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Definition. A Riemannian metric h 1s said to
be Einstein f it has constant Ricct curvature —
l.€.

r=MAh

for some constant A € R.

'77

*...the greatest blunder of my life
— A. Einstein, to G. Gamow

“Mathematicians are like Frenchmen:

tell them something, they translate it into their
own language, and, before you know it, it’s
something entirely different.”

— J.W. von Goethe
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Question. Which smooth compact 4-manifolds
M* admit Einstein metrics?

- obstructions! Hitchin-Thorpe, etc.
Construct examples?

Kahler geometry provides richest known source.
(M*, g) Kihler <= holonomy C U(2)

<— 1 almost complex-structure .J with V.J = 0
and g(J-, J-) = g.

= (M*, J)is a complex surface and 3 J-invariant
closed 2-form w such that g = w(-, J-).
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Kihler-Einstein metrics on (M#, J):

(Aubin/Yau) 9 K-E metric g with A < 0 <=
—cq 18 a Kahler class.

(Yau) 4 K-E metric g with A = 0 <=
c1 = 0 and J Kahler class.

(Tian) 4 K-E metric g with A > 0 <=
¢ is a Kéhler class and Aut(M*, .J) is reductive.

Diffeotypes occurring in A > 0 case:

(CIP)% 82 X 52, CPQ#SC_]P)Q# s #@2
3<k<3
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Recall:

CPs = reverse oriented CPs.

Connected sum #:

CPy, CPo#3CPy, CPy#4CPs, ..., CPo#8CP,

all admit Kahler-Einstein metrics.

But CPy#CPy or CPy#2CP5 cannot.

(Matsushima/Lichnerowicz theorem)
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Theorem A. The 4-manifold CPy#2CPs admits
an Einstein metric h with A > 0 which s not
Kahler, but which s nonetheless conformal to a
Kahler metric g:

h=u’g, u =+ const.

Remark Page (79) discovered a cohomogeneity
one Einstein metric on CPy#CPs. Derdzinski ('83)
then discovered that this metric is conformally Kahler,
and proved fundamental structure theorems con-
cerning conformally Kahler, Einstein metrics.
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Proposition (L '96). Let (M*,.]) be a compact
complexr surface, and suppose that h s an Ein-
stein metric on M which s Hermitian with re-

spect to .J. Then h is conformal to a .J-compatible
Kahler metric g.

Moreover, if h is not itself Kahler, then
o (M,J) has ¢; > 0;

o V[ ~ CPy#kCPy, k=1,2,3;

e i has positive Ricct curvature;

e g 1s an extremal Kahler metric,

e g has scalar curvature s > 0; and

e after normalization, h = 3_29.
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Theorem B. A compact complez surface (M*,.])
admits an Einstein metric h which is Hermitian
with respect to J <—

Cl<M47 J) — Ii[(ﬂ]
1 Kdhler class |w] and k € R.

Remark In K-E case, may take [w| to be Kéahler
class of h. But in non-K-E case, |w] is definitely
not the Kahler class of conformally related Kahler
metric ¢!
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Theorem C. Suppose that M s a smooth com-
pact oriented 4-manifold which admits an inte-
grable complex structure J. Then M admits an
Einstein metric h with A > 0

CPy#kCPy, 0< k<38,
— M=~ or
S2 % G2

Extra ingredients:

Hitchin-Thorpe inequality (2x + 37)(M) > 0.

Seiberg-Witten invariant must vanish.



Theorem D. Suppose that M 1s a smooth com-
pact oriented 4-manifold which admits a sym-
plectic structure w. Then M admits an Einstein
metric h with A > 0

CPy#kCP>, 0<k <S8,

— M= or
S2 % §?
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Calabi:

Extremal Kahler metrics = critical points of

where g = g, for .J and | € H?(M,R) fixed.

Euler-Lagrange equations <=

JV s is a Killing field.

Chen-Tian: unique modulo bihomorphisms.
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Explicit lower bound:

Any Kahler (M?, g, J) satisfies

1

3272
with = <= ¢ extremal, where

e [, 1
; I F
w] 327
where F is Futaki invariant. Can compute F using
any metric in Kahler class.

sPdjg > A([w])

A(lw]) =

Normalization chosen so that always have

A([w]) > 012.
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Special character of dimension 4:

On oriented (M4, g),
A= AT @A™
where AT are (£1)-eigenspaces of
x: A2 — /\2,
* = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—52 r

where

s = scalar curvature
trace-free Riccl curvature

o
|

=
:
|

= self-dual Weyl curvature
W _ = anti-selt-dual Weyl curvature



Kahler case:

Al =Ru@ A~



Kahler case:

Al =Ru@ A~

AT = Rw @& Re(A*Y)



Kahler case:
AV = Ro@ AT
AT = Rw @& Re(A*Y)

V.J=0= R € End(Ab)



Kahler case:
A =Ru@A™
AT = Rw @ Re(AH)
VJ=0= R € End(Al) =

S
W+ — = 0
T



Kahler case:
A =Ru@A™
AT = Rw @ Re(AH)
VJ=0= R € End(Al) =

S
Wo 4+ — = 0
T

NV



Kahler case:
AV = Ro@ AT
AT = Rw @& Re(A*Y)

VJ=0= R € End(Al) =

S
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Kahler case:
AV = Ro@ AT
AT = Rw @& Re(A*Y)

VJ=0= R € End(Al) =

g2

Wol? ==
W4 o
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The Bach Tensor

Conformally invariant Riemannian functional:

— [ W,
M

I-parameter family of metrics
gt = g+ tg+ O(t?)

First variation

d .
V)| - [ 5B du,
where
1
<vcvd 2 Cd)Wacbd-

is the Bach tensor of g. Symmetric, trace-free.

VOB, =0
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4-dimensional Gauss-Bonnet formula

1 5° ) I
My=— [ [Z+wpP-"1)y
(M) SWQ/M<24+ P

SO
82 7 2
W(g) = 8m°x (M) — /M (ﬂ -~ 7) du

— FKinstein metrics are critical points of W.

—> conformally Einstein metrics are critical, too.
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4-dimensional signature formula

1
1272 S

(M)
SO

(W2 = W) du

Wig) =2 [ (WP — 120%r(0)
M

Hence

1,
By = Q(VCvd + §TCd>(W+)acbd :
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Restriction of YW to Kahler metrics?

On Kahler metrics,

[ 1w - / > iy

so any critical point of restriction must be
extremal in sense of Calabi.

Now for an extremal Kahler metric

1
B = o {570“ + 2Hesso(5)}

and corresponds to harmonic primitive (1, 1)-form

1

{sp + 2@@33} ;
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Restriction of VW to Kahler metrics.

Hence if g is extremal Kahler metric,

gt=g+1itB

is a family of Kahler metrics, corresponding to

Wt = w + tY
and first variation is
d .
—W(gt)| = / G"" By dpig
dt t=0




Restriction of VW to Kahler metrics.

Hence if g is extremal Kahler metric,

gt=g+1itB

is a family of Kahler metrics, corresponding to

Wt = w + tY

and first variation is
b
- / 1" B dfig

Sy )|
~ [ 1B an,

dt
So the critical points of restriction of W to
{Kéhler metrics} also have B = 0!
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So any critical point of restriction has

0 =12B = s1" 4 2Hessy(s)

— the conformal rescaling h = s~2¢ is
Einstein courtesy of transformation rule

Fug) = 7(g) + (n — 2)uHessg(u™") .
This conformal rescaling trick due to Derdzinski.

WARNING. h undefined where s = 0!



Proposition. Let (M*,.]) be a compact complex
surface, and let KC C H*(M,R) be its Kihler
cone. If |w| is a critical point of

A: KC—-R

and if |w| is represented by an extremal Kdahler
metric g, then g is Bach-flat. Moreover, if g has
s > 0, then h = s—2¢ is an Einstein metric on

M.



Two-Point Blow-up of CPy:

E
Fy Fy \/

M CP,




= One-Point Blow-up of CP; x CP:
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Bilaterally Symmetric Kahler Classes:

£

s
B+e€ B+¢

wlge = (0+e)(F1+ Fy) —cE

These are fixed points of involution of /CC

Fie—F



Scale invariance reduces problem to
x

1 1
l+x 1+

where x = /3.



Scale invariance reduces problem to
x

1 1
l+x 1+

where x = /0. Setting

wlpy=1+2x)(F1+ ) —xFE

and



Scale invariance reduces problem to
x

1 1
l+x 1+

where x = /0. Setting

wlpy=1+2x)(F1+ ) —xFE

and
flz) = A(lwlz)
NEED TO SHOW: dxg > 0 with
fl(zg) =0

such that |w|z, represented by
extremal Kahler metric g with s > 0.
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flz) =9

32 4+ 1762 + 31822 + 2802° + 13224 + 322° + 320
36 + 2162 + 41422 + 36023 + 16224 + 3622 + 326

f(0)=38, f(0)<0, lim f(z)=09.

T— 00

Define g to be smallest z > 0 in (f/)~H0).
Then f(x) < 8 on (0, zq).
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Lemma. Any bilaterally symmetric extremal Kdhler
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Lemma. Any bilaterally symmetric extremal Kdhler
metric on M = CPy#2CPy has s > 0.

Same techniques used to calculate f(x). ..

Lemma. Any bilaterally symmetric extremal Kahler
metric on M = CPo#2CPy has s < 24mw\/2/V .
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Gluing theorem: attach small Burns metric to prod-
uct S% x 52, perturb.
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Theorem (Arrezzo-Pacard-Singer). For sufficiently
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So closed is the difficult issuel!
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on the Sobolev constants Cg of all bilaterally
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Smallest constant such that
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Proposition. There is a uniform upper bound
on the Sobolev constants Cg of all bilaterally
symmetric extremal Kahler metrics on M = CPy#2CPs.

Smallest constant such that

2 2 —1/2 2
Jull3s < Cs (I1Vull3> + V2] ull3,)

max (0, Smax\/l/z)
Cao <
S > Y[
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5| V2 < 24mv/2

CS<2\/§



Theorem (Chen-Weber). Let g; be an arbitrary
sequence of unit-volume extremal Kahler met-
rics on M* with uniformly bounded energies A
and Sobolev constants Cg. Then 3 subsequence
which Gromov-Hausdorff converges to an extremal
Kahler metric on a compact complex 2-orbifold.



Theorem (Chen-Weber). Let g; be an arbitrary
sequence of unit-volume extremal Kahler met-
rics on M* with uniformly bounded energies A
and Sobolev constants Cg. Then 3 subsequence
which Gromov-Hausdorff converges to an extremal
Kahler metric on a compact complex 2-orbifold.

(zeneralizes work of Anderson



Theorem (Chen-Weber). Let g; be an arbitrary
sequence of unit-volume extremal Kahler met-
rics on M* with uniformly bounded energies A
and Sobolev constants Cg. Then 3 subsequence
which Gromov-Hausdorff converges to an extremal
Kahler metric on a compact complex 2-orbifold.

Generalizes work of Anderson/Tian-Viaclovsky
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Theorem. Let g; be an arbitrary sequence of
unit-volume bilaterally symmetric extremal Kahler
metrics on M = CPy#2CP>. Then 3 subse-
quence which Gromov-Hausdorff converges to an
extremal Kahler metric on a compact complex 2-

orbifold.

Goal: rule out deepest bubbles.
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ALE, scalar-flat Kdahler, with

[ P, < imsup [ iR
X 1—oo JM

[ WP, < tmsp [ WP
X M

1—00
Lemma. Deepest bubble X must be diffeomor-
phic to open subset of CPo#2CPy, and
bi(X)=0b3(X)=0, and by(X) < 2.

Lemma. If this open subset cannot be taken to
be invariant under under Fy| < F5, then curva-
ture is accumulating in more than one region,

and
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Lemma. (X, goo) s toric.

Moment map profile:

~ Calderbank-Singer: topology, [ #2dpu, | W_|%d .
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When A < 8, little curvature is available!

/ |7O“|2d,ugz. < 8x°
M

/M W_2dpg, < (223)7°

— only one bubble,
and only 3 possibilities:

o hy(X)=1,T = Zy. Eguchi-Hanson.
o bo(X) =2, I' =Zs. Gibbons-Hawking As.
e y(X)=1T=7Z3 LeBrun k = 3.

Exclude: [w], areas of homology generators.
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Let L be smallest positive element of f~1(8).

Theorem. For every x € (0, L),
wlpy=142)(F+F) —aF
s the Kahler class of an extremal Kahler metric

on M = CPy#2CPs.

Since xg < L, Theorem A follows.



