
Chapter II. Topological Dynamics.

§4. Basic Concepts.1

By definition, topological dynamics is the study of those properties of dynamical
systems which are invariant under topological conjugacy. This preliminary section will de-
scribe some of the basic concepts and easy results from this field.

Convention: All topological spaces are assumed to be Hausdorff. In fact we will usually
assume that our spaces are metric2 and locally compact, or even compact, with infinitely
many elements.

A general topological dynamical system is sometimes defined as a pair (X , Γ) consisting
of a topological space X together with a group or semi-group Γ of continuous transforma-
tions from X to itself. However, we are interested only in dynamical systems which model
the evolution of some physical system with time. Hence, for our purposes, Γ will always be
either the additive group of real numbers R , or some additive subset. In fact there are four
important cases, according as Γ is equal to the set of integers Z , the non-negative integers
N , the real numbers R , or the non-negative real numbers R+ .

Case 1. Γ = Z . Given any homeomorphism f : X → X , we can consider the group
consisting of all iterates f ◦n where n can be any integer: positive, negative, or zero.

Case 2. Γ = N . If f : X → X is only required to be a continuous map, we can still
consider the semi-group consisting of all forward iterates f ◦n , with n ≥ 0 . This is the case
that will be emphasized in these notes. Cases 1 and 2 are quite similar to each other, but
there are subtle differences. (Compare §4E.) In both of these cases, we speak of a dynamical
system with discrete time. We will usually use the brief notation (X, f) for such systems,
in place of the more formal notation (X , {f ◦n}n∈Z) or (X , {f◦n}n≥0) .

Recall from §2A that two such dynamical systems (X , f) and (Y , g) are said to be
topologically conjugate (or topologically isomorphic) if there is a homeomorphism h from
X onto Y which satisfies the identity g ◦ h = h ◦ f . We also say that h topologically
conjugates f to g . By definition, the “topological” properties of the dynamical system
(X , f) are those which are preserved by such a topological conjugacy.

In many interesting applications, the space X is provided with some additional geomet-
ric structure. For example it may be a smooth manifold, or may have a preferred volume
element or measure. However, such non-topological properties may well be destroyed by
a topological conjugacy. Topological dynamics can be described as that part of dynam-
ics which can be formulated purely in terms of topology, and does not involve any such
additional structure.

Case 3. Γ = R . The case of a group of transformations parametrized by the real
numbers is also of fundamental importance, although it will not be emphasized in these
notes. Consider solutions to a differential equation of the form

dx/dt = v(x) ,

1 Draft from 1995, revised September 2001. I am indebted to S. Zakeri for his help with this section.
2 One might be tempted to refer to “metric dynamics” when discussing properties (such as sensitive

dependence) which depend on a specific choice of metric. Unfortunately this would be confusing since many

authors, going back at least to [Rochlin], use “metric” as an abbreviation for “measure theoretic”.
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4. BASIC CONCEPTS

where x varies over a smooth manifold M and v(x) is a smooth vector field on M . The so-
lution curve x = x(t) with initial condition x(0) = x0 will be written as
t 7→ ft(x0) . If the manifold M is compact, or more generally whenever these solution
curves exist for all x0 ∈ M and all t ∈ R , we obtain a one-parameter group of diffeomor-

phisms {ft : M →M} , or briefly a flow , where f0 = identity map and

fs ◦ ft = fs+t for all s , t ∈ R . (4 : 1)

There is a corresponding concept of topological conjugacy for flows.

Case 4. Γ = R+ . If the solutions are defined only for t ≥ 0 , then we obtain a semi-flow
or one-parameter semi-group of mappings from M into itself. This case occurs, for example,
when M is a compact manifold with boundary, and v is a smooth vector field which points
in (or at least does not point out) at all boundary points. Another important case occurs in
the study of the heat equation, for example ∂u/∂t =

∑
∂2u/∂x2

j where (x1, . . . , xn) varies
over a torus Rn/Zn . Here u varies over the “infinite dimensional manifold” M consisting
of all smooth real or complex valued functions on Rn/Zn . The solutions u(t, x1, . . . , xn)
are smooth functions, which usually can be defined only for t ≥ 0 .

In either the case of a flow or a semi-flow, we will say briefly that (M , {ft}) is a
dynamical system with continuous time. Much of the theory for continuous time is quite
similar to the theory for discrete time, and we will usually skip details. However, there are
some significant differences. (See for example Problem 4-b.)

If we start with a system with continuous time t , but specialize to non-negative integer
values of t , then evidently {ft}t=1,2,··· is just the semi-group consisting of all iterates of
the time one map f1 : M → M . For other relations between continuous and discrete time,
see §1C.

Remark. One important generalization, which will not be discussed here, concerns
discontinuous maps. (Compare §3C.) Another concerns maps f : U → X which are not
defined everywhere in X , but only on some subset, usually an open subset. Important ex-
amples are the theory of iterated meromorphic functions f : C→ C∪∞ (see [Bergweiler]),
and the theory of iterated polynomial-like mappings [Douady and Hubbard 1985]. Similarly
one can study a flow {ft : Ut → X} which is only defined on some open set which may
become smaller as t → ∞ . For example in celestial mechanics (§1A) one needs to exclude
initial conditions which lead to collisions or other singularities. (See [Xia].)

——————————————————

§4A. Periodicity and Limiting Behavior. One of the simplest examples of a property
which is invariant under topological conjugacy of a dynamical system (X, f) is the existence
or non-existence of periodic orbits. Given any point x0 ∈ X , let

f : x0 7→ x1 7→ x2 7→ · · ·
be the forward orbit of x0 under f , where xk = f◦k(x0) . By definition, the point x0 is
periodic under f if these successive iterates satisfy the condition that x0 = xn for some
integer n ≥ 1 , and hence xi = xn+i for all i . The smallest such n is called the period of
x0 . If h conjugates f to g , note that

g : h(x0) 7→ h(x1) 7→ h(x2) 7→ · · ·
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4A. PERIODICITY AND LIMITING BEHAVIOR

is then a forward orbit under g . Thus, if x0 is periodic of period n under f , then h(x0)
is periodic of period n under g .

Every periodic point for f can also be described as a fixed point for some iterate f ◦n .
Note however that the fixed points of f ◦n include not only points of period n under f
but also points whose period is any proper divisor of n .

Examples. An irrational rotation of the circle evidently has no periodic points at all.
The doubling map m2 of §2B is more interesting. Its only fixed point, 2 τ ≡ τ (mod Z)
is the zero point, τ ≡ 0 (mod Z) . However, for the n-fold iterate the corresponding
congruence

2n τ ≡ τ (mod Z)

has 2n − 1 distinct solutions τ ≡ k/(2n − 1) modulo Z . One of these 2n − 1 fixed
points of m ◦n

2 is just the fixed point τ ≡ 0 of m2 itself. If n can be expressed non-
trivially as a product, then some of these fixed points of m ◦n

2 actually have period n1

under f , where 1 < n1 < n . However, if n is a prime number, then every k/(2n − 1)
with 0 < k < 2n − 1 must actually be a periodic point of period exactly n . Thus, if
p > 1 is prime, the doubling map m2 has exactly (2p − 2)/p distinct periodic orbits of

period p . There is one orbit {1/3 , 2/3} of period p = 2 , two orbits {1/7 , 2/7 , 4/7}
and {3/7 , 6/7 , 5/7} of period p = 3 , and so on. We will develop these ideas further
in §6.

So far, we have not actually made use of the topology of X . However, the following
definitely does make use of this topology.

Definition. For any x0 ∈ X , the collection of all accumulation points for the forward
orbit {x0 , x1 , x2 , . . .} is called the ω -limit set ω(x0 , f) ⊂ X . A point y ∈ X belongs to
this ω -limit set if and only if, for every neighborhood N of y , there exist arbitrarily large
integers k so that xk ∈ N . If X is a metric space, this is clearly equivalent to the condition
that there exists an infinite subsequence of {xk} , indexed by integers k1 < k2 < · · · , so
that the distance d(xki

, y) tends to zero as i→∞ .

This ω -limit set ω(x0 , f) is always a closed subset of X . For if y is not in ω(x0 , f) ,
then there exists a neighborhood N of y so that xk 6∈ N for large k , and it follows that the
entire neighborhood N is disjoint from ω(x0 , f) . Note also that:
An ω -limit set is always forward sub-invariant, that is f(ω(x0 , f)) ⊂ ω(x0 , f) . Thus,
if X ′ = ω(x0 , f) ⊂ X , then the pair (X ′ , f |X ′) can be considered as a dynamical system
in its own right. The proof is easily supplied.

In a non-compact space, this ω -limit set may well be vacuous. For example,
if f(x) = x+ 1 for x ∈ R , then ω(x , f) is certainly vacuous. However:

Lemma 4.1 If the space X is compact, then every ω -limit set ω(x0 , f) is
compact, non-vacuous, and forward invariant,

f(ω(x0 , f)) = ω(x0 , f) .

Proof. Since any infinite sequence in a compact space has at least one accumulation
point, the set ω(x0 , f) is certainly non-vacuous. If the sequence {xki

} converges to y ∈
ω(x0 , f) , then any accumulation point y′ for {xki−1} will be in this ω -limit set and
satisfy f(y′) = y . ¤
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4. BASIC CONCEPTS

As examples, if Rα is an irrational rotation of the circle, then for any initial point τ0

the ω -limit set ω(τ0 , Rα) is the entire circle. (Compare 3.7.) For the doubling map m2

on the circle, ω(τ0 , m2) is the entire circle for Lebesgue almost every choice of starting
point τ0 . (Compare 3.8.) However, this is certainly not true for every τ0 . For example, if
τ0 is a rational number (modulo Z ), then clearly ω(τ0 , m2) is finite, consisting of a single
periodic orbit. Much more complicated ω -limit sets can also occur. Compare Problem 4-c.

——————————————————

§4B. Recurrence and Wandering. A point x0 ∈ X is said to be recurrent if
x0 ∈ ω(x0 , f) , or in other words if the forward orbit of x0 returns to an arbitrarily
small neighborhood of x0 infinitely often. As an example, every periodic point is certainly
recurrent. If X is compact metric, then we will see in 4.7 that recurrent points always exist.

However, the set of all recurrent points is awkward to work with, since it may not be a
closed set. As an example, consider the doubling map t 7→ 2 t on the circle R/Z . Every
rational number of the form k/(2n − 1) maps to itself under n-fold iteration of this map,
and hence is recurrent. Thus the closure of the set of recurrent points is the entire circle.
Yet the point 1/2 with orbit 1/2 7→ 0 7→ 0 7→ · · · is clearly not recurrent. We can get
around this difficulty by passing to a slightly weaker concept:

Definition. A point x0 ∈ X is non-wandering if and only if, for every neighborhood
N of x0 , there exists an integer k ≥ 1 so that N ∩ f ◦k(N) 6= ∅ (or equivalently so that
f−k(N)∩N 6= ∅ ). In other words, there must be points arbitrarily close to x0 which come
back arbitrarily close to x0 under some iterate of the mapping. In some sense, all of the
“interesting” dynamics of the map f is concentrated in the set Ω = Ω(f) consisting of all
non-wandering points.

Conversely, x0 is a wandering point if there exists a neighborhood N of x0 which
is disjoint from all of its forward images f ◦k(N) with k ≥ 1 . A completely equivalent
statement is that the iterated pre-images f−k(N) = {y ∈ X : f◦k(y) ∈ N} are pairwise
disjoint for k ≥ 0 . Evidently the subset of X consisting of all wandering points is open.
It follows easily that: The complementary set Ω(f) ⊂ X consisting of all non-wandering

points is closed and forward sub-invariant, f(Ω) ⊂ Ω .

Note that every periodic orbit is contained in this non-wandering set Ω(f) , hence the
closure of the set of periodic points is contained in Ω(f) . However, the example of an
irrational rotation of the circle shows that Ω(f) may be strictly larger than this closure.
Note also that: Every ω -limit set ω(x0 , f) is contained in Ω(f) . The proof is easily
supplied. Therefore, using 4.1, we have the following.

Lemma 4.2. If X is compact, then the non-wandering set Ω(f) is necessarily
compact and non-vacuous.

Remark. If f is actually a homeomorphism from X onto itself, then every wandering
point x0 has a neighborhood N for which all of the forward and backward images f ◦k(N)
with k ∈ Z are pairwise disjoint. In particular, it follows easily that the non-wandering set
is fully invariant:

f(Ω) = f−1(Ω) = Ω .

However, if f is not one-to-one, then these statements are certainly false. As an example,
if f(x) = a x (1 − x) mapping the unit interval into itself, with 0 ≤ a < 4 , then +1 is a
wandering point, but its image f(1) = 0 is a fixed point, hence non-wandering.
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4B. RECURRENCE AND WANDERING

For many purposes, an even weaker form of recurrence is useful. Consider a fixed mapping
f : X → X , where X is a metric space with distance function d(x, y) . Given ε > 0 , by
an ε-pseudo-orbit, or briefly an ε-chain, of length n from x to y we will mean a sequence
of points

x = x0 , x1 , . . . , xn = y

in X , with n ≥ 1 , satisfying the condition that

d(f(xi) , xi+1) < ε for 0 ≤ i < n .

(Compare Problem 3-c.) The point x is called chain recurrent if and only if there exists an
ε-chain from x to itself for every ε > 0 . Intuitively, a point is chain recurrent if it can
be made recurrent by an arbitrarily small perturbation of the mapping. This is certainly
an appropriate concept for any empirically described mapping, which can never be known
precisely. Similarly, it is appropriate for computer experiments, which usually introduce
some small round-off error into any floating point computation.

It is easy to check that

recurrent ⇒ non−wandering ⇒ chain recurrent .

For example if x is non-wandering, then for any ε > 0 we can choose a neighborhood N
contained in the ε-neighborhood of x so that f(N) is contained in the ε-neighborhood of
f(x) . Since x is non-wandering, we can choose k > 0 so that N ∩ f−k(N) contains at
least one point y0 . Let y0 7→ y1 7→ · · · be its orbit. Then x , y1 , y2 , . . . , yk−1 , x is the
required ε-chain from x to itself.

Neither of these implications can be reversed. As noted earlier, under the doubling map
on the circle R/Z the point (1/2 modulo Z) is non-wandering, but is not recurrent. For
the map

f(τ) = τ + sin2(πτ)/10 (4 : 2)

from R/Z to itself, as shown (on the unit interval) in Figure 21, the non-wandering set for
f is just the single point zero (modulo Z ), yet every point of the circle is chain recurrent.
(See Problem 4-a. A completely equivalent example is given by the map x 7→ x+ 1 on the
real projective line R ∪∞ .)

Figure 21. Graph of a map of the circle R/Z with just one non-wandering point, but

with all points chain recurrent. (Equation (4 : 2) . Here the left and right endpoints

of the interval are to be identified.)
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4. BASIC CONCEPTS

Closely related to chain recurrence is the chain partial ordering of the space X , which is
defined as follows. We will write x Â y if and only if there exists an ε-chain from x to y
for every ε > 0 . Thus x Â x if and only if x is chain recurrent. If x Â y and y Â z , then
clearly x Â z . We will say that two chain recurrent points x and y are chain equivalent

or belong to the same chain component if both x Â y and y Â x . Compare Problem 4-a.

There are analogous definitions for the case of a dynamical system (X , {ft}) with
continuous time. Compare Problem 4-b.

——————————————————

§4C. Transitivity and Minimality. Another useful concept is the following.

Definition. The dynamical system (X , f) is topologically transitive if for every pair U
and V of non-empty open subsets of X there exists an integer k ≥ 0 so that f ◦k(U)∩V 6=
∅ (or equivalently U ∩ f−k(V ) 6= ∅ ) .

One immediate consequence is the following.

Lemma 4.3. If (X, f) is topologically transitive, and if the space X has in-

finitely many points, then X has no isolated points.

(Proofs later.) To develop these ideas, we will need the following. Recall that a subset
S ⊂ X is called nowhere dense if its topological closure S has no interior points.

Definition. The topological space X is called a Baire space if it is Hausdorff, and
if every countable union of nowhere dense subsets has no interior, or equivalently if every
countable intersection of dense open subsets of X is dense.

The classical Theorem of René Baire says that every complete metric space, and also
every locally compact space, has this property:

Lemma 4.4. If X is either locally compact or complete metric, then X is a

Baire space.

There are several common terminologies for dealing with subsets of a Baire space X . A
subset S ⊂ X is said to be meager if it is a countable union of nowhere dense subsets. It is
said to be residual if it contains a countable intersection of dense open sets, or equivalently if
its complement XrS is meager. Definition. We will say that a property of points in X is
satisfied for a generic point of X if it is satisfied except for points belonging to some meager
set; or equivalently if is satisfied for all points belonging to some residual set. (Caution: This
use for the term “generic” is fairly common in the dynamics literature. However, the reader
should beware since the word is sometimes used with other meanings.)

In the original terminology of Baire, meager sets are “of the first category”, while non-
meager sets are “of the second category”. We can think of meager sets as a kind of topological
substitute for sets of measure zero. In particular, they have analogous basic properties: Any
countable union of meager sets is meager; but the whole space X is not meager. (However,
it is definitely not true, even on the real line, that meagers sets must have measure zero, nor
that sets of measure zero must be meager. Problem 4-d.)

Remark. If X is a Baire space with no isolated points, then evidently every countable
subset of X is meager. In particular, such a space X must be uncountable. As one
example, since the set of rational numbers is countable, it follows that a generic real number
is irrational.
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By definition, a topological space X has a countable basis if there are countably many
non-vacuous open subsets Ui so that, for every x ∈ X and every neighborhood N of
x there exists some Ui with x ∈ Ui ⊂ N . With these preliminaries, we can state the
following.

Theorem 4.5. If X is a Baire space with a countable basis, and if f : X →
X is topologically transitive, then for a generic point x0 ∈ X the ω -limit set
ω(x0 , f) is equal to the entire space X . Conversely, for any topological space
X , if there exists a single point x0 ∈ X with ω(x0 , f) = X , then it follows
that f is topologically transitive.

Here are some easy examples. The angle doubling map m2 on the circle is clearly
topologically transitive. In fact, if U ⊂ R/Z is an open interval of length ε , and if
2nε > 1 , then the image m◦n2 (U) must be the entire circle R/Z . It follows that there are
uncountably many dense orbits. (This statement would also follow from Borel’s Theorem
3.8, but the present proof is much easier.) On the other hand, the angle doubling map on
the subspace Q/Z is also topologically transitive, but has no dense orbit. This shows that
it is essential to assume that X is a Baire space. The example of the map n 7→ n + 1
on the space N = {0, 1, . . .} shows that not every map with a dense orbit is topologically
transitive.

Proof of 4.3. If (X, f) is topologically transitive and y ∈ X is an isolated point, then
we can certainly find some x ∈ X with f(x) = y . Hence there is an entire neighborhood
U of x with f(U) = y . Since the singleton {y} is an open set, we have f ◦n(y) ∈ U for
some n ≥ 0 . Therefore y is periodic, and it follows easily that X coincides with the orbit
of y . ¤

Proof of 4.4. Let U1 , U2 , U3 , . . . be dense open subsets of the locally compact space
X , and let V1 be an arbitrary non-vacuous open set. To construct a point in the intersection
V1∩U1∩U2∩ · · · , we construct nonvacuous open sets Vn with V1 ⊃ V2 ⊃ V3 ⊃ · · · so that
the closure V n+1 is a compact subset of Un ∩ Vn as follows, by induction on n . Given
Vn , since Un is dense we can choose a point x ∈ Un ∩Vn . Since X is locally compact, we
can choose a neighborhood Vn+1 of x which is small enough so that the closure V n+1 is a
compact subset of Un∩Vn . Now the intersection of the compact sets V 2 ⊃ V 3 ⊃ V 4 ⊃ · · ·
is non-vacuous, and is contained in V1 ∩ U1 ∩ U2 ∩ · · · . This completes the proof for X
locally compact. The proof in the complete metric case is quite similar, and will be left to
the reader. ¤

Proof of 4.5. Let {Ui} be a countable basis for the open sets of the Baire space
X , and let Vi = Ui ∪ f−1(Ui) ∪ f−2(Ui) ∪ · · · . If f is topologically transitive, then this
open set Vi is dense. Now a generic point x0 ∈ X belongs to the intersection

⋂
i Vi . It

follows that the forward orbit of x0 intersects every Ui , and hence is dense. To prove that
ω(x0 , f) = X we must show that the forward orbit of x0 hits every non-vacuous open set
U infinitely often. Otherwise, there would a largest n such that xn = f◦n(x0) belongs to
U . If X has no isolated points, then the set U r {x0 , x1 , . . . , xn} is also non-vacuous,
hence the orbit of x0 must hit it, yielding a contradiction. On the other hand, if X does
have an isolated point y , then topological transitivity implies that the forward orbit of y
must eventually hit every non-vacuous open set. In particular, it must hit the open set
f−1(y) ; hence y must be periodic. The complement of the orbit of y is then an open set,
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4. BASIC CONCEPTS

contradicting the hypothesis of topological transitivity.

Conversely, if the ω -limit set ω(x0 , f) is equal to the entire space X , then the forward
orbit of x0 must hit every non-vacuous open set infinitely often, and topological transitivity
follows easily. ¤

Figure 22. A topologically transitive map such that f ◦ f is not topologically transitive.

If f is topologically transitive, it does not follow that its iterates f ◦n are topologically
transitive. In fact, it may happen that the space X can be decomposed into distinct pieces
which are permuted cyclically by f . For example in Figure 22, f interchanges the left
and right half-intervals which intersect only in a single point. However, f ◦2 is topologically
transitive on each half-interval.

Here is a precise statement. Suppose that the space X is compact metric.

Lemma 4.6. If f : X → X is topologically transitive but f ◦n is not, then

there are uniquely defined compact subsets Xi ⊂ X with X = X1 ∪ · · · ∪Xm ,

where m ≥ 2 is some divisor of n , so that f(Xi) = Xi+1 , taking i modulo
m , where f◦n is topologically transitive on each Xi , and where Xi ∩ Xj is

nowhere dense in X for i 6≡ j .

Proof. Choose a dense orbit f : x0 7→ x1 7→ · · · , and let Xi = Xi+n = ω(xi , f
◦n) .

Then f◦n|Xi is topologically transitive, since the orbit of xi is dense, and f(Xi) = Xi+1

since X is compact. If Xi ∩ Xj had an interior point, with 1 ≤ i < j ≤ n , then for a
generic point x in this interior we would have ω(x, f ◦n) = Xi but also ω(x, f◦n) = Xj ,
hence Xi = Xj . These sets Xi are uniquely defined, since a generic x ∈ X has ω(x, f ◦n)
equal to one of the Xi . If m < n is the greatest common divisor of j − i and n , then it
follows easily that Xh+m = Xh for all h . Taking the smallest possible value for m , the
conclusion follows. ¤

Some dynamical systems satisfy a condition which is much stronger than transitivity:

Definition. The dynamical system (X , f) is minimal if every orbit is dense. More
generally, a non-vacuous closed subset M ⊂ X is minimal if, for every x0 ∈M , the closure
of the forward orbit {x0 , x1 , x2 , . . . } is precisely equal to M . A completely equivalent
condition, which justifies the term “minimal”, is that f(M) ⊂M but that no closed subset
S ⊂M with S 6= ∅ , M can satisfy f(S) ⊂ S .

As an example, every periodic orbit is certainly a minimal set. For an irrational rotation
of the circle, the entire circle is a minimal set. On the other hand, for the doubling map
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4D. CHAOS: SENSITIVE DEPENDENCE, MIXING

m2 , the entire circle is certainly not minimal, since there are many periodic points. In fact
m2 has uncountably many distinct minimal sets, and these can be extremely complicated.
(Problem 4-c.)

Note that every point x0 in a minimal set M is necessarily recurrent. For otherwise
the forward orbit of f(x0) would fail to be dense. It follows that every minimal set must
be forward invariant, M = f(M) .

(There is an analogous concept of minimality for a one parameter group or semi-group
of maps ft : X → X . One very interesting example is provided by the horocycle flow on
the unit tangent bundle of a compact surface of constant negative curvature. See [Marcus],
or Manning’s article in [Bedford, Keane and Series].)

To simplify the discussion, let us assume that X is a metric space. A set X0 ⊂ X will
be called sub-invariant if f(X0) ⊂ X0 .

Lemma 4.7. If f : X → X with X metric, then every non-vacuous compact

sub-invariant set X0 ⊂ X contains a minimal set.

Proof. Since X0 is compact metric, there exists a countable basis {Ui} for its topology,
that is a countable collection of open sets so that for any neighborhood N of any point
x ∈ X0 there exists a Ui with x ∈ Ui ⊂ N . Starting with the given X0 , let us construct
compact sub-invariant sets X0 ⊃ X1 ⊃ · · · by induction, as follows. If every orbit in Xn−1

intersects the open set Un , then we set Xn = Xn−1 . On the other hand, if some orbit in
Xn−1 is disjoint from Un , then let Xn be the union of all orbits in Xn−1 which are disjoint
from Un . Then clearly the sets X0 ⊃ X1 ⊃ X2 ⊃ · · · are compact, non-vacuous, and sub-
invariant. Let M be the intersection of the Xn . Then M has these same properties.
Furthermore, for each of the basic open sets Un , either all orbits in M intersect Un , or
else no orbit in M intersects Un . From this, it follows easily that every orbit in M is
dense in M . ¤

As a corollary, we see that: Every compact metric dynamical system has recurrent points.

This follows from the statement that every point of a minimal set is recurrent.

——————————————————

§4D. Chaos: Sensitive Dependence, Mixing. For this subsection, we suppose that
X is a metric space, with distance function d(x, y) ≥ 0 .

Although the concept of “chaotic dynamics” is of fundamental importance, there is
no general agreement on a definition. Some authors use “chaos” as an abbreviation for
“positive topological entropy” (§7; see for example [Li and Yorke], [MacKay and Tresser]).
With this usage, the map f(z) = z2 on the Riemann sphere C ∪ ∞ would be consider
chaotic, even though most orbits converge to either zero or infinity. My own feeling is that
a dynamical system should only be called chaotic if most orbits behave chaotically. Thus
it would be quite reasonable to call a system chaotic if it not only has positive topological
entropy but also is transitive. (Compare [Glasner and Weiss].) The very idea of chaos
suggests measure theoretic ideas, and definitions often involve derivatives also (in the guise of
Liapunov exponents or homoclinic points ; see [Guckenheimer and Holmes]). However, there
are some purely topological properties which seem intimately related to chaotic behavior.
The most fundamental of these is sensitive dependence, as discussed in §1B and §2C. Let us
first discuss sensitive dependence at a point.
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4. BASIC CONCEPTS

Definition. The map f : X → X exhibits sensitive dependence at the point x0 ∈
X if there exists a number ε > 0 with the following property: For every neighbor-
hood of x0 , there exists a point y0 in the neighborhood and an integer n ≥ 0 so that
d(f◦n(x0) , f

◦n(y0)) > ε .

In other words, the two orbits x0 7→ x1 7→ · · · and y0 7→ y1 7→ · · · , with initial points
x0 and y0 in the given neighborhood, must satisfy d(xn , yn) > ε for at least one n ≥ 0 .
Of course this integer n must depend on the choice of neighborhood: If we start with a
very small neighborhood, then it will be necessary to iterate many times in order to obtain
the required separation.

We will usually assume that X is compact. It is then not difficult to show that this
property is invariant under topological conjugacy: it does not depend on the particular
choice of metric. However, for non-compact X it definitely does depends on the metric.
As an example, if we use the Euclidean metric d(x, y) = |x− y| on the set of positive real
numbers x > 0 , then the doubling map x 7→ 2x exhibits sensitive dependence at every
point. But if we use the metric d(x, y) = | log x − log y| , then the doubling map is an
isometry, and hence is not sensitively dependent anywhere. (Equivalently, the doubling map
is topologically conjugate to the translation y 7→ y + log 2 on the real line, which is not
sensitively dependent, where y = log x .)

The opposite of sensitive dependence is stability, in the sense of Liapunov.

Definition. The map f : X → X is Liapunov stable at a point x0 ∈ X if, for every
ε > 0 , there exists a neighborhood N of x so that

d(f◦n(x0) , f
◦n(y0)) < ε

for every y0 in N and every n ≥ 0 . This same idea can be expressed by saying that
the family of iterates {f ◦n}n≥0 is equicontinuous at x0 . Evidently f exhibits sensitive
dependence at x0 if and only if it is not Liapunov stable at x0 .

There is a classical family of examples, studied by P. Fatou and G. Julia, which displays
the contrast between these two kinds of dynamic behavior in particularly striking fashion.
If f is a rational map from the Riemann sphere C ∪ ∞ to itself, then by definition the
set of points of Liapunov stability ( = equicontinuity of the family of iterates) is called the
Fatou set of f , and its complement is called the Julia set. The Fatou set is always open,
or equivalently the Julia set is always compact. Furthermore, in the non-linear case, f
restricted to the Julia set always exhibits sensitive dependence. (See for example [Milnor
[1999].) We will return to this subject in Example 2 below.

As in §2C, if f exhibits sensitive dependence at every point of X , and if further the
number ε can be chosen as a constant, independent of x0 , then we say briefly that f
exhibits sensitive dependence. Again, this concept depends on an explicit choice of metric in
general. However, if X is compact, then it does not depend on the metric.

One extremely interesting definition has been given by [Devaney], as improved by [Banks
et al.]. (See also [Glasner and Weiss].)

Definition. A dynamical system (X, f) is chaotic in the sense of Devaney , if X has
infinitely many elements, and if the following two conditions are satisfied:

(i) the set of all periodic points is everywhere dense in X , and
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(ii) f is topologically transitive.

The following statement is unusual in that the conclusion makes essential use of the metric,
although the hypothesis does not.

Theorem 4.8 (Banks, Brooks, Cairns, Davis and Stacy). If the

dynamical system (X, f) is Devaney chaotic, then for any metric compatible
with the topology, it exhibits sensitive dependence on initial conditions.

Proof. Choose two different periodic orbits O1 and O2 , and let 4 ε > 0 be the
minimum distance from a point of O1 to a point of O2 . Let N be an arbitrarily small
neighborhood of an arbitrary point of X . Choose a periodic point x0 ∈ N , and let p ≥ 1
be its period. This point x0 must have distance ≥ 2 ε from at least one of the two preferred
periodic orbits, say from O1 . Choose a neighborhood U of a point z0 ∈ O1 which is so
small that, for 0 ≤ n < p , the image f ◦n(U) is contained in the open ε-neighborhood
of the corresponding point zn ∈ O1 . Since f is topologically transitive, we can choose a
point y0 ∈ N and an iterate ym = f◦m(y0) which belongs to this neighborhood U . Now
choose n so that m+ n is divisible by p , with 0 ≤ n < p . Then xm+n = f◦m+n(x0) is
equal to x0 , but

ym+n = f◦n(ym) ∈ f◦n(U)

has distance < ε from zn ∈ O1 , and hence has distance > ε from xm+n = x0 . Thus
x0 , y0 ∈ N but d(xm+n , ym+n) > ε , where ε is a uniform constant as required. ¤

One objection to this definition is that, in higher dimensions, a dynamical system may
exhibit all of the other symptoms of chaotic behavior without having any periodic points at
all. (Compare Example 4 below.) The following properties seem to incorporate the intuitive
idea of chaotic behavior, in topological dynamics, and yet do not require any periodicity.

Definition. A dynamical system (X, f) is called topologically 2-transitive if the carte-
sian product f × f mapping X ×X into itself is topologically transitive. It is topologically
mixing if for any pair U and V of non-vacuous open sets there exists an integer n0 so
that

f◦n(U) ∩ V 6= ∅
for all n ≥ n0 . (Note: Topologically 2-transitive maps are sometimes called “weakly
mixing”. Compare [Denker et al.].)

Lemma 4.9. Every topologically mixing dynamical system is topologically 2-
transitive. If f is topologically 2-transitive, and if X has more than one point,

then f exhibits sensitive dependence using any metric. Furthermore, if f is

topologically 2-transitive and X is compact metric, then every iterate f ◦n is

topologically transitive.

Proof of 4.9. The first statement is clear. To prove that 2-transitivity implies sensitive
dependence, choose open sets V1 and V2 which are separated by some positive distance.
Now for any open set U we can find a forward iterate which intersects both V1 and V2 .
Finally, the statement that 2-transitivity implies that f ◦n is transitive follows easily from
4.6. ¤

In fact topological mixing is an extremely strong form of sensitive dependence. For a
topologically mixing map of a compact metric space, note that f ◦n(U) comes within distance
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ε of every point of X , provided that U is a non-vacuous open set and n is sufficiently
large. Thus, if we can only measure distances to an accuracy of ε , then measurement of x
yields absolutely no information about the location of f ◦n(x) for large n .

To conclude this section, let us give some examples.

Example 1. All of the dynamical systems studied in §2 (for example the quadratic
interval map x 7→ 2x2 − 1 , and the one or two-sided 2-shift) are both Devaney chaotic and
topologically mixing. Proofs are easily supplied. In the case of the angle doubling map on
the circle, this statement generalizes in two ways:

Example 2. Following Fatou and Julia, let f be a rational map of degree two or more
from the Riemann sphere C ∪ ∞ to itself. The Julia set J ⊂ C ∪ ∞ can be defined as
the closure of the set of repelling periodic points. Alternatively, it can be defined as the set
of points which are not Liapunov stable. (Compare the discussion at the beginning of this
subsection.) The map f restricted to its Julia set J is always Devaney chaotic and mixing.
(See for example [Milnor 1999].) In the special case of the polynomial map f(z) = z2 , the
Julia set is the unit circle, so we recover the angle doubling example.

Example 3. Now let us replace the circle R/Z by the torus T2 = R2/Z2 . Consider a
linear map

F (τ , υ) = (aτ + bυ , cτ + dυ)

from T2 to itself, where [
a b
c d

]
(4 : 3)

is a matrix of integers with determinant ad − bc 6= 0 . Thus F is a homeomorphism if
ad− bc = ±1 , and is a many-to-one map otherwise.

Lemma 4.10. The periodic points of F are dense in T2 . Furthermore, If the

eigenvalues λ1 and λ2 of this matrix are off the unit circle, |λj | 6= 1 , then F
is topologically mixing and hence chaotic.

Proof. For every integer q ≥ 1 which is relatively prime to |ad − bc| , let Aq be the
finite set consisting of all (τ , υ) ∈ T2 such that both τ and υ are rational numbers with
denominator q , when expressed as fractions in lowest terms. Then it is not difficult to check
that F maps Aq as a one-to-one map onto itself. In fact the union of the Aq is precisely
the set of all periodic points of F . Clearly this set is dense in T2 .

Now suppose that the eigenvalues of (4 : 3) are off the unit circle. If both eigenvalues
are greater than 1 in absolute value, then it is not hard to see that F is locally expanding,
in a suitably chosen Riemannian metric (as defined in §4E below), and hence that the
successive forward iterates of any open disk contain disks which are larger and larger, until
they cover the entire torus. This certainly implies topological mixing. Now suppose that
|λ1| > 1 > |λ2| > 0 . Since the eigenvalues are not both integers, and are not complex
conjugates, they must be real and irrational. Let L be any line segment of length a which
is parallel to the λ1 -eigendirection. Then the image F (L) will be a parallel line segment of
length |λ1| a > a . Note that the slope of L is irrational, since otherwise we could choose
such a line segment joining two integer points. This would imply that F (L) is a parallel line
joining two integer points, which is impossible since λ1 is irrational. Any open set U 6= ∅
contains such a line segment, say of length ε , and the length of the n-th forward image
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F ◦n(L) is |λn
1 |ε , which tends to infinity as n → ∞ . But since the slope is irrational, it

is not difficult to show that these image line segments fills out the torus more and more
densely as n → ∞ . (Compare Theorem 3.7.) In particular, for any open set V 6= ∅ we
have f◦n(L) ∩ V 6= ∅ for large n , which again proves topological mixing. ¤

Example 4. I am indebted to Philip Boyland for the observation that not every topo-
logically mixing system possesses periodic points. Consider for example any compact Rie-
mannian manifold M of negative curvature. The geodesic flow {gt} on the unit tangent
bundle T1M assigns to each unit tangent vector v at x ∈M and each real number t > 0
the tangent vector gt(v) at the end of the geodesic segment of length t which starts at x
in the direction v . The length spectrum of {gt} , that is the collection of all lengths of closed
geodesics, is a closed and countable collection of real numbers. Now for any t > 0 which does
not a rational multiple of any element from this length spectrum, the map gt : T1M → T1M
has no periodic points at all, and hence is not chaotic in Devaney’s sense. Yet this map is
topologically mixing. (See for example [Hopf], [Ornstein and Weiss], [Ballmann and Brin],
[Burns]; and note that if a flow {ft} is mixing then each individual map ft with t > 0
must also be mixing.) An even more startling example is the horocycle flow on a compact
surface of negative curvature, which is not only mixing but also minimal. (See [Marcus].) If
a flow {ft} is minimal, then evidently no ft with t > 0 can have a periodic point. Another
startling example, constructed by [Rees], is a minimal homeomorphism of the 2-torus which
has positive topological entropy, and hence has sensitive dependence.

On the other hand, for maps in dimension one, it is impossible to have any form of
complicated dynamics without infinitely many periodic points. (Compare [Misiurewicz and
Szlenk], [Milnor and Thurston].) The same is true for diffeomorphisms in dimension two.
(See [Katok].) [Kuperberg] has shown that there exist smooth flows on the 3-dimensional
sphere with no periodic orbits at all. However, I don’t know how complicated the associated
dynamics can be.

——————————————————

§4E. Forward Expansive Maps. This section will discuss several properties which are
similar to sensitive dependence but much sharper. To simplify the discussion, we consider
only compact metric spaces.

Definition. A map f : X → X from a compact metric space to itself is forward

expansive (also called positively expansive) if there exists a number ε > 0 so that, for any
two points x0 6= y0 in X , there exists an integer n ≥ 0 with d(f ◦n(x0) , f

◦n(y0)) > ε .

It is not difficult to check that this property does not depend on the particular choice of
metric. However, the constant ε does depend of the metric, and the number of iterations
n must certainly depend on the choice of x0 and y0 . For if x0 and y0 are extremely
close, then it is necessary to iterate many times in order to separate them.

If X has no isolated points, then clearly every forward expansive map exhibits sensitive
dependence. The converse is false. For example, for the quadratic map q(x) = 2x2 − 1 of
§2A, given any ε > 0 we can choose 0 < x < ε/2 . Since f(x) = f(−x) , it follows that
the maximum separation for the orbits of x and −x is given by

sup
n≥0

|f◦n(x)− f◦n(−x)| = 2x < ε .

Thus q is not forward expansive, although q exhibits sensitive dependence by §2C.
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In order to illustrate this concept, let us make a detailed study of the one-dimensional
case. First consider a closed interval.

Lemma 4.11. No map f from a closed interval I to itself can be forward

expansive.

Proof. If f is forward expansive, then it must certainly be locally one-to-one. Hence
it must be strictly monotone, either increasing or decreasing. Replacing f by f ◦ f if
necessary, we may assume that it is monotone increasing. If f(x) ≤ x for all x , then two
points within ε of the left hand end of I will remain ε-close through all forward iterations.
But otherwise, if U is a connected component in the set of x with f(x) > x , then two
points near the right hand end of U will remain ε-close under iteration. Thus f cannot
be forward expansive. ¤

Lemma 4.12. A map from the circle R/Z to itself is forward expansive if and

only if it is topologically conjugate to a linear map f(τ) ≡ n τ (mod Z) , where
n is some integer with |n| ≥ 2 .

Caution: Even if f is a differentiable map, it is definitely not asserted that the topo-
logical conjugacy is differentiable. (Compare Problem 4-j.)

We will give most of the proof here. However, the argument will make use of a theorem
of Poincaré which will be proved only in §8.

Proof of 4.12. It is easy to check that every such linear map is forward expansive.
To prove the converse statement, we will use the following two remarks. A non-degenerate
interval I ⊂ R/Z will be called periodic if some forward iterate f ◦k(I) is contained in I ,
and will be called a wandering interval if the forward images f ◦k(I) are pairwise disjoint.
Note the following.

Assertion. No forward expansive map of the circle can have either a periodic
interval or a wandering interval.

In fact the first statement follows easily from 4.11. To prove the second, if
f◦k(I) ∩ f◦`(I) = ∅ for 0 ≤ k < ` < ∞ , then the sum of the lengths of the f ◦k(I)
is finite, hence this length tends to zero as k → ∞ , and it follows easily that f is not
forward expansive. This proves the Assertion.

Next recall that every map f from R/Z to itself lifts to a map F : R → R satisfying
the identity

F (x+ 1) = F (x) + n ,

where n is an integer constant called the degree. If f is forward expansive, then f is
locally one-to-one, and it follows, as in the proof of 4.11, that F must be strictly monotone,
either increasing or decreasing. In particular, the degree n cannot be zero.

For a monotone circle map f of degree n = 1 , a classical theorem, essentially due to
Poincaré, asserts that f is topologically conjugate to an irrational rotation,
τ 7→ τ + constant , if and only if it has no wandering interval and no periodic interval.
A proof of Poincaré’s theorem will be given in §8. Since a rotation clearly cannot be forward
expansive, it follows that no degree one map of the circle can be forward expansive. (For an
alternative proof, see 4.15 below.)
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Similarly, if f has degree −1 then f ◦ f has degree +1 and hence cannot be forward
expansive. (For a more elementary proof, see Problem 4-e.)

The various cases with |n| ≥ 2 are all similar to each other. To fix ideas, let us restrict
attention to the case n = 2 . Then F (k) = F (0) + 2k for any integer k . Thus F (k) is
greater than k if the integer k is close to +∞ , and less than k for k near −∞ . By
the intermediate value theorem, it follows that F has at least one fixed point x0 = F (x0) .
Now for each dyadic fraction α = m/2k we will choose a number xα ∈ R by induction on
k so as to satisfy the identities

F (xα) = x2α and xα+1 = xα + 1 .

To start the induction, set xm = x0 + m for every integer m , and note that
F (xm) = x2m . Now if α = m/2k then, assuming inductively that x2α has already been
defined, we set xα equal to the unique solution to the equation F (xα) = x2α . It is easy
to see that these numbers are well defined, with xα+1 = xα + 1 , and xα < xβ whenever
α < β .

Now let G : R → R be the unique monotone map which satisfies G(xα) = α for every
dyadic fraction α . In other words, we set

G(x) = inf {α ; xα > x} = sup {α ; xα < x} .
It is not difficult to check that G is continuous and monotone, with

G(xα) = α , G(x+ 1) = G(x) + 1 , and G(F (x)) = 2G(x) .

Thus G induces a monotone degree one map g : R/Z → R/Z which semi-conjugates f to
the doubling map τ 7→ 2 τ . We must prove that g is actually a homeomorphism. Otherwise,
it would map some non-trivial interval J ⊂ R/Z to a single point. Taking a maximal such
interval, there are two possibilities. If the image point in R/Z is eventually periodic under
doubling, then f has a periodic interval. But if this image point is not eventually periodic,
then it follows that f has a wandering interval. Since both possibilities are excluded by the
Assertion above, it follows that g must be a homeomorphism, as required. ¤

The word “expansive” should not be confused with “expanding”, which refers to a
stronger property which depends sharply on the particular choice of metric. In fact the
reader should beware, since the word “expanding” has been used with several slightly dif-
ferent meanings ([Shub 1969, 1970], [Ruelle 1978], [Gromov]). However, remarkable work of
[Reddy] and [Coven and Reddy] shows that many of these definitions are essentially equiva-
lent. (See 4.14 below.)

First a slightly weaker notion.

Definition. The map f from a compact metric space to itself is locally distance increas-
ing if every point has a neighborhood U so that

d(f(x) , f(y)) > d(x, y)

whenever x , y ∈ U .

Lemma 4.13. If X is compact with infinitely many elements, then no homeo-

morphism from X to itself can be locally distance increasing.

The following rather easy proof is due to Shub. (A somewhat sharper result was proved
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much earlier by Gottschalk and Hedlund, by a more difficult argument. Compare 4.15 below.)

Proof of 4.13. Suppose that f is a locally distance increasing homeomorphism of
a compact metric space. It follows easily, using uniform continuity, that f−1 is locally
distance decreasing. Hence there is an ε > 0 so that

d(f−1(x) , f−1(y)) < d(x, y)

whenever 0 < d(x, y) < ε . For any integer n ≥ 1 , let δ(n) ≥ 0 be the smallest real
number δ such that X can be covered by n closed balls {x ; d(x , xi) ≤ δ} of radius δ .
An easy compactness argument shows that such a number δ(n) exists, and that δ(n) tends
to zero as n→∞ . In particular, we can choose n so that δ(n) < ε . If X has infinitely
many elements, then δ(n) > 0 , and applying f−1 we obtain a covering by n closed sets,
each of which is contained in a ball of radius strictly less than δ(n) , which is impossible.
This contradiction completes the proof. ¤

As an application, consider a subset X of the circle R/Z which maps homeomorphi-
cally onto itself under the angle doubling map. If X is compact, then it must be finite.

This follows, since the angle doubling map is clearly locally distance increasing. (For an
application of this statement in holomorphic dynamics, due to Sullivan and Douady, see
[Milnor 1999, §18.8].)

Next we introduce a slightly sharper condition.

Definition. The map f on a metric space f is locally expanding if there is a real
number λ > 1 so that every point has a neighborhood U with

d(f(x) , f(y)) ≥ λd(x, y)

for every x , y ∈ U . We will say that f is locally λ-expanding when it is useful to emphasize
the precise value of this constant λ > 1 .

One particularly important example is the case of a compact Riemannian manifold M ,
with metric d(x, y) equal to the length of the shortest path from x to y . Every smooth
map f : M → M induces a linear map Df from the tangent vector space at x to the
tangent vector space at f(x) . Clearly f is locally expanding if and only if

‖Df(v)‖ > ‖v‖
for every non-zero tangent vector v , where ‖v‖ denotes the Riemannian norm of v .

According to [Gromov], the existence of a locally expanding map on a Riemannian man-
ifold implies very strong restrictions on its geometry. In fact, M must be diffeomorphic to a
quotient L/Γ where L is a nilpotent Lie group and Γ is a discrete group of affine transfor-
mations of L . (By definition, an “affine transformation” is a composition of automorphisms
and left translations.)

Clearly every locally expanding map is locally distance increasing. Furthermore, it is
not difficult to check that every locally distance increasing map on a compact metric space
is forward expansive (Problem 4-i). The following converse statement has been proved by
[Reddy].

Theorem 4.14. Given any forward expansive map on a compact metrizable
space, there exists a new metric, compatible with the topology, so that f is locally
expanding with respect to this new metric.
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I will not try to give the proof, which depends on a delicate Metrization Lemma of A.
H. Frink.

Combining 4.13 and 4.14, we have the following result, which is due to [Gottschalk and
Hedlund, pp. 85-86].

Corollary 4.15. If X is a compact metric space with infinitely many elements,

then no homeomorphism of X can be forward expansive.

Thus a homeomorphism of an interesting space can never be either forward expansive
or locally expanding. (However, closely related concepts are very important when studying
the dynamics of homeomorphisms. The analogue of forward expansiveness is discussed in
Problem 4-k. The analogue of the locally expanding property is “hyperbolicity”: See for
example [Robinson] or [Guckenheimer and Holmes].)

We conclude this section with a rather technical lemma about locally expanding maps.
[Ruelle 1978] proved important measure theoretic properties for maps from a compact metric
space to itself which are “locally expanding” (as defined above) and which satisfy one further
condition, namely the conclusion of the following lemma. He used the term “expanding” for
maps satisfying both of these these conditions.

Lemma 4.16 (Coven and Reddy). If f is an open and locally λ-expanding
map from the compact metric space X to itself, then for ε > 0 sufficiently

small, f maps the open ε-neighborhood Nε(x) of an arbitrary point x ∈ X
homeomorphically onto an open set which contains the neighborhood Nλε(f(x)) .

Note: The condition that f is an open map, that is, that it maps open sets to open
sets, is essential. However, in the most important application, to manifolds, this condition
comes free. Brouwer’s classical Theorem on Invariance of Domain says that every one-to-one
map from an open set U ⊂ Rn into Rn maps U homeomorphically onto an open set. (See
for example [Hurewicz and Wallman].) As a corollary, every locally one-to-one map from
a topological manifold into itself is an open map. This statement applies also to manifolds
with boundary, provided that the map carries boundary into boundary.

Proof of 4.16. Otherwise, for each n , taking ε = 1/n , we could find two points xn
and zn so that d(f(xn) , zn) < λ/n but zn 6∈ f(N1/n(xn)) . Choose some subsequence of
{xn} which converges to a point x̂ ∈ X . Then the corresponding subsequences of {f(xn)}
and {zn} both converge to f(x̂) . Since f is open and locally one-to-one, and since X is
compact, we see easily that we can choose ε > 0 so that f maps Nε(x̂) homeomorphically
onto an open neighborhood of f(x̂) , stretching all distances by at least λ . For n sufficiently
large, zn will belong to f(Nε(x̂)) , hence zn = f(yn) for some uniquely determined yn ∈
Nε(x̂) . Then d(xn , yn) ≥ 1/n by hypothesis, hence d(f(xn) , zn) = d(f(xn) , f(yn)) ≥
λ/n , contradicting the choice of xn and zn . ¤

——————————————————

§4F. Problems for the Reader.

Problem 4-a. Chain recurrence. With definitions as in §4B, show that the set
CR(f) of all chain recurrent points is a closed set, and that it contains the non-wandering
set Ω(f) . Show also that each chain component is a closed set, and show that the set of

4-17



4. BASIC CONCEPTS

all pairs (x, y) with x Â y forms a closed subset of X × X . If X is compact, then (1)
show that this partial ordering does not depend on the choice of metric; and (2) show that
CR(f◦2) = CR(f) , or more generally that CR(f ◦k) = CR(f) . If f has the shadowing
property of Problem 3-c, show that Ω(f) = CR(f) . On the other hand, for the map of
Figure 21 on the circle, show that every point is chain recurrent, but only one point is
non-wandering.

Problem 4-b. Chain recurrence for a flow or semi-flow. Let X be a metric
space, and let {ft : X → X}t≥0 be a one parameter semi-group of mappings of X into
itself, continuous in both variables. Given ε > 0 and c > 0 , by an (ε, c)-chain from x to
y will be meant a sequence x0 , x1 , . . . , xn of length n ≥ 1 with x = x0 and y = xn
such that, for each 0 ≤ i < n there exists a number ti ≥ c so that

d(fti(xi) , xi+1) < ε .

Define the chain partial ordering by saying that x Â y if and only if there exists some constant
c > 0 with the following property: for every ε > 0 there should exist an (ε, c)-chain from
x to y . In particular, define x to be chain recurrent 3 if and only if x Â x . Show that
this relation is transitive, and that the set of (x, y) with x Â y forms a closed subset of
X ×X .

Problem 4-c. Many minimal sets for the angle doubling map. The notation n!
will be used for n factorial. Any sequence A = (a1 , a2 , . . . , an!) consisting of n! zeros and

ones can also be considered as a sequence A = (B1 , . . . , Bn) where each Bj ∈ {0, 1}(n−1)!

is a block consisting of (n− 1) ! zeros and ones. For each n ≥ 2 we will inductively choose
three of the possible blocks of length n! to be called “admissible”, and will choose just one
of these to be the “marker” of length n! .

For n = 2 , the block (1, 1) is chosen as the marker, and the blocks (0, 0) and
(0, 1) are also admissible.

For n ≥ 3 , consider blocks of the form (B1 , . . . , Bn) where each Bj is an
admissible (n − 1)!-block, but only B1 is the (n − 1)!-marker block. Choose
three of these to be the admissible blocks of length n! , and choose the largest in
lexicographical order to be the n!-marker block.

Thus a sequence of the form (1 , 1 , 0 , . . .) occurs at the beginning of an admissible 3!-block
and nowhere else. Similarly, for each n ≥ 4 , the beginning of any admissible n!-block can
be uniquely recognized.

Now let b ∈ {0, 1}N be the infinite sequence of zeros and ones whose initial n!-block is
equal to the marker block for each n ≥ 2 , and let

M(b) = ω(b , σ) ⊂ {0, 1}N

be the ω -limit set of b under the one-sided shift map σ : {0, 1}N → {0, 1}N . (See §1D.)
Then M(b) is a minimal set. In fact, for every n ≥ 3 every sequence b′ ∈M(b) contains

3 The definition given for example in [Guckenheimer and Holmes] is similar, but takes c identically equal
to +1 . It may seem unnatural to give preference to the particular time t = 1 . However, one usually
assumes that X is compact, and in that case their definition of chain recurrence is completely equivalent
to the one given above. For a quite different version of the definition, see [Ruelle 1989].
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infinitely many copies of the n!-marker block. (These copies repeat periodically with period
(n+1)! .) Hence we can always choose some iterate σn of the shift map so that the shifted
sequence σn(b

′) starts with this n!-marker block. Now as n → ∞ it follows that the
elements σn(b

′) ∈ {0, 1}N converge to the limit b . This implies that M(b) is a minimal
set. Note that every minimal set constructed in this way is infinite.

There are uncountably many different ways of choosing which blocks are to be called “ad-
missible”, and hence uncountably many ways of choosing b . Show that the corresponding
uncountably many minimal sets M(b) are pairwise disjoint.

Finally, identifying each element of {0, 1}N with the binary expansion of an angle in
R/Z , conclude that the doubling map on R/Z also has uncountably many distinct minimal
sets. (For sharper and more general statements of this type, see [Boyland].)

Problem 4-d. Measure of meager sets. Given any number 0 < λ ≤ 1 , show that
there exists a disjoint collection of open intervals of total length λ contained in the unit
interval I so that their union is dense in I . Conclude that the Lebesgue measure of a
countable intersection of dense open subsets of I , or of a meager subset of I , can be any
number satisfying 0 ≤ λ ≤ 1 .

Problem 4-e. Circle maps of degree −1 . Show that a homeomorphism f of R/Z
of degree −1 has exactly two fixed points, and that an interval bounded by these two points
maps homeomorphically onto itself under f ◦ f .

Problem 4-f. Forward expansiveness of f ◦k . Using uniform continuity, show that
if f is forward expansive then every iterate f ◦k is also. (Note: If f ◦k is forward expansive,
then it follows trivially that f is also.)

Problem 4-g. Local expansion of f ◦k . If f is locally λ-expanding, show that
the iterate f◦k is locally λk -expanding for every k > 0 . Conversely, if f ◦k is locally
λk -expanding, show that f is locally λ-expanding under the new metric

d̂(x, y) =
k−1∑

i=0

d(f◦i(x) , f◦i(y))/λi ,

which is also compatible with the given topology.

Problem 4-h. Differentially expanding maps. (Compare [Shub].) Let M be
a compact Riemannian manifold with Riemannian distance function d(x, y) . For a C1 -
smooth map f : M →M , show that the following three conditions are equivalent:

(1) There are constants c > 0 and λ > 1 so that

‖Df◦n(v)‖ ≥ c λn ‖v‖
for every tangent vector v and every n ≥ 0 .

(2) Some iterate f◦k is locally expanding.

(3) The map f itself is locally expanding with respect to the distance function associated
with the new Riemannian metric

‖v‖′ =
√
‖v‖2 + ‖Df(v)‖2 + · · ·+ ‖Df◦k−1(v)‖2 .

Problem 4-i. Locally distance increasing implies forward expansive. If
d(f(x), f(y)) > d(x, y) whenever d(x, y) < 2 ε , for a map of a compact metric space,
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4. BASIC CONCEPTS

show that any two distinct orbits x0 7→ x1 7→ · · · and y0 7→ y1 7→ · · · must be separated
by a distance d(xn , yn) > ε for some n ≥ 0 .

Problem 4-j. Non-smooth conjugacies. Given any complex constant a with |a| <
1 , show that the “Blaschke product”

f(z) = z(z − a)/(1− ā z)

carries the unit circle |z| = 1 onto itself with derivative

d log f(z)

d log z
= 1 +

1− aā

‖z − a‖2 > 1 .

Conclude that this map of the unit circle is topologically conjugate to the doubling map on
R/Z . If a is real, show that the multiplier df(z)/dz at the fixed point z = 1 is equal to
2/(1− a) , and conclude that no two of these maps are differentiably conjugate.

Problem 4-k. Expansive homeomorphisms. By definition, a homeomorphism f
of a compact metric space is expansive if there exists an ε > 0 so that for every x 6= y there
exists an integer n (which now may be either positive, negative or zero) so that

d(f◦n(x) , f◦n(y)) > ε .

For k > 1 , show that f ◦k is expansive if and only if f is expansive. Show that the
two sided shift (Problem 2-f) is expansive but not forward expansive, and that the map
F1 on the solenoid (§2E) is expansive but not forward expansive. Similarly show that
torus automorphisms as descibed in Example 3 of §4D, with ad − bc = ±1 and |a + d| >
1 + (ad− bc) , are expansive but not forward expansive.

Problem 4-`. Expansive, with an attracting fixed point. If X is the countable
set consisting of points an = n/

√
1 + n2 for n ∈ Z , together with the two limit points

a±∞ = ±1 , show that the shift map an 7→ an+1 is expansive (but not forward expansive),
with +1 as an attracting fixed point.

Note: Here is is essential that X is a non locally connected set. According to [Lewowicz],
no expansive homeomorphism of a compact manifold can have a Liapunov stable point. In
fact I understand from a private communication that Lewowicz is able to prove the following
sharper statement: Every expansive homeomorphism of a compact Riemannian manifold
exhibits sensitive dependence.

J. Milnor, Stony Brook
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