
CHAPTER IV. DIFFERENTIABLE DYNAMICS

§11. Geodesics and Classical Mechanics.

The simplest and best known examples of measure preserving transformations arise from
ordinary differential equations, and in particular from the Hamiltonian differential equations
which are studied in the field of Classical Mechanics, and also in Riemannian Geometry.
This section will outline some of the basic ideas. For more detailed presentations of Clas-
sical Mechanics, see for example [Arnold, 1978], [Abraham and Marsden], or [McDuff and
Salamon]; and for Riemannian Geometry see for example [Boothby].

§11A. Volume Preserving Flows. Recall that a smooth map y = f(x) , defined on
an open subset of the Euclidean space �

n , is volume preserving if and only if the Jacobean
determinant

Jf(x) = det [∂yi/∂xj ]

is identically equal to ±1 . Now consider the smooth flow {ft} generated by a differential
equation of the form

dxi
dt

= vi(x1 , · · · xn) ,

or briefly dx/dt = v(x) , where the velocity vector field v is a map from some region in
�

n to �

n which is sufficiently smooth that local solutions exist, are unique, and depend
differentiably on the initial point. The solution curves, locally at least, give rise to a smooth
flow of the form

x(t) = ft(x(0)) with fu+t = fu ◦ ft and f0(x) ≡ x .

The following statement is well known.

Lemma 11.1. Every ft is volume preserving if and only if the divergence

∇ · v =
∑

i ∂vi/∂xi is identically zero.

Outline Proof. If we consider the determinant of a square matrix A = [aij ] as a
function of the entries aij , then the partial derivative ∂ detA/∂aij evaluated at the identity
matrx A = I is equal to +1 if i = j , and is zero otherwise. It follows that the derivative
of the function t 7→ Jft(x) , evaluated at t = 0 , is given by

∂Jft(x)

∂t

∣

∣

∣

∣

∣

t=0

=
∂ det[∂yi/∂xj ]

∂t

∣

∣

∣

∣

∣

t=0

=
∑

i

∂

∂t

∂yi
∂xi

=
∑

i

∂

∂xi

∂yi
∂t

=
∑

i

∂vi
∂xi

= ∇ · v .

In the volume preserving case, it follows that ∇ · v is identically zero. Conversely, if
∇ · v ≡ 0 , then taking the derivative of the identity

log Jfu+t(x) = log Jft(x) + log Jfu(y)

with respect to u at u = 0 , where y = ft(x) , we see easily that d log Jft(x)/dt is
identically zero. This proves that the flow is volume preserving. ¤

Similarly, if the divergence is negative, then Jft(x) decreases monotonically as a func-
tion of t .

In applications, one often wants to work on a more general manifold, where volumes are
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11. GEODESICS AND MECHANICS

computed in local coordinates by an integral of the form

Voln(U) =
∫

U
w(x) dx1 · · · dxn ,

and where w(x) > 0 is a smooth weighting function. As an example, in Riemannian
geometry, with a metric of the form ds2 =

∑

gijdx
idxj , one uses a weighting factor of

w(x) =
√

det[gij ] , in order to obtain an n-dimensional volume which is independent of the

choice of local coordinates. The equation for a volume preserving flow in this more general
case is discussed in Problem 11-a, and takes the form

v · ∇w + w ∇·v = 0 .

——————————————————

§11B. Classical Mechanics. We consider physical systems, without friction, which
are described by second order differential equations.

Example 11.2. An Elementary Example. Consider a roller-coaster, traveling with-
out friction along a track which has equation

x = x(s) , y = y(s) , z = z(s) ,

with horizontal coordinates x , y and height z . Here s is to be the arclength along

the track, so that the speed ṡ = ds/dt is equal to
√

ẋ2 + ẏ2 + ż2 . Assuming the law of
conservation of energy, we can derive the associated Hamiltonian differential equation as
follows. Let m be the mass and γ the gravitational field strength. The potential energy is
given by Φ(s) = γ mz(s) , and the kinetic energy is equal to m ṡ2/2 . Thus the total energy
is

Φ(s) + 1
2
m ṡ2 = constant .

Differentiating with respect to time, and then dividing by ṡ , this yields the differential
equation

dΦ/ds + m s̈ = 0 ,

where s̈ = d2s/dt2 . If we introduce the 2-dimensional phase space, consisting of all pairs
(s, p) where s is the position coordinate and p = m ṡ is the momentum coordinate, and if
we express the total energy as a function

H(s, p) = Φ(s) +
1

2m
p2

of these coordinates, then this equation can be written in the “Hamiltonian normal form”:

ṡ =
∂H

∂p
, ṗ = −

∂H

∂s
. (11 : 1)

By definition, this total energy, expressed as a function H(s, p) in these coordinates, is
called the Hamiltonian function.

Example 11.3. Newtonian Gravitation. Now consider a system of k particles in
euclidean 3-space, where the i-th particle has position

→

x i and mass mi . As in §3C, it is
convenient to combine the k 3-dimensional vectors

→

x i= (xi1 , xi2 , xi3) into a single 3k -

dimensional vector x = (
→

x1 , . . . ,
→

xk) . If these particles interact by a conservative force
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11B. CLASSICAL MECHANICS

field, associated with the potential energy Φ(x) = Φ(
→

x1 , . . . ,
→

xk) then the appropriate
system of differential equations is

mi
d2xij
dt2

= −
∂Φ

∂xij
(11 : 2)

for 1 ≤ i ≤ k and 1 ≤ j ≤ 3 . One important example is provided by the Newtonian
k -body problem of §1A, with potential function

Φ(x) = −G
∑

i<j

mimj

‖
→

x i −
→

x j ‖
. (11 : 3)

If we introduce the conjugate momentum coordinates
→

p i = mi d
→

x i /dt and the total energy
function

H(x,p) = Φ(x) +
k
∑

i=1

1

2mi
‖

→

p i ‖
2 ,

then Equation (2) can be written in the Hamiltonian form

ẋij =
∂H

∂pij
, ṗij = −

∂H

∂xij
. (11 : 4)

Example 11.4. Mechanical Systems. More generally, consider any mechanical sys-
tem with finitely many degrees of freedom. We assume that the set of all configurations or
positions of the system forms a smooth manifold M . The phase space, consisting of all pairs
(position, velocity) or (position, momentum) can then be identified with the tangent bundle
TM , or with the cotangent bundle T ∗M . As an example, suppose that we are studying
the motion of a rigid body, which might be a football, an airplane, or a tumbling asteroid.
Then the configuration space M has dimension n = 6 , since we need three coordinates to
specify position and three further rotation coordinates. (In fact M can be identified with
the six dimensional group consisting of all rigid motions of Euclidean 3-space.) Note that it
is not possible to cover this M with just one smooth coordinate system. For this example,
the phase space TM is twelve dimensional, since we need three linear velocity coordinates
and three angular velocity coordinates in order to specify a tangent vector to M .

Near a point ξ of this manifold M , we can choose local coordinates (x1 , . . . , xn) ,
or briefly x . (Here we follow conventions which are often used in Riemannian geometry,

distinguishing between upper and lower indices.) A point (ξ, ξ̇) in the tangent bundle over
ξ in then specified by a pair of n-component vectors, which we may write as (x , v) . Here
v stands for a velocity v = ẋ = dx/dt . Now assume that there are two kinds of energy
associated with each point of phase space, namely a potential energy which depends only
on the position ξ , and a kinetic energy which is a homogeneous quadratic function of the
velocity ξ̇ for each fixed position. Using the local coordinates (x,v) , we will consider the
potential energy as a function Φ = Φ(x) , and the kinetic energy as a function

1
2

n
∑

i,j=1

gij(x) v
ivj .

Here [gij ] is to be a positive definite symmetric matrix which depends smoothly on the
position x . In other words, we assume that the kinetic energy of a mechanical system is

described by a Riemannian metric on its configuration space M , while potential energy is

11-3



11. GEODESICS AND MECHANICS

described by a smooth function Φ : M → � .

Using this kinetic energy metric [gij(x)] , it is often convenient to describe a velocity
v = dx/dt rather by the coordinates p = (p1 , . . . , pn) where

pi =
n
∑

j=1

gijv
j .

A Riemannian geometer would describe the pi as the covariant components of the ve-
locity vector, or as the coefficients of the differential 1-form or covector

∑

i pi dx
i which

is associated to this velocity vector, using the Riemannian metric to pass between tangent
vectors, belonging to the n-dimensional vector space TξM , and covectors, belonging to the
dual vector space T ∗

ξ M = Hom(TξM , � ) .

Physicists describe these coordinates pi as conjugate momentum coordinates associated
with the local coordinates (x1 , . . . , xn) . As an example, for the Newtonian k -body prob-
lem of Example 11.3, the configuration space M has dimension n = 3k . If we use the
cgs system of units, then we might measure the coordinates xi in centimeters, the vi in
centimeters per second, and the gij in grams. The pi would then be measured in gram
centimeters per second, or briefly gm·cm/sec , as is appropriate for a momentum vector.
On the other hand, to study a rigid body with center of gravity fixed at the origin, we might
use three dimensionless angular coordinates xi to describe a point in the configuration space
M . In this case the vi would be angular velocities, with units of sec−1 , the gij would
be moments of inertia with units of gm ·cm2 , and the pi would be angular momenta,
with units of gm·cm2/sec . However, for a more general problem, some of the xi might
be measured in centimeters and some in radians, so that it would be completely confusing
to try to assign units to the various coordinates — the mathematical advantage of being
allowed to work with a more or less arbitrary coordinate system would be lost if we insisted
in keeping track of the physical meanings of individual coordinates. Note however that the
energy functions Φ(x) and 1

2

∑

gijv
ivj do have an invariant physical meaning, and are

measured in gm·cm2/sec2 in all cases.

Let [gij(x)] be the inverse of the matrix [gij(x)] . Then the total energy H can be
expressed as a function

H(x,p) = 1
2

∑

gijpipj + Φ(x)

of these coordinates xi and pi . The time evolution of such a mechanical system is then
described by the Hamiltonian equations

ẋi =
∂H

∂pi
, ṗi = −

∂H

∂xi
. (11 : 5)

One way of deriving these equations, based on a variational principle, will be described in
§11C.

Example 11.5. Geodesic Flow. The geodesic flow on the tangent or cotangent bundle
of a Riemannian manifold provides an important special case. Mathematically, this is just
a “mechanical system” as described above, with a potential energy function Φ(x) which
is identically zero. The corresponding solution curves, say t 7→ ft(x , v) in TM , project
to geodesics x = x(t) in the manifold M , with initial velocity vector ẋ(0) equal to v .
As one example, the physical problem of understanding the motion of a rigid body which
is freely tumbling in empty space, reduces to the mathematical problem of describing the
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11C. CALCULUS OF VARIATIONS

geodesic flow on the 3-dimensional manifold M = SO(3) of configurations, provided with
the left invariant Riemannian metric which measures its angular kinetic energy.

§11C. Calculus of Variations. Let TM denote the tangent vector bundle for a
smooth manifold M . Thus a point of TM can be thought of as a point of M together
with a “velocity vector” at that point. If we have local coordinates x = (x1 , . . . , xn)
in an open subset U ⊂ M , then we have corresponding local coordinates (x , v) =
(x1 , . . . , xn , v1 , . . . , vn) in the subset TU ⊂ TM , where we think of v = (v1 , . . . , vn)
as the possible velocity vector v = dx/dt of a smooth curve t 7→ x(t) in M .

Now consider such a smooth curve t 7→ x(t) ∈ M for 0 ≤ t ≤ 1 , and consider an
integral along the curve of the form

A =
∫ 1

0
L(x , dx/dt) dt , (11 : 6)

where L(x , v) is some prescribed smooth function L : TM → � called the Lagrangian.
This integral A is conventionally called the action associated with the path. A basic problem
in the Calculus of Variations is to choose a path between specified endpoints in M which
minimizes this action integral. More generally, we can consider a smooth variation in the
path depending on an extra parameter u , but fixing the endpoints, and require that the
derivative of the action with respect to u should be zero. The path, for such a value of u ,
is said to be stationary for this action integral.

As examples, if we want to study geodesics on a Riemannian manifold, the appropriate
Lagrangian is just the “kinetic energy” L(x,v) = 1

2

∑

gij(x)v
ivj . For the more general

mechanical system of Example 11.4 above, the appropriate Lagrangian is the difference of
kinetic and potential energy

L(x,v) = 1
2

∑

gij(x)v
ivj − Φ(x) .

However, for the following basic result we can use any smooth function of position and
velocity.

Theorem 11.6 (Euler and Lagrange). A smooth path t 7→ x(t) ∈M , defined

for 0 ≤ t ≤ 1 , is stationary for this integral (11 : 6) with respect to any smooth
variation which keeps the endpoints x(0) and x(1) fixed if and only if it satisfies

the system of differential equations

∂L

∂xj
=

d

dt

∂L

∂vj
(11 : 7)

or more explicitly

∂L

∂xj
=

∑

k

(

∂2L

∂vj∂xk
vk +

∂2L

∂vj∂vk
dvi

dt

)

, (11 : 7′)

where vk is identified with dxk/dt .

Proof. Consider a one-parameter family of paths fu : [0, 1]→M , where u ranges over
a neighborhood of 0 in � . We assume that fu(t) is smooth as a function of two variables,
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11. GEODESICS AND MECHANICS

and that the end points fu(0) and fu(1) are independent of u . The action

A(u) =
∫ 1

0
L

(

fu(t) ,
dfu(t)

dt

)

dt

is then a smooth function of u . We want to compute the derivative dA(u)/du at u = 0 .
Define the variation vector field w(t) along the path x = f0(t) to be the first derivative

w(t) =
∂fu(t)

∂u

∣

∣

∣

u=0
,

or in other words wi(t) = ∂f i
u(t)/∂u|u=0 . Now differentiating under the integral sign and

then integrating by parts, since w(0) = w(1) = 0 , we see that

dA(u)

du

∣

∣

∣

∣

u=0
=

∫ 1

0

n
∑

i=1

(

∂L

∂xi
wi(t) +

∂L

∂vi
dwi(t)

dt

)

dt

=
∫ 1

0

n
∑

i=1

wi(t)
(

∂L

∂xi
−

d

dt

∂L

∂vi

)

dt .

Evidently this vanishes for every choice of variation vector field w if and only if equation
(11 : 7) is satisfied. ¤

Hypothesis. Assume now that the matrix of second derivatives

gjk(x , v) =
∂2L

∂vj∂vk

is non-singular everywhere; and let gij(x , v) be the inverse matrix. Then we can multiply
equation (11 : 7′ ) on the left with gij and sum over j , to form the following.

Lemma 11.7. With gij as above, the Euler-Lagrange equation (11 : 7) is

completely equivalent to the system of equations

dxi

dt
= vi ,

dvi

dt
=

∑

j

gij





∂L

∂xj
−
∑

k

∂2L

∂vj∂xk
vk



 . (11 : 8)

In this last form, we see that the solutions to this differential equation define, locally at
least, a smooth flow on the tangent bundle TM . By definition, this is the Euler-Lagrange
flow , associated with the Lagrangian function L(x,v) on TM . Alternatively, we could
also eliminate the vj , and write (11 : 8) as a second order differential equation of the form

d2x/dt2 = a(x , dx/dt) .

Another consequence of 11.6 is a law of conservation of energy. To see this, let
us compute the derivative of the function L(x,v) as we follow a solution curve
t 7→ (x(t) , ẋ(t)) for the Euler-Lagrange flow. We have

dL

dt
=

∑

i

(

∂L

∂xi
vi +

∂L

∂vi
dvi

dt

)

.
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11C. CALCULUS OF VARIATIONS

Making use of (11 : 7), we can write this as

dL

dt
=

d

dt

∑

i

vi
∂L

∂vi
.

In other words, we have proved the following.

Lemma 11.8 (Conservation of Energy). The quantity

H =
∑

i

vi
∂L

∂vi
(x,v) − L(x,v)

remains constant as we follow the Euler-Lagrange flow.

By definition, this function H is called the Hamiltonian, or the total energy function associ-
ated with the Lagrangian L on the tangent bundle TM . The numbers

pi = ∂L/∂vi (11 : 9)

are called the conjugate momentum coordinates associated with the Lagrangian L . In fact
the hypothesis that the matrix [gij ] = [∂2L/∂vi∂vj ] is non-singular guarantees that the
transformation

(x1 , . . . , xn , v1 , . . . , vn) 7→ (x1 , . . . , xn , p1 , . . . , pn)

is locally a diffeomorphism. For each fixed x , we can think of (p1 , . . . , pn) as the coordi-
nates of a point

dL(x , v)|TxM =
∑

i

pi dx
i

in the cotangent space T ∗

x
M . Thus the transformation

v 7→ dL(x , v)|TxM =
∑

i

pi dx
i

maps the tangent space TxM into the cotangent space T ∗

x
M by a local diffeomorphism.

We will think of H = H(x , p) as a locally defined function on the cotangent space
T ∗M ; but will continue to think of L(x , v) as a function on TM . In particular, when we
write ∂H/∂xi it is understood that p is to be kept fixed; but for ∂L/∂xi it is v that is
fixed. The total differential of H can be computed as:

dH = d
(

∑

vi pi
)

− dL

=
∑

i

(

vi dpi + pi dv
i −

∂L

∂xi
dxi −

∂L

∂vi
dvi

)

,

where the dvi terms cancel by (11 : 9). Comparing this with the equation

dH =
∑

(

∂H

∂pi
dpi +

∂H

∂xi
dxi

)

,

we see that

vi =
∂H

∂pi
,

∂L

∂xi
= −

∂H

∂xi
.

Since vi = dxi/dt , and since dpi/dt = ∂L/∂xi by (11 : 7), we have reduced our equations
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11. GEODESICS AND MECHANICS

to the Hamiltonian form (11 : 5):

dxi

dt
=

∂H

∂pi
,

dpi
dt

= −
∂H

∂xi
.

§11D. Hamiltonian Systems. Consider then any system of first order differential
equations in 2n variables which can be written in this form (11 : 5) . These generate,
locally at least, a flow of the form

(x(t) , p(t)) = ft(x(0) , p(0))

on the 2n-dimensional phase space. One immediate consequence of (11 : 5) is the conser-
vation law for energy

dH(x,p)

dt
=

n
∑

1

(

∂H

∂xi
dxi

dt
+
∂H

∂pi

dpi
dt

)

= 0 .

Thus the flow ft on phase space takes each constant energy hypersurface H = constant
into itself.

Another immediate property is the conservation law for 2n-dimensional volume. In fact,
the divergence of the generating vector field

(x1 , . . . , xn , p1 , . . . , pn) 7→
(

∂H

∂p1
, . . . ,

∂H

∂pn
, −

∂H

∂x1
, . . . , −

∂H

∂xn

)

is equal to
n
∑

1

(

∂

∂xi
∂H

∂pi
−

∂

∂pi

∂H

∂xi

)

,

which is identically zero. In other words, the 2n-dimensional volume element dnx dnp is
preserved by the flow ft .

Symplectic Forms. In the case of the cotangent manifold T ∗M of an arbitrary
n-dimensional smooth manifold M , a more invariant description of this preferred 2n-
dimensional volume element can be given as follows. A point of T ∗M consists of a point
ξ ∈ M together with a 1-form or covector η at the point ξ . Given local coordinates
x1 , . . . , xn near the point ξ , we have a corresponding basis dx1 , . . . , dxn for covectors
at points near ξ . Using the projection π : T ∗M → M , we have corresponding covectors
π∗(dxi) = d(xi ◦ π) on the smooth manifold T ∗M . Now at any point (ξ, η) we can write
η = p1 dx

1 + · · ·+ pn dx
n , and form a corresponding covector

α(ξ, η) = π∗η = p1 π
∗(dx1) + · · ·+ pn π

∗(dxn)

at this point (ξ, η) on the smooth manifold T ∗M . By definition, α is the tautological
1-form on T ∗M . If we think of (x1 , . . . , xn , p1 , . . . , pn) as local coordinates on the
manifold T ∗M , then we can write this tautological 1-form simply as α =

∑

pi dx
i . By

definition, the exterior derivative

dα =
n
∑

i=1

dpi ∧ dxi

is then called the canonical symplectic form ω on the manifold T ∗M . More generally:
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11D. HAMILTONIAN SYSTEMS

Definition. Given any 2n-dimensional smooth manifold with local coordinates
u1 , . . . , u2n , any differential 2-form can be expressed uniquely as

ω = 1
2

2n
∑

r,s=1

wrs(u
1 , . . . , u2n) dur ∧ dus (11 : 10)

with wrs = −wsr . Such a form is symplectic if the 2n×2n skew matrix [wrs] is everywhere
non-singular, and if the exterior derivative dω is identically zero. Clearly the canonical
symplectic form on T ∗M satisfies these conditions. In fact the corresponding skew matrix
has the form

[wrs] =
[

0 −I
I 0

]

(11 : 11)

with determinant +1 , and with dω = d(dα) = 0 since d ◦ d = 0 .

By the symplectic gradient of a smooth function H(u) on a 2n-manifold with symplectic
form ω is meant the vector field v = gradω(H) whose components (v1 , . . . , v2n) satisfy
the identity

∑

s

wrsv
s =

∂H

∂ur
.

The solution curves for the corresponding system of differential equations

∑

s

wrs
dus

dt
=

∂H

∂ur
(11 : 12)

generate the symplectic flow ft associated with this Hamiltonian function H . In particu-
lar, if we identify (u1 , . . . , u2n) with the local coordinates (x1 , . . . , xn , p1 , . . . , pn) on
T ∗M , and use the symplectic form ω =

∑

dpi ∧ dx
i = 1

2

∑

wrsdu
r ∧ dus with [wrs] as in

(11 : 11), then the differential equation (11 : 12) clearly reduces to the Hamiltonian equation
(11 : 5).

One advantage of this more general formulation is that we are free to use more gen-
eral coordinate systems. As an example, about any point where the symplectic gradient
gradω(H) is non-zero, we can choose new local coordinates (u1 , . . . , u2n) so that this
symplectic gradient vector field is given simply by gradω(H) = (1, 0 . . . , 0) , or in other
words so that the associated flow is given by

ft(u
1 , . . . , u2n) = (u1 + t , u2 , . . . , u2n) .

Equation (11 : 12) then takes the form

wr1 = ∂H/∂ur .

For example since [wrs] is skew, it follows that ∂H/u1 = w11 = 0 . Now the exterior
derivative of H is given by dH =

∑

wr1 du
r , and it follows that the symplectic form ω

can be written as

ω = dH ∧ du1 + 1
2

2n
∑

r,s=2

wrs du
r ∧ dus .

The equation dω = 0 now clearly implies that

∂wrs

∂u1
= 0 .
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11. GEODESICS AND MECHANICS

Thus the symplectic form ω = 1
2

∑

wrsdu
rdus is invariant under the Hamiltonian flow ft .

Although we have proved this statement only for one very special local coordinate system,
it follows that it is true in any smooth coordinate system.

Just as a Riemannian metric ds2 =
∑

gij dx
i dxj on an n-dimensional manifold gives

rise to an n-dimensional volume form
√

det[gij ] dx
1 · · · dxn , so the symplectic form (11 :

10) gives rise to a preferred 2n-dimensional volume form

Λ =
√

det[wij ] du
1 · · · du2n

on phase space. By definition, this is the Liouville volume form.

An alternative formulation, which gives not only a preferred volume form but also a
preferred orientation, is obtained by forming the n-fold exterior product of the 2-form ω
with itself. We will write

ω∧n/n! = (ω ∧ · · · ∧ ω)/n! = Pf [wrs] du
1 ∧ · · · ∧ du2n .

Here Pf [wij ] is a certain real valued polynomial function of degree n in the skew symmetric
variables wij called the Pfaffian. (See for example [Milnor and Stasheff, p. 309].) The
determinant of any skew matrix is equal to the square of its Pfaffian. The volume form Λ
can be described as the “absolute value” |Pf [wrs] | du

1 · · · du2n of this exterior 2n-form
ω∧n/n! .

In the special case of canonical coordinates (x1 , . . . , xn , p1 , . . . , pn) , the matrix [wrs]
takes the special form (11 : 11) with determinant +1 . Hence the Liouville volume form
becomes

Λ = dx1 · · · dxn dp1 · · · dpn ,

as in §3C and §11B.

As in §3C, this invariant 2n-dimensional volume element Λ on phase space gives rise
to an invariant (2n − 1)-dimensional volume element Λ/dH on each constant energy hy-
persurface. Of course, to get much use out of this invariant volume or measure, we need to
know that the total measure of the constant energy hypersurface is finite. Compare Problem
11-d.

§11E. Three Problems.

Problem 11-a. Volume Preserving Flows. Show that the flow generated by a
differential equation dx/dt = v(x) preserves the volume form w(x) dx1 · · · dxn if and only
if

w(ft(x)) Jft(x) = w(x)

everywhere, or if and only if
v · ∇w + w ∇·v = 0

everywhere.

Problem 11-b. The Action Principle on a Riemannian manifold. With po-
sition and momentum coordinates (x,p) as above, suppose that we are given a metric
∑

gij dx
i dxj and a potential function Φ(x) . Define the action associated with a smooth

path x = x(t) between two points to be the integral A =
∫

L(x , ẋ) dt along this path,
where

L(x , ẋ) =
(

1
2

∑

gij ẋ
i ẋj − Φ(x)

)
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11E. PROBLEMS

(Thus the integrand is the difference between kinetic and potential energy.) Proceeding as
in §11C, show that the Euler-lagrange equation for a stationary point of this action integral
takes the form

∑

i

d

dt
(gih ẋ

i) = 1
2

∑

ij

∂gij
xh

ẋi ẋj −
∂Φ

xh
. (11 : 13)

Remark. In terms of covariant differentiation on a Riemannian manifold, this equation
(11 : 13) says that the covariant derivative with respect to t of the velocity vector ẋ =
dx/dt is equal to the negative of the Riemannian gradient grad(Φ) . In particular, in the
Euclidean case where [gij ] is the identity matrix, this equation reduces to the simple form

ẍh = −∂Φ/∂xh . (Compare (11 : 2).) About any specified point of a Riemannian manifold
one can always choose a very special “normal coordinate system”, which has the properties
that [gij ] is the identity matrix and ∂gij/∂x

h = 0 , at the specified point only. In such a

coordinate system, equation (11 : 13) reduces to the simple form ẍh = −∂Φ/∂xh , at the
given point.

Now set ph =
∑

i ghi ẋ
i . Show that ẋi =

∑

j g
ij pj and

∑

gij ẋ
iẋj =

∑

gijpipj , but
that

∑

ij

∂gij
∂xh

ẋi ẋj = −
∑

ij

∂gij

∂xh
pi pj

since [gij ] and [gij ] are inverse matrices. Setting

H(x,p) = Φ(x) + 1
2

∑

gij(x) pi pj ,

conclude that equation (11 : 13) can be written in the Hamiltonian form

ẋi =
∂H

∂pi
, ṗi = −

∂H

∂xi
.

(A more conceptual description of this derivation would involve the Legendre transform.
Compare [Arnold] .)

Problem 11-c. A Roller-Coaster with Friction. Given a potential function Φ =
Φ(s) and a friction coefficient c > 0 , consider the differential equation

m s̈+ c ṡ+ dΦ/ds = 0 .

For any non-constant solution, show that the total energy H = Φ+mṡ2/2 decreases as the
time t increases. Furthermore, for any bounded region U in phase space, show that the
area of the image ft(U) decreases as t increases.

Problem 11-d. Finite Invariant Volume. Let M be a Riemannian manifold,
for example an open subset of Euclidean space, and suppose that the potential function
Φ : M → � is proper and bounded from below, so that each {ξ ∈M ; Φ(ξ) ≤ constant} is
compact. (This condition is always satisfied in the case of a compact Riemannian manifold.)
Show then that the constant energy hypersurface H = constant is compact, and hence has
finite volume with respect to the invariant measure Λ/dH .

Remark: This compactness condition is definitely not satisfied for the potential (11 : 3)
associated with the Newtonian n-body problem. Thus, even though the Liouville volume
element is preserved by the Newtonian flow, tools such as the Poincaré Recurrence Theorem
are not available.
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