with 0 ≤ i < m . Thus

an
n

=
amk+i

n
≤ k

am
n

+
ai
n

.

Now let us take the lim sup of both sides as n tends to infinity with m fixed. Note that
the ratio k/n converges to 1/m , while ai/n converges to zero. Hence, in the limit, we
have

lim sup
n→∞

an
n
≤ am

m
.

Taking the infimum over m , it follows that

lim sup
n→∞

an
n

≤ inf
m≥1

am
m

≤ lim inf
m→∞

am
m

≤ lim sup
m→∞

am
m

.
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7. DIMENSION AND ENTROPY

Thus these three quantitites are all equal, which completes the proof. ¤

In particular, taking ak = logCε(X , dk) , it follows that the ratios logCε(X , dk)/k
necessarily converge to a finite limit. Now define h(f, ε) to be this limit:

h(f, ε) = lim
k→∞

logCε(X , dk)

k
= inf

k≥1

{

logCε(X , dk)

k

}

.

Since X is non-vacuous, we have 0 ≤ h(f, ε) ≤ logCε(X , d1) . Note that h(f, ε) > 0
if and only if the numbers Cε(X , dk) grow at least exponentially with k . If we think of
logCε(X) as the quantity of information needed to specify a point of X to accuracy ε , then
h(f, ε) can be described as the average quantity of information per timestep which is needed
to specify a long orbit under f to accuracy ε .

As ε tends to zero, note that h(f, ε) cannot decrease. Hence the finite or infinite limit

lim
ε→0

h(f, ε) = sup
ε>0

h(f, ε)

necessarily exists. By definition, this limit is called the topological entropy

h(f) = htop(f) ∈ [0 , ∞] .

It is of course essential that we first take the limit as k →∞ , and only then take the limit
as ε→ 0 .

Remark. We can also define topological entropy using the “ ε-separated numbers”
Sε(X , dk) of the previous section. I don’t know whether the ratios log Sε(X , dk)/k nec-
essarily converge as k →∞ . However, using the inequality (1) of §D we certainly have

h(f, ε) ≤ lim inf
k→∞

log Sε(X , dk)

k
≤ lim sup

k→∞

log Sε(X , dk)

k
≤ h(f , ε/2)

and it follows that

lim
ε→0

lim inf
k→∞

log Sε(X , dk)

k
= lim

ε→0
lim sup
k→∞

log Sε(X , dk)

k
= h(f) .

An Easy Example. For the doubling map m2(x) = 2x mod 1 on the circle
T = � / � , in order to specify an orbit through k timesteps to an accuracy of ε , we
must specify the initial point to an accuracy of ε/2k . Hence Cε(Tk) ≈ 2k/ε , and it follows
that

h(m2, ε) = lim
k→∞

log(2k/ε)

k
= log 2 .

Therefore h(m2) = log 2 . (In this example, it is noteworthy that we do not need to pass
to the limit as ε → 0 . Any small ε will do.) Similarly, for the p-tupling map mp(x) =
p x mod 1 on the circle, we get

h(mp) = h(mp, ε) = log p

for any small ε .

Here are four basic properties of topological entropy

Lemma 7.7:
(a) If there is a topological semi-conjugacy from (X, f) onto (Y, g) , then
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h(f) ≥ h(g) . It follows in particular that h is a topological invariant, in-

dependent of the choice of metric.

(b) Similarly, if Y ⊂ X with f(Y ) ⊂ Y , then h(f) ≥ h(f |Y ) .

(c) The entropy of a cartesian product is given by

htop(f × g) = htop(f) + htop(g) .

(d) The entropy of the `-fold iterate of a map from X onto itself is given by

htop(f
◦`) = ` htop(f)

for any ` ≥ 0 . Furthermore, if f is a homeomorphism from X onto itself,

then htop(f
−1) = htop(f) .

Proof (a): Recall that a semi-conjugacy φ from the dynamical system (X, f) onto
(Y, g) is a continuous map from X onto Y which satisfies φ ◦ f = g ◦ φ , so that the
diagram

X
f−→ X

φ ↓ φ ↓
Y

g−→ Y

is commutative. If there exists such a semi-conjugacy φ from the compact metric dynam-
ical systems (X, f) onto the compact metric dynamical system (Y, g) , then by uniform
continuity, given ε > 0 we can find δ > 0 so that

dX(x, x′) < δ =⇒ dY (φ(x), φ(x
′)) < ε .

It follows easily that

Cδ(X , d`) ≥ Cε(Y , d`) hence h(f, δ) ≥ h(g, ε) .

Taking the limit as both ε and δ tend to zero, it follows that h(f) ≥ h(g) . Now if (X, f)
is topologically conjugate to (Y, g) , then there exist semi-conjugacies in both directions,
hence h(f) = h(g) . Thus topological entropy is indeed a topological invariant.

(b): This is clear.

(c): As in Problem D-3 of §D, we can use the maximum metric

d((x, y) , (x′, y′)) = max (d(x, x′) , d(y, y′))

on the product X × Y , and note that

Cε(X × Y ) ≤ Cε(X)Cε(Y ) , Sε(X × Y ) ≥ Sε(X)Sε(Y ) .

The same inequalities hold for the spaces (X , d`) and (Y , d`) with the `-shadowing
metrics, and the conclusion follows.

(d): If f is a homeomorphism, then the identity htop(f) = htop(f
−1) follows easily

from the definition. For the computation of htop(f
◦`) , we will use the more explicit notation

df` in order to indicate the dependence of the `-shadowing metric both on the mapping f

and on the original metric d = d1 . With this notation, suppose that we consider f ◦` as

a map from the metric space (X , df` ) to itself. Evidently two points are ε-close for k

successive points of the orbit of f ◦` under this metric if and only if they are ε-close for
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7. DIMENSION AND ENTROPY

k ` successive points under f for the original metric d1 . Since we know that htop does

not depend on the choice of metric, the required identity htop(f
◦`) = ` htop(f) now follows

easily. ¤

Examples. To illustrate these statements, first consider the quadratic map
q(x) = 2x2 − 1 on the interval [−1 , 1] . The projection map x + iy 7→ x from the
unit circle to [−1 , 1] semi-conjugates the squaring map s(z) = z2 to this quadratic map
q , hence h(s) ≥ h(q) . Since s is topologically conjugate to the doubling map on � / � , it
follows that h(s) = log 2 . In fact we will see later that h(q) is also equal to log 2 .

The doubling map f(x) = 2x on the n-dimensional torus T n = �

n/ �

n can be con-
sidered as the n-fold Cartesian product of the doubling map on the circle with itself, hence
htop(f) = n log 2 . If we iterate this map k -times, then we get the map x 7→ 2k x on Tn ,
with entropy k n log 2 . Note that there is a semi-conjugacy from the doubling map on T n

onto the doubling map on T n−1 .

——————————————————

§7D. A Dimension Inequality. By definition, a map f between metric spaces is
Lipschitz if there is some constant c ≥ 0 , called a Lipschitz constant, so that

d(f(x), f(y)) ≤ c d(x, y)

for every pair of points x and y in the domain of f . If f is a map from a complete
metric space to itself with Lipschitz constant c < 1 , then it is easy to show that every orbit
converges to a unique attracting fixed point. Thus, for a dynamically interesting example,
we must have c ≥ 1 . Recall that dim−B(X) denotes the lower box dimension of X .

Lemma 7.8. If f is a map from a compact metric space X to itself with

Lipschitz constant c ≥ 1 , then

htop(f) ≤ dim−B(X) log c .

As an immediate corollary, we see that any smooth map from a compact manifold

to itself necessarily has finite topological entropy.

Proof of 7.8. Since any larger value of c will also serve as Lipschitz constant, it suffices
to consider the case c > 1 . Recall the definitions

h(f, ε) = lim
k→∞

1

k
logCε(Xk)

and

dim−B(X) = lim inf
η→0

logCη(X)

log(1/η)
.

For fixed ε and arbitrarily small η we can choose an integer k so that

ε/ck ≥ η ≥ ε/ck+1 .

(Here we make use of the hypothesis that c > 1 .) Note that k tends to infinity as η → 0 .
Now if two points of X satisfy d(x, y) ≤ η , then it follows that

d(f◦i(x) , f◦i(y)) ≤ ci η ≤ ε
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7D. A DIMENSION INEQUALITY

for i ≤ k , hence dk(x, y) ≤ ε . Therefore

Cη(X) ≥ Cε(Xk) ,

and it follows that

logCη(X)

log(1/η)
≥ logCε(Xk)

log(1/η)
∼ logCε(Xk)

log(ck/ε)
∼ logCε(Xk)

k log c
.

Now as η → 0 and k → ∞ , the lim inf of the left hand side is equal to dim−B(X) , while
the right hand side converges to h(f, ε)/ log c . Thus h(f, ε) ≤ dim−B(X) log c , and taking
the limit as ε→ 0 we obtain the required inequality h(f) ≤ dim−B(X) log c . ¤

Examples. Here is an example to show that this inequality is sharp. Let dn be the
doubling map x 7→ 2x on the torus T n = �

n/ �

n . Then the dimension dimB(T
n) is n

and the best Lipschitz constant is c = 2 . It follows from 7.7(b) that the entropy htop(dn)
is precisely equal to the product n log 2 .

More generally, consider the n-dimensional torus T n = �

n/�

n and a linear map

f :







x1
...
xn





 7→ M







x1
...
xn





 mod �

n

where M is an n × n integer matrix. Suppose, to simplify the discussion, that M has
n linearly independent real eigenvalues, or equivalently that M is conjugate to a diagonal
matrix,

AM A−1 = diag(λ1 , . . . , λn)

where A is some non-singular real matrix. Then, setting Y = AX , we see that f is
topologically conjugate to the mapping Y 7→ (AMA−1)Y mod A�

n , or in other words






y1
...
yn





 7→







λ1y1
...

λnyn





 mod A �

n .

It will be convenient to number the eigenvalues so that

|λ1| ≥ · · · ≥ |λm| > 1 ≥ |λm+1| ≥ · · · ≥ |λn| ,
so that only the first m lie outside the unit disk. Then to specify an orbit for k timesteps
to an accuracy of ε , we must specify the initial coordinate yi to an accuracy of ε/|λi|k
whenever i ≤ m . However, an accuracy of ε will suffice whenever i > m . From this, it
follows that the ε-covering numbers are given very roughly by

Cε(T
n
k) ≈ |λ1|k

ε
· · · |λm|

k

ε

1

ε
· · · 1

ε
=

|λ1 · · ·λm|k
εn

.

More precisely, the ratio of the left and right hand expressions remains bounded and bounded
away from zero as k →∞ . In fact, some constant multiple of this number of suitably small
n-dimensional rectangles clearly suffices to cover the torus, and an
n-dimensional volume computation shows that no smaller number will suffice. Hence

htop(f) = h(f, ε) = log |λ1 · · ·λm| =
∑

|λi|>1

log |λi|
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for any small ε . (We can also write the expression on the right as
∑n

1 log
+ |λi| , where

log+(x) = max(log x , 0) .) Thus the eigenvalues with |λi| ≤ 1 make no contribution to
topological entropy.

Remark. This same formula remains true even when M does not have n linearly
independent real eigenvectors. See for example Walters, §8.4.

We can compare this exact formula with the estimate 7.8. For a suitably chosen metric,
the best Lipschitz constant is equal to the spectral radius |λ|max . Hence the upper bound
of 7.8 is n log |λ|max , which is clearly greater than or equal to htop(f) =

∑

log+ |λi| .
——————————————————

§7E. Defining Entropy by Coverings. We next define the entropy of f with respect
to some covering of X by subsets. We will be particularly interested in coverings by open
subsets. However, in Chapter III we will also want to consider coverings by certain closed
subsets.

Let A = {Aα} be some collection of subsets with union equal to X . We define N(A)
to be the smallest number of sets from A which suffice to cover X . We always suppose
that X is non-vacuous so that N(A) ≥ 1 , and in practice we will always assume also
that N(A) < ∞ . As an example, suppose that Cε is the collection consisting of all sets
A ⊂ X with diameter diam(A) ≤ ε . Thus N(Cε) is equal to the minimum number of sets
of diameter ≤ ε needed to cover X . Evidently this coincides with the number Cε(X) , as
defined earlier.

Fixing some map f : X → X , let Ak = Ak
f be the collection consisting of all k -fold

intersections

Aα0
∩ f−1(Aα1

) ∩ · · · ∩ f−(k−1)(Aαk−1
)

with Aαi ∈ A . Note that a point x belongs to such an intersection if and only if its orbit
x = x0 7→ x1 7→ · · · satisfies xi ∈ Aαi for 0 ≤ i < k . We are interested in the number
N(Ak) of such interesections needed to cover X . It is easy to check that

N(Ak+`) ≤ N(Ak) N(A`) .

Therefore, according to 7.6, the limit

lim
k→∞

logN(Ak)

k

always exists and is equal to

inf
k≥1

logN(Ak)

k
.

By definition, this limit is called the entropy h(f , A) of f with respect to the covering
A . Note that 0 ≤ h(f , A) ≤ logN(A) .

As an example, if Cε is the covering of X by all sets of diameter ≤ ε , then Ak = C k
ε

is the covering by all sets which have diameter ≤ ε in the k -shadowing metric. Hence

N(C kε ) = Cε(Xk) ,
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and it follows that h(f , Cε) is equal to

lim
logCε(Xk)

k
= h(f, ε) .

Using this fact, we obtain an alternative definition of topological entropy which is clearly
topologically invariant.

Lemma 7.9 The topological entropy htop(f) = limε→0 h(f, ε) is equal to the

supremum of h(f , U) as U ranges over all coverings of X by open sets.

The proof will depend on the following.

Definition. Given coverings A and B of X , we say that A is a refinement of B if
every set A ∈ A is contained in some set B ∈ B .

If A is a refinement of B , then clearly N(A) ≥ N(B) . Furthermore, Ak is a refine-
ment of Bk , hence N(Ak) ≥ N(Bk) , and it follows that h(f , A) ≥ h(f , B) . As an ex-
ample, if ε < η then clearly Cε is a refinement of Cη , and it follows that h(f, ε) ≥ h(f, η) .

Proof of 7.9. Let Oε be the covering of X by all open sets of diameter ≤ ε . Then
Cε/2 is a refinement of Oε , which in turn is a refinement of Cε . Hence

h(f , Cε/2) ≥ h(f , Oε) ≥ h(f , Cε) .

Taking the limit as ε→ 0 , it follows that

htop(f) = lim
ε→0

h(f , Oε) ≤ sup
U
h(f , U) .

On the other hand, any covering U of the compact metric space X by open sets has a
Lebesgue number ε > 0 with the property that every set of diameter ≤ ε is contained in
some U ∈ U . If we exclude the trivial case where X ∈ U , then the real valued function

φ(x) = sup
U∈U

d(x , X r U)

is continuous and strictly positive on X . Any ε less than the minimum value of φ will
serve as the required Lebesgue number. Now it follows that Cε is a refinement of U , hence
htop(f) ≥ h(f, ε) = h(f, Cε) ≥ h(f , U) . Taking the supremum over all coverings by open
sets, we obtain

htop(f) ≥ sup
U

h(f , U) ,

which completes the proof. ¤

——————————————————

§7F. Piecewise Monotone Maps of the Interval.

Let I = [a, b] be a closed interval of real numbers. By definition, a map f : I → I is
piecewise monotone if there are points

a = c0 < c1 < c2 < · · · < cn = b

such that f is strictly monotone, either increasing or decreasing, on each interval
Ij = [cj−1 , cj ] . [Misiurewicz and Szlenk] have provided a formula for computing the topo-
logical entropy of such a map, which can be described as follows. Let us define a finite
sequence (j0 , j1 , · · · , jk) of integers between 1 and n , to be admissible (for the partition
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7. DIMENSION AND ENTROPY

I = I1 ∪ · · · ∪ In ) if there exists an orbit x0 7→ x1 7→ x2 · · · such that xi belongs to the
interior of the interval Iji for 0 ≤ i ≤ k . Equivalently this sequence, of length k + 1 , is
admissible if and only if the intersection

I(j0 , j1 , . . . , jk) = Ij0 ∩ f−1(Ij1) ∩ f−2(Ij2) ∩ · · · ∩ f−k)(Ijk) (7 : 9)

contains an interior point. Whenever this condition is satisfied, a straightforward induction
shows that the k -fold composition

I(j0 , j1 , . . . , jk)
f−→ I(j1 , j2 , . . . , jk)

f−→ · · · f−→ I(jk) = Ijk (7 : 10)

embeds I(j0 , j1 , . . . , jk) homeomorphically as a non-degenerate subinterval of Ijk .

Definition. Let Admis(k) ≤ nk be the number of admissible sequences
(j0 , j1 , . . . , jk−1) of length k . Then we can state their result as follows.

Theorem 9.10 (Misiurewicz and Szlenk). The topological entropy htop(f)

of a piecewise-monotone map can be computed as limk→∞
1
k log Admis(k) .

In particular, since 1 ≤ Admis(k) ≤ nk , it follows that 0 ≤ htop(f) ≤ log n . I will not give
the proof of 9.10, but will derive several consequences.

I1 I2 I3 I4

Figure 35. Graph of a piecewise monotone map with 4 laps.

For any piecewise monotone map, we can choose the unique minimal collection of points
cj which decompose I into intervals on which f is monotone. In fact these cj must be
precisely the points at which f attains a local maximum or minimum. The corresponding
intervals I1 , . . . , In are called the laps of f . I will write n = Lap#(f) .

Corollary 7.11. The entropy htop(f) of a piecewise monotone map can be

characterized as the limit of 1
k log Lap#(f◦k) as k →∞ .

Proof. If I1 , . . . , In are the laps of f , then it is not difficult to see that the various
non-trivial intersections (7 : 9) are precisely the various laps of the iterate f ◦(k+1) . ¤

By definition, a piecewise monotone map f is a Markov map if the subdivsion points
c0 < c1 < · · · < cn can be chosen so that each f(cj) is itself one of these points
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I1 I2 I3

Figure 36. Graph of a Markov map with I1
∼=−→I3 , I2

∼=−→I2 ∪ I3 , I3
∼=−→I1 .

c0 , c1 , . . . , cn . An equivalent condition would be that each Ij maps homeomorphically
onto some union of consecutive Ij′ . Define the associated n×n transition matrix M = [Mij ]
by the requirement that

Mij =
{

+1 if f(Ii) ⊃ Ij ,
0 otherwise .

Thus when Mij = 0 the intervals f(Ii) and Ij have at most a single endpoint in common.

Corollary 7.12. If f is a Markov map of the interval with associated transition

matrix M = [Mij ] , and if λmax is the largest real eigenvalue of M , then the

entropy htop(f) is equal to log(λmax) .

As examples, for the Markov maps of Figures 36 and 37 the associated matrices are






0 0 1
0 1 1
1 0 0





 and
[

0 1
1 1

]

respectively. In the first case, the eigenvalues are 1, 1,−1 , so that htop = log 1 = 0 , while

in the second case the eigenvalues are (1 ±
√
5)/2 , so that htop(f) = log ((1 +

√
5)/2)

= 0.4812 · · · .

2 3 5 8 13

Figure 37. Graphs for the sequence of iterates f ◦k of the piecewise linear Markov map
associated with a period 3 orbit 0 7→ 1/2 7→ 1 7→ 0 . Note that the lap numbers
Lap#(f◦k) , shown under the graphs, are Fibonacci numbers. (Compare Problem 7-k.)

Proof of 7.12. In the case of a Markov partition I = I1 ∪ · · · ∪ In , note that the
k -fold composition (7 : 10) associated with any admissible sequence maps the interval
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I(j0 , j1 , . . . , jk) homeomorphically onto the interval I(jk) = Ijk . Evidently the sequence
(j0 , j1 , . . . , jk) is admissible if and only if

Mj0j1 = Mj1j2 = · · · = Mjk−1jk = 1 .

Now let Mk be the k -fold matrix product with M with itself. Evidently the (i, j)-th
entry (Mk)ij of Mk is equal to the number of admissible sequences of the form

i = j0 , j1 , . . . , jk−1 , jk = j .

Summing over i and j , this shows that

Admis(k + 1) =
∑

ij

(Mk)ij .

For any n × n real or complex matrix A , let λ1 , . . . , λn be the associated eigenvalues,
and define the spectral radius of A to be the maximum of the absolute values |λh| . If we set
‖A‖ =

∑

ij |Aij | , then it is not difficult to show that this spectral radius can be expressed
as a limit

max
h
|λh| = lim

k→∞
k
√

‖Ak‖ .

(Compare A.3 in the Appendix.) In the case of a Markov matrix M , since the entries
Mij are all non-negative real numbers, it follows by the Perron-Frobenius Theorem that the
spectral radius is equal to the largest real eigenvalue. (Again see the Appendix.) Thus

htop(f) = lim
k→∞

1

k
log Admis(k + 1) = lim

k→∞
1

k
log ‖Mk‖ = log λmax ,

which completes the proof of 7.12. ¤

The largest possible entropy associated with an n× n matrix of zeros and ones occurs
when all of the entries are one, so that all of the nk symbol sequences of length k are
admissible. In this case, we have Admis(k) = nk , hence htop(f) = log n . As an example,
for the Tschebychef map f(x) = 4x3 − 3x of order 3, as shown in Figure 38, since each of
the three laps maps onto the full interval [−1, 1] , it follows that htop(f) = log 3 .

Figure 38. Graph of x 7→ 4x3 − 3x on the interval [−1, 1] .

As one application of this observation, we can give an example of an interval map with
infinite entropy. Simply map the subinterval [0, 1

2 ] onto itself with entropy log 3 , the
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Figure 39. An interval map with infinite topological entropy

interval [12 ,
3
4 ] onto itself with entropy log 5 , and so on. Putting all of these together, we

obtain a continuous map from the full interval onto itself whose entropy must be infinite.

As another application, we see that entropy need not vary continuously as we deform
the map. The lefthand figure below shows a piecewise linear Markov map where both the
left half interval L1 and the right half interval L2 map homeomorphically onto L1 . It is
easy to check that htop(f) = 0 . But an arbitrarily small perturbation yields a map g such
that a small subinterval J is mapped onto itself with entropy log 2 . It follows easily that
htop(g) = log 2 .

Figure 40. The map on the left has htop = 0 , but an arbitrarily small perturbation
yields a map with htop = log 2 .

For further discussion, including an algorithm for effectively computing the topological
entropy of a piecewise monotone map, see [Milnor and Tressser]. See also [Milnor and
Thurston], and for textbooks on 1-dimensional dynamics see [Alseda, Llibre and Misiurewicz]
or [de Melo and van Strien].

§7G. Some Problems.

Problem 7-a. Unions. Show that dim+
B(X ∪ Y ) = max (dim+

B(X) , dim+
B(Y )) .

Problem 7-b. Lipschitz Maps. If there is a map from X onto Y satisfying a
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Lipschitz condition d(f(x) , f(x′)) ≤ cd(x, x′) , show that

dim−B(X) ≥ dim−B(Y ) , dim+
B(X) ≥ dim+

B(Y ) .

Problem 7-c. Products. If we use the maximum metric

d((x, y) , (x′, y′)) = max (d(x, x′) , d(y, y′))

on a cartesian product X × Y , show that

Cε(X × Y ) ≤ Cε(X)Cε(Y ) , Sε(X × Y ) ≥ Sε(X)Sε(Y ) ,

and that

dim+
B(X × Y ) ≤ dim+

B(X) + dim+
B(Y ) , dim−B(X × Y ) ≥ dim−B(X) + dim−B(Y ) .

Problem 7-d. “Minkowski” Dimension. For X ⊂ �

n let Nε(X) be the
ε-neighborhood , consisting of all points y ∈ �

n for which d(y,X) ≤ ε . Show that there
are constants αn , βn > 0 so that the n-dimensional volume of this neighborhood satisfies

αn ε
n Sε(X) ≤ vol(Nε(X)) ≤ βn ε

nCε(X) .

Conclude that

dim+
B(X) = n − lim inf

ε→0

log vol(Nε(X))

log ε
,

with an analogous formula for dim−B(X) .

Problem 7-e. An Intermediate Box Dimension. For X compact metric, show
that there exists one and only one number 0 ≤ β(X) ≤ ∞ with the following property:
The integral

∫ 1

0
Sε(X) dεt or

∫ 1

0
Cε(X) dεt

is finite for t > β(X) and is infinite for 0 < t < β(X) . Show that

dim−B(X) ≤ β(X) ≤ dim+
B(X) .

Problem 7-f. Another Cantor Set. Here is another generalisation of the Cantor
middle third set. Given any sequence of numbers 1 = `0 > `1 > `2 > · · · > 0 , define
compact subsets

[0, 1] = K0 ⊃ K1 ⊃ K2 ⊃ · · ·

inductively as follows. Each Km will be a union of 2m disjoint equal intervals, with total
length `m . The inductive step consists of cutting a middle portion out of each of the
components of Km−1 , so as to leave two end segments, each of the required length `m/2

m .
If K is the intersection of the Km , and if `m/2

m ≤ ε < `m−1/2
m−1 , show that the

ε-covering number Cε(K) is equal to 2m . Now define numbers

0 ≤ L− ≤ L+ ≤ 1

by the formulas

L− = lim inf
m→∞

m
√

`m , L+ = lim sup
m→∞

m
√

`m .
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Show that

dimH(K) = dim−B(K) = lim inf
ε→0

logCε(K)

log(1/ε)
= lim inf

m→∞
m log 2

log(2m/`m)
=

1

1− log2 L
−

and similarly show that dim+
B(K) = 1/(1 − log2 L

+) . By suitable choice of the sequence
{`i} , show that we can construct examples with any values of the box dimensions satisfying

0 ≤ dim−B(K) ≤ dim+
B(K) ≤ 1 .

Show that the Lebesgue measure λ(K) = limm→∞ `m satisfies 0 ≤ λ(K) < 1 ; but if
λ(K) > 0 check that we must have dimH(K) = dimB(K) = 1 .

Problem 7-g. Topological Dimension. Show that the topological dimension of a
region in �

n (defined using coverings, as in §7B) is equal to n , as follows. Let ∆n be
an n-dimensional simplex. Start with the theorem that the identity map of an (n − 1)-
dimensional sphere is not homotopic to a constant map. Assuming this, show that any map
from ∆n into itself which maps each face into itself must be onto. Now consider any open
covering {Ui} which is fine enough so that no Ui intersects all of the (n− 1)-dimensional
faces. Prove that at least n+1 of the Ui must intersect, as follows. Let {φi : ∆n → [0, 1] }
be an associated partition of unity, so that

∑

i φi(x) = 1 , with φi(x) = 0 outside of Ui .
For each Ui choose an (n−1)-dimensional face which is disjoint, and let vi be the opposite
vertex. Show that the map x 7→ ∑

φi(x) vi carries each boundary face of ∆n into itself,
and hence is onto. Now if x0 maps to any interior point of ∆n then it follows that x0

belongs to at least n+1 of the Ui . This proves that dimtop(∆
n) ≥ n . On the other hand,

choosing an arbitrarily fine subdivision of ∆n , show that the “open star neighborhoods” of
the vertices form a covering with the property that at most n+1 of these sets can intersect,
so that dimtop(X) ≤ n .

Problem 7-h. Hausdorff Dimension. Show that dimH(X) ≤ dim−B(X) . In partic-
ular, if X ⊂ �

n then it follows that dimH(X) ≤ dim+
B(X) ≤ n . If X ⊂ �

n has Lebesgue
measure λ(X) > 0 show that dimH(X) = dimB(X) = n . (Use the fact that any set Ai

of diameter d is contained in a cube of edge d and hence satisfies λ(Ai) ≤ dn .)

Problem 7-i. A “Horseshoe”. Now consider a map f : X → X and suppose that
X contains two disjoint non-empty compact subsets with f(Xi) ⊃ X0 ∪X1 for i = 0 , 1 .
Given any finite sequence α0 , α1 , . . . , αn of zeros and ones, show that f has an orbit
x0 7→ x1 7→ x2 7→ · · · so that xj ∈ Xαj for 0 ≤ j ≤ n . Conclude that htop(f) ≥ log 2 .

Problem 7-j. An Example with Box Dimension > Hausdorff Dimension. Let
X = {0, 1, 1

2 ,
1
3 , . . .} ⊂ [0, 1] consist of the sequence of points 1/n , n ≥ 1 , together with

the limit point zero. Show that the number of ε-boxes needed to cover X ∩ [0 ,
√
ε] is

roughly 1/
√
ε , and the number needed to cover the remaining points of X is also roughly

1/
√
ε , so that

|Bε(X) − 2/
√
ε | < constant .

Conclude that dimB(X) is defined and equal to 1/2 . On the other hand, since X is a
countable set, show that dimH(X) = 0 .

Problem 7-k. Fibonacci Numbers. For the map f of Figure 37, let

φ(k) = Lap#(f◦k) ,
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with φ(0) = 1 , φ(1) = 2 , φ(2) = 3 , and so on. Show that the number of laps of f ◦k in
the left hand half-interval I1 is φ(k − 2) while the number in the right hand half-interval
I2 is φ(k − 1) . Thus

φ(k) = φ(k − 2) + φ(k − 1) ,

which shows that the φ(k) are Fibonacci numbers. Now check that the powers of the

numbers ξ± = (1 ±
√
5)/2 satisfy a corresponding recursion relation ξ k

± = ξ k−2
± + ξ k−1

± .
Conclude that we can write

φ(k) = a ξ k+ + b ξ k− ,

where a and b are suitably chosen non-zero coefficients, and thus give a different proof
that

lim
k→∞

1

k
log Lap#(f◦k) = log ξ+ .

Problem 7-l. Constant |Slope |. If the Markov map f is piecewise linear, with
slope f ′(x) = ±s everywhere, show that the lengths rj of the intervals Ij form a right
eigenvector

∑

j

Mij rj = s ri with s = λmax .

Conversely, suppose that the Markov matrix for some given map g has a right eigenvector
with all entries positive

∑

i

Mij rj = s ri > 0 for 1 ≤ i ≤ n .

(Compare the Appendix.) Modifying g in such a way that each interval Ij is replaced by
an interval of length rj , and so that the mapping restricted to each Ij is linear, show that
we can obtain a new map f with the same Markov matrix, but with

|slope| = s = λmax everywhere .

Problem 7-m. Periodic Points. If f is a Markov map with n×n transition matrix
M , show that the number of fixed points of f ◦k satisfies

#Fix(f◦k) + n− 1 ≥ trace(Mk) .

Using the identity

λmax = lim sup
(

trace(Mk)
)1/k

(see A.3 in the Appendix), conclude that

lim sup #Fix(f◦k)1/k ≥ λmax .
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