
CHAPTER VI

Structure Theory of Semisimple Groups

Abstract. Every complex semisimple Lie algebra has a compact real form, as a
consequence of a particular normalization of root vectors whose construction uses the
Isomorphism Theorem of Chapter II. If g0 is a real semisimple Lie algebra, then the use
of a compact real form of (g0)

C leads to the construction of a “Cartan involution” θ of
g0. This involution has the property that if g0 = k0 ⊕ p0 is the corresponding eigenspace
decomposition or “Cartan decomposition,” then k0 ⊕ ip0 is a compact real form of (g0)

C.
Any two Cartan involutions of g0 are conjugate by an inner automorphism. The Cartan
decomposition generalizes the decomposition of a classical matrix Lie algebra into its
skew-Hermitian and Hermitian parts.

If G is a semisimple Lie group, then a Cartan decomposition g0 = k0 ⊕ p0 of its Lie
algebra leads to a global decomposition G = K exp p0, where K is the analytic subgroup
of G with Lie algebra k0. This global decomposition generalizes the polar decomposition
of matrices. The group K contains the center of G and, if the center of G is finite, is a
maximal compact subgroup of G.

The Iwasawa decomposition G = K AN exhibits closed subgroups A and N of G
such that A is simply connected abelian, N is simply connected nilpotent, A normalizes
N , and multiplication from K × A × N to G is a diffeomorphism onto. This decom-
position generalizes the Gram-Schmidt orthogonalization process. Any two Iwasawa
decompositions of G are conjugate. The Lie algebra a0 of A may be taken to be any
maximal abelian subspace of p0, and the Lie algebra of N is defined from a kind of
root-space decomposition of g0 with respect to a0. The simultaneous eigenspaces are
called “restricted roots,” and the restricted roots form an abstract root system. The Weyl
group of this system coincides with the quotient of normalizer by centralizer of a0 in K .

A Cartan subalgebra of g0 is a subalgebra whose complexification is a Cartan sub-
algebra of (g0)

C. One Cartan subalgebra of g0 is obtained by adjoining to the above
a0 a maximal abelian subspace of the centralizer of a0 in k0. This Cartan subalgebra is
θ stable. Any Cartan subalgebra of g0 is conjugate by an inner automorphism to a θ

stable one, and the subalgebra built from a0 as above is maximally noncompact among
all θ stable Cartan subalgebras. Any two maximally noncompact Cartan subalgebras
are conjugate, and so are any two maximally compact ones. Cayley transforms allow
one to pass between any two θ stable Cartan subalgebras, up to conjugacy.

A Vogan diagram of g0 superimposes certain information about the real form g0 on
the Dynkin diagram of (g0)

C. The extra information involves a maximally compact θ

stable Cartan subalgebra and an allowable choice of a positive system of roots. The
effect of θ on simple roots is labeled, and imaginary simple roots are painted if they are
“noncompact,” left unpainted if they are “compact.” Such a diagram is not unique for
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294 VI. Structure Theory of Semisimple Groups

according to Proposition 1.96, and this property is not always shared by
other forms. To take advantage of this property, we shall insist that B
is the Killing form in §§1–3. After that, we shall allow more general
forms in place of B.)

For each pair {α, −α} in �, we fix Eα ∈ gα and E−α ∈ g−α so that
B(Eα, E−α) = 1. Then [Eα, E−α] = Hα by Lemma 2.18a. Let α and β

be roots. If α + β is in �, define Cα,β by

[Eα, Eβ] = Cα,β Eα+β.

If α + β is not in �, put Cα,β = 0.

Lemma 6.2. Cα,β = −Cβ,α.

PROOF. This follows from the skew symmetry of the bracket.

Lemma 6.3. If α, β, and γ are in � and α + β + γ = 0, then

Cα,β = Cβ,γ = Cγ,α.

PROOF. By the Jacobi identity,

[[Eα, Eβ], Eγ ] + [[Eβ, Eγ ], Eα] + [[Eγ , Eα], Eβ] = 0.

Cα,β[E−γ , Eγ ] + Cβ,γ [E−α, Eα] + Cγ,α[E−β, Eβ] = 0Thus

Cα,β Hγ + Cβ,γ Hα + Cγ,α Hβ = 0.and

Substituting Hγ = −Hα − Hβ and using the linear independence of
{Hα, Hβ}, we obtain the result.

Lemma 6.4. Let α, β, and α + β be in �, and let β + nα, with
−p ≤ n ≤ q, be the α string containing β. Then

Cα,β, C−α,−β = − 1
2 q(1 + p)|α|2.

PROOF. By Corollary 2.37,

[E−α, [Eα, Eβ]] = 1
2 q(1 + p)|α|2 B(Eα, E−α)Eβ.

The left side is C−α,α+βCα,β Eβ , and B(Eα, E−α) = 1 on the right side.
Therefore

(6.5) C−α,α+βCα,β = 1
2 q(1 + p)|α|2.

Since (−α) + (α + β) + (−β) = 0, Lemmas 6.3 and 6.2 give

C−α,α+β = C−β,−α = −C−α,−β,

and the result follows by substituting this formula into (6.5).
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Finally
[(Xα − X−α), i(Xα + X−α)] = 2i Hα,

and therefore u0 is closed under brackets. Consequently u0 is a real form.
To show that u0 is a compact Lie algebra, it is enough, by Proposition

4.27, to show that the Killing form of u0 is negative definite. The Killing
forms Bu0 of u0 and B of g are related by Bu0 = B|u0×u0 , according to
(1.20). The first term on the right side of (6.12) is orthogonal to the other
two terms by Proposition 2.17a, and B is positive on

∑
RHα by Corollary

2.38. Hence B is negative on
∑

Ri Hα. Next we use Proposition 2.17a
to observe for β �= ±α that

B((Xα − X−α), (Xβ − X−β)) = 0

B((Xα − X−α), i(Xβ + X−β)) = 0

B(i(Xα + X−α), i(Xβ + X−β)) = 0.

Finally we have

B((Xα − X−α), (Xα − X−α)) = −2B(Xα, X−α) = −2

B(i(Xα + X−α), i(Xα + X−α)) = −2B(Xα, X−α) = −2,

and therefore B|u0×u0 is negative definite.

2. Cartan Decomposition on the Lie Algebra Level

To detect semisimplicity of some specific Lie algebras of matrices in
§I.8, we made critical use of the conjugate transpose mapping X 	→ X∗.
Slightly better is the map θ(X) = −X∗, which is actually an involution,
i.e., an automorphism of the Lie algebra with square equal to the identity.
To see that θ respects brackets, we just write

θ[X, Y ] = −[X, Y ]∗ = −[Y ∗, X∗] = [−X∗, −Y ∗] = [θ(X), θ(Y )].

Let B be the Killing form. The involution θ has the property that
Bθ (X, Y ) = −B(X, θY ) is symmetric and positive definite because Propo-
sition 1.96 gives

Bθ (X, Y ) = −B(X, θY ) = −B(θ X, θ2Y )

= −B(θ X, Y ) = −B(Y, θ X) = Bθ (Y, X)

and (6.1) gives

Bθ (X, X) = −B(X, θ X) = −Tr((ad X)(ad θ X))

= Tr((ad X)(ad X∗)) = Tr((ad X)(ad X)∗) ≥ 0.
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Lemma 6.15. Let g0 be a real finite-dimensional Lie algebra, and let
ρ be an automorphism of g0 that is diagonable with positive eigenvalues
d1, ..., dm and corresponding eigenspaces (g0)dj . For −∞ < r < ∞,
define ρr to be the linear transformation on g0 that is dr

j on (g0)dj . Then
{ρr } is a one-parameter group in Aut g0. If g0 is semisimple, then ρr lies
in Int g0.

PROOF. If X is in (g0)di and Y is in (g0)dj , then

ρ[X, Y ] = [ρX, ρY ] = di dj [X, Y ]

since ρ is an automorphism. Hence [X, Y ] is in (g0)di dj , and we obtain

ρr [X, Y ] = (di dj )
r [X, Y ] = [dr

i X, dr
j Y ] = [ρr X, ρr Y ].

Consequently ρr is an automorphism. Therefore {ρr } is a one-parameter
group in Aut g0, hence in the identity component (Aut g0)0. If g0 is
semisimple, then Propositions 1.97 and 1.98 show that (Aut g0)0 = Int g0,
and the lemma follows.

Theorem 6.16. Let g0 be a real semisimple Lie algebra, let θ be
a Cartan involution, and let σ be any involution. Then there exists
ϕ ∈ Int g0 such that ϕθϕ−1 commutes with σ .

PROOF. Since θ is given as a Cartan involution, Bθ is an inner product
for g0. Put ω = σθ . This is an automorphism of g0, and Proposition 1.96
shows that it leaves B invariant. From σ 2 = θ2 = 1, we therefore have

B(ωX, θY ) = B(X, ω−1θY ) = B(X, θωY )

Bθ (ωX, Y ) = Bθ (X, ωY ).and hence

Thus ω is symmetric, and its square ρ = ω2 is positive definite. Write
ρr for the positive-definite r th power of ρ, −∞ < r < ∞. Lemma 6.15
shows that ρr is a one-parameter group in Int g0. Consideration of ω as
a diagonal matrix shows that ρr commutes with ω. Now

ρθ = ω2θ = σθσθθ = σθσ = θθσθσ = θω−2 = θρ−1.

In terms of a basis of g0 that diagonalizes ρ, the matrix form of this
equation is

ρi iθi j = θi jρ
−1
j j for all i and j.

Considering separately the cases θi j = 0 and θi j �= 0, we see that

ρr
iiθi j = θi jρ

−r
j j
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PROOF. Let θ and θ ′ be two Cartan involutions. Taking σ = θ ′ in
Theorem 6.16, we can find ϕ ∈ Int g0 such that ϕθϕ−1 commutes with
θ ′. Here ϕθϕ−1 is another Cartan involution of g0. So we may as well
assume that θ and θ ′ commute from the outset. We shall prove that
θ = θ ′.

Since θ and θ ′ commute, they have compatible eigenspace decom-
positions into +1 and −1 eigenspaces. By symmetry it is enough to
show that no nonzero X ∈ g0 is in the +1 eigenspace for θ and the −1
eigenspace for θ ′. Assuming the contrary, suppose that θ X = X and
θ ′ X = −X . Then we have

0 < Bθ (X, X) = −B(X, θ X) = −B(X, X)

0 < Bθ ′(X, X) = −B(X, θ ′ X) = +B(X, X),

contradiction. We conclude that θ = θ ′, and the proof is complete.

Corollary 6.20. If g is a complex semisimple Lie algebra, then any
two compact real forms of g are conjugate via Int g.

PROOF. Each compact real form has an associated conjugation of g

that determines it, and this conjugation is a Cartan involution of gR, by
Proposition 6.14. Applying Corollary 6.19 to gR, we see that the two
conjugations are conjugate by a member of Int(gR). Since Int(gR) = Int g,
the corollary follows.

Corollary 6.21. If A = (Ai j )
l
i, j=1 is an abstract Cartan matrix, then

there exists, up to isomorphism, one and only one compact semisimple
Lie algebra g0 whose complexification g has a root system with A as
Cartan matrix.

PROOF. Existence of g is given in Theorem 2.111, and uniqueness of g

is given in Example 1 of §II.10. The passage from g to g0 is accomplished
by Theorem 6.11 and Corollary 6.20.

Corollary 6.22. If g is a complex semisimple Lie algebra, then the
only Cartan involutions of gR are the conjugations with respect to the
compact real forms of g.

PROOF. Theorem 6.11 and Proposition 6.14 produce a Cartan involu-
tion of gR that is conjugation with respect to some compact real form
of g. Any other Cartan involution is conjugate to this one, according
to Corollary 6.19, and hence is also the conjugation with respect to a
compact real form of g.
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A Cartan involution θ of g0 yields an eigenspace decomposition

(6.23) g0 = k0 ⊕ p0

of g0 into +1 and −1 eigenspaces, and these must bracket according to
the rules

(6.24) [k0, k0] ⊆ k0, [k0, p0] ⊆ p0, [p0, p0] ⊆ k0

since θ is an involution. From (6.23) and (6.24) it follows that

(6.25) k0 and p0 are orthogonal under Bg0 and under Bθ

In fact, if X is in k0 and Y is in p0, then ad X ad Y carries k0 to p0 and p0 to
k0. Thus it has trace 0, and Bg0(X, Y ) = 0; since θY = −Y , Bθ (X, Y ) = 0
also.

Since Bθ is positive definite, the eigenspaces k0 and p0 in (6.23) have
the property that

(6.26) Bg0 is
{

negative definite on k0

positive definite on p0.

A decomposition (6.23) of g0 that satisfies (6.24) and (6.26) is called a
Cartan decomposition of g0.

Conversely a Cartan decomposition determines a Cartan involution θ

by the formula

θ =
{ +1 on k0

−1 on p0.

Here (6.24) shows that θ respects brackets, and (6.25) and (6.26) show
that Bθ is positive definite. (Bθ is symmetric by Proposition 1.96 since
θ has order 2.)

If g0 = k0 ⊕ p0 is a Cartan decomposition of g0, then k0 ⊕ ip0 is a
compact real form of g = (g0)

C. Conversely if h0 and q0 are the +1 and
−1 eigenspaces of an involution σ , then σ is a Cartan involution only if
the real form h0 ⊕ iq0 of g = (g0)

C is compact.
If g is a complex semisimple Lie algebra, then it follows from Corol-

lary 6.22 that the most general Cartan decomposition of gR is gR =
u0 ⊕ iu0, where u0 is a compact real form of g.

Corollaries 6.18 and 6.19 have shown for an arbitrary real semisimple
Lie algebra g0 that Cartan decompositions exist and are unique up to con-
jugacy by Int g0. Let us see as a consequence that every real semsimple
Lie algebra can be realized as a Lie algebra of real matrices closed under
transpose.
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and 1.98 show that Int g0 = (Aut g0)0, K̄ # is closed in GL(g0). Since K̄ #

is contained in the orthogonal group, K̄ # is compact. The Lie algebra
of K̄ # is the subalgebra of all T̄ ∈ ad g0 where θ̄ (T̄ ) = T̄ , and this is just
adg0(k0).

Consider the smooth mapping ϕḠ : K̄ # × adg0(p0) → Ḡ given by
ϕḠ(k̄, S̄) = k̄ exp S̄. Let us prove that ϕḠ maps onto Ḡ. Given x̄ ∈ Ḡ,
define X̄ ∈ adg0(p0) by (6.35), and put p̄ = exp 1

2 X̄ . The element p̄ is
in Ad(G), and p̄∗ = p̄. Put k̄ = x̄ p̄−1, so that x̄ = k̄ p̄. Then k̄∗k̄ =
( p̄−1)∗ x̄∗ x̄ p̄−1 = (exp − 1

2 X̄)(exp X̄)(exp − 1
2 X̄) = 1, and hence k̄∗ = k̄−1.

Consequently �̄(k̄) = (k̄∗)−1 = k̄, and we conclude that ϕḠ is onto.
Let us see that ϕḠ is one-one. If x̄ = k̄ exp X̄ , then x̄∗ = (exp X̄∗)k̄∗ =

(exp X̄)k̄∗ = (exp X̄)k̄−1. Hence x̄∗ x̄ = exp 2X̄ . The two sides of this
equation are equal positive definite linear transformations. Their positive
definite r th powers must be equal for all real r , necessarily to exp 2r X̄ .
Differentiating (x̄∗ x̄)r = exp 2r X̄ with respect to r and putting r = 0, we
see that x̄ determines X̄ . Hence x̄ determines also k̄, and ϕḠ is one-one.

To complete the proof of (c) (but with K replaced by K̄ #), we are
to show that the inverse map is smooth. It is enough to prove that the
corresponding inverse map in the case of all n-by-n real nonsingular
matrices is smooth, where n = dim g0. In fact, the given inverse map
is a restriction of the inverse map for all matrices, and we recall from
§I.10 that if M is an analytic subgroup of a Lie group M ′, then a smooth
map into M ′ with image in M is smooth into M .

Thus we are to prove smoothness of the inverse for the case of matri-
ces. The forward map is O(n)× p(n, R) → GL(n, R) with (k, X) 
→ keX ,
where p(n, R) denotes the vector space of real symmetric matrices. It is
enough to prove local invertibility of this mapping near (1, X0). Thus
we examine the differential at k = 1 and X = X0 of (k, X) 
→ keX e−X0 ,
identifying tangent spaces as follows: At k = 1, we use the linear
Lie algebra of O(n), which is the space so(n) of skew-symmetric real
matrices. Near X = X0, write X = X0 + S, and use {S} = p(n, R) as
tangent space. In GL(n, R), we use the linear Lie algebra, which consists
of all real matrices.

To compute the differential, we consider restrictions of the forward
map with each coordinate fixed in turn. The differential of (k, X0) 
→ k
is (T, 0) 
→ T for T ∈ so(n). The map (1, X) 
→ eX e−X0 has derivative at
t = 0 along the curve X = X0 + t S equal to

d

dt
eX0+t Se−X0 |t=0.

Thus we ask whether it is possible to have
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and therefore the diagram

K × p0
ϕG−−−−→ G

e|K ×adg0



�



�e

K̄ × adg0(p0)
ϕḠ−−−−→ Ḡ

commutes. The maps on the sides are covering maps since K is con-
nected, and ϕḠ is a diffeomorphism by (c) for Ḡ. If we show that ϕG

is one-one onto, then it follows that ϕG is a diffeomorphism, and (c) is
proved for G.

First let us check that ϕG is one-one. Suppose k expG X = k ′ expG X ′.
Applying e, we have e(k) expḠ(adg0(X)) = e(k ′) expḠ(adg0(X ′)). Then
X = X ′ from (c) for Ḡ, and consequently k = k ′.

Second let us check that ϕG is onto. Let x ∈ G be given. Write
e(x) = k̄ expḠ(adg0(X)) by (c) for Ḡ, and let k be any member of e−1(k̄).
Then e(x) = e(k expG X), and we see that x = zk expG X for some z ∈ Z .
Since Z ⊆ K , x = (zk) expG X is the required decomposition. This
completes the proof of (c) for G.

The next step is to construct �. Let G̃ be a simply connected covering
group of G, let K̃ be the analytic subgroup of G̃ with Lie algebra k0, let
Z̃ be the center of G̃, and let ẽ : G̃ → G be the covering homomorphism.
Since G̃ is simply connected, there exists a unique involution �̃ of G̃
with differential θ . Since θ is 1 on k0, �̃ is 1 on K̃ . By (e) for G̃,
Z̃ ⊆ K̃ . Therefore ker ẽ ⊆ K̃ , and �̃ descends to an involution � of G
with differential θ . This proves (a) for G.

Suppose that x is a member of G with �(x) = x . Using (c), we can
write x = k expG X and see that

k(expG X)−1 = k expG θ X = k�(expG X) = �(x) = x = k expG X.

Then expG 2X = 1, and it follows from (c) that X = 0. Thus x is in K ,
and (b) is proved for G.

Finally we are to prove (g) for G. Suppose that K is compact and that
K ⊆ K1 with K1 compact. Applying e, we obtain a compact subgroup
e(K1) of Ḡ that contains K̄ . By (g) for Ḡ, e(K1) = e(K ). Therefore
K1 ⊆ Z K = K , and we must have K1 = K . This completes the proof of
the theorem.

The Cartan decomposition on the Lie algebra level led in Proposition
6.28 to the conclusion that any real semisimple Lie algebra can be
realized as a Lie algebra of real matrices closed under transpose. There
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of SL(m, C) amounts to the Gram-Schmidt orthogonalization process, let
{e1, . . . , em} be the standard basis of C

m , let g ∈ G be given, and form the
basis {ge1, . . . , gem}. The Gram-Schmidt process yields an orthonormal
basis v1, . . . , vm such that

span{ge1, . . . , gej } = span{v1, . . . , vj }
vj ∈ R

+(gej ) + span{v1, . . . , vj−1}
for 1 ≤ j ≤ m. Define a matrix k ∈ U (m) by k−1vj = ej . Then k−1g is
upper triangular with positive diagonal entries. Since g has determinant
1 and k has determinant of modulus 1, k must have determinant 1. Then
k is in K = SU (m), k−1g is in AN , and g = k(k−1g) exhibits g as in
K (AN ). This proves that K × A × N → G is onto. It is one-one since
K ∩ AN = {1}, and the inverse is smooth because of the explicit formulas
for the Gram-Schmidt process.

The decomposition in the example extends to all semisimple Lie
groups. To prove such a theorem, we first obtain a Lie algebra decom-
position, and then we lift the result to the Lie group.

Throughout this section, G will denote a semisimple Lie group.
Changing notation from earlier sections of this chapter, we write g for
the Lie algebra of G. (We shall have relatively little use for the complex-
ification of the Lie algebra in this section and write g in place of g0 to
make the notation less cumbersome.) Let θ be a Cartan involution of g

(Corollary 6.18), let g = k⊕p be the corresponding Cartan decomposition
(6.23), and let K be the analytic subgroup of G with Lie algebra k.

Insistence on using the Killing form as our nondegenerate symmetric
invariant bilinear form on g will turn out to be inconvenient later when we
want to compare the form on g with a corresponding form on a semisim-
ple subalgebra of g. Thus we shall allow some flexibility in choosing
a form B. For now it will be enough to let B be any nondegenerate
symmetric invariant bilinear form on g such that B(θ X, θY ) = B(X, Y )

for all X and Y in g and such that the form Bθ defined in terms of B
by (6.13) is positive definite. Then it follows that B is negative definite
on the compact real form k ⊕ ip. Therefore B is negative definite on a
maximal abelian subspace of k ⊕ ip, and we conclude as in the remarks
with Corollary 2.38 that, for any Cartan subalgebra of gC, B is positive
definite on the real subspace where all the roots are real-valued.

The Killing form is one possible choice for B, but there are others.
In any event, Bθ is an inner product on g, and we use it to define
orthogonality and adjoints.

Let a be a maximal abelian subspace of p. This exists by finite-
dimensionality. Since (ad X)∗ = −ad θ X by Lemma 6.27, the set
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consists of all skew-Hermitian diagonal matrices in g. For K = R this
is 0, and for K = C it is all purely imaginary matrices of trace 0 and has
dimension n − 1. For K = H, m consists of all diagonal matrices whose
diagonal entries xj have x̄ j = −xj and is isomorphic to the direct sum of
n copies of su(2); its dimension is 3n.

2) Let G = SU (p, q) with p ≥ q. We can write the Lie algebra in
block form as

(6.41) g =

p q(
a b
b∗ d

)
p
q

with all entries complex, with a and d skew Hermitian, and with
Tr a + Tr d = 0. We take k to be all matrices in g with b = 0, and we
take p to be all matrices in g with a = 0 and d = 0. One way of forming
a maximal abelian subspace a of p is to allow b to have nonzero real
entries only in the lower-left entry and the entries extending diagonally
up from that one:

(6.42) b =




... · · · ...

0 · · · 0
0 · · · aq

·
·

.

a1 · · · 0




,

with p−q rows of 0’s at the top. Let fi be the member of a∗ whose value
on the a matrix indicated in (6.42) is ai . Then the restricted roots include
all linear functionals ± fi ± f j with i 
= j and ±2 fi for all i . Also the ± fi

are restricted roots if p 
= q. The restricted-root spaces are described as
follows: Let i < j , and let J (z), I+(z), and I−(z) be the 2-by-2 matrices

J (z) =
(

0 z

−z̄ 0

)
, I+(z) =

(
z 0

0 z̄

)
, I−(z) =

(
z 0

0 −z̄

)
.

Here z is any complex number. The restricted-root spaces for ± fi ± f j

are 2-dimensional and are nonzero only in the 16 entries corresponding
to row and column indices p − j + 1, p − i + 1, p + i , p + j , where they
are

g fi − f j =
{(

J (z) −I+(z)
−I+(z̄) −J (z̄)

)}
, g− fi + f j =

{(
J (z) I+(z)
I+(z̄) −J (z̄)

)}
,

g fi + f j =
{(

J (z) −I−(z)
−I−(z̄) J (z̄)

)}
, g− fi − f j =

{(
J (z) I−(z)
I−(z̄) J (z̄)

)}
.
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The restricted-root spaces for ±2 fi have dimension 1 and are nonzero
only in the 4 entries corresponding to row and column indices p − i + 1
and p + i , where they are

g2 fi = iR

(
1 −1
1 −1

)
and g−2 fi = iR

(
1 1

−1 −1

)
.

The restricted-root spaces for ± fi have dimension 2(p − q) and are
nonzero only in the entries corresponding to row and column indices 1
to p − q, p − i + 1, and p + i , where they are

g fi =
{( 0 v −v

−v∗ 0 0
−v∗ 0 0

)}
and g− fi =

{( 0 v v

−v∗ 0 0
v∗ 0 0

)}
.

Here v is any member of C
p−q . The subalgebra m of Proposition 6.40d

consists of all skew-Hermitian matrices of trace 0 that are arbitrary in
the upper left block of size p − q, are otherwise diagonal, and have
the (p − i + 1)st diagonal entry equal to the (p + i)th diagonal entry for
1 ≤ i ≤ q; thus m ∼= su(p − q)⊕ R

q . In the next section we shall see that
� is an abstract root system; this example shows that this root system
need not be reduced.

3) Let G = SO(p, q)0 with p ≥ q. We can write the Lie algebra in
block form as in (6.41) but with all entries real and with a and d skew
symmetric. As in Example 2, we take k to be all matrices in g with
b = 0, and we take p to be all matrices in g with a = 0 and d = 0.
We again choose a as in (6.42). Let fi be the member whose value on
the matrix in (6.42) is ai . Then the restricted roots include all linear
functionals ± fi ± f j with i 
= j . Also the ± fi are restricted roots if
p 
= q. The restricted-root spaces are the intersections with so(p, q)

of the restricted-root spaces in Example 2. Then the restricted-root
spaces for ± fi ± f j are 1-dimensional, and the restricted-root spaces for
± fi have dimension p − q. The linear functionals ±2 fi are no longer
restricted roots. The subalgebra m of Proposition 6.40d consists of all
skew-symmetric matrices that are nonzero only in the upper left block
of size p − q; thus m ∼= so(p − q).

Choose a notion of positivity for a∗ in the manner of §II.5, as for
example by using a lexicographic ordering. Let �+ be the set of pos-
itive roots, and define n = ⊕

λ∈�+ gλ. By Proposition 6.40b, n is a Lie
subalgebra of g and is nilpotent.

Proposition 6.43 (Iwasawa decomposition of Lie algebra). With
notation as above, g is a vector-space direct sum g = k ⊕ a ⊕ n. Here
a is abelian, n is nilpotent, a ⊕ n is a solvable Lie subalgebra of g, and
[a ⊕ n, a ⊕ n] = n.
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Lemma 6.45. There exists a basis {Xi } of g such that the matrices
representing ad g have the following properties:

(a) the matrices of ad k are skew symmetric
(b) the matrices of ad a are diagonal with real entries
(c) the matrices of ad n are upper triangular with 0’s on the diagonal.

PROOF. Let {Xi } be an orthonormal basis of g compatible with the
orthogonal decomposition of g in Proposition 6.40a and having the
property that Xi ∈ gλi and X j ∈ gλj with i < j implies λi ≥ λj . For
X ∈ k, we have (ad X)∗ = −ad θ X = −ad X from Lemma 6.27, and
this proves (a). Since each Xi is a restricted-root vector or is in g0, the
matrices of ad a are diagonal, necessarily with real entries. This proves
(b). Conclusion (c) follows from Proposition 6.40b.

Theorem 6.46 (Iwasawa decomposition). Let G be a semisimple
Lie group, let g = k ⊕ a ⊕ n be an Iwasawa decomposition of the Lie
algebra g of G, and let A and N be the analytic subgroups of G with Lie
algebras a and n. Then the multiplication map K × A × N → G given
by (k, a, n) �→ kan is a diffeomorphism onto. The groups A and N are
simply connected.

PROOF. Let Ḡ = Ad(G), regarded as the closed subgroup (Aut g)0 of
GL(g) (Propositions 1.97 and 1.98). We shall prove the theorem for Ḡ
and then lift the result to G.

We impose the inner product Bθ on g and write matrices for elements
of Ḡ and ad g relative to the basis in Lemma 6.45. Let K̄ = Adg(K ),
Ā = Adg(A), and N̄ = Adg(N ). Lemma 6.45 shows that the matrices of
K̄ are rotation matrices, those for Ā are diagonal with positive entries
on the diagonal, and those for N̄ are upper triangular with 1’s on the
diagonal. We know that K̄ is compact (Proposition 6.30 and Theorem
6.31f). The diagonal subgroup of GL(g) with positive diagonal entries
is simply connected abelian, and Ā is an analytic subgroup of it. By
Corollary 1.111, Ā is closed in GL(g) and hence closed in Ḡ. Similarly
the upper-triangular subgroup of GL(g) with 1’s on the diagonal is simply
connected nilpotent, and N̄ is an analytic subgroup of it. By Corollary
1.111, N̄ is closed in GL(g) and hence closed in Ḡ.

The map Ā × N̄ into GL(g) given by (ā, n̄) �→ ān̄ is one-one since we
can recover ā from the diagonal entries, and it is onto a subgroup ĀN̄
since ā1n̄1ā2n̄2 = ā1ā2(ā

−1
2 n̄1ā2)n̄2 and (ān̄)−1 = n̄−1ā−1 = ā−1(ān̄ā−1).

This subgroup is closed. In fact, if lim āmn̄m = x , let ā be the diagonal
matrix with the same diagonal entries as x . Then lim ām = ā, and ā must
be in Ā since Ā is closed in GL(g). Also n̄m = ā−1

m (āmn̄m) has limit ā−1x ,
which has to be in N̄ since N̄ is closed in Ḡ. Thus lim āmn̄m is in ĀN̄ ,
and ĀN̄ is closed.
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Clearly the closed subgroup ĀN̄ has Lie algebra a ⊕ n. By Lemma
6.44, Ā × N̄ → ĀN̄ is a diffeomorphism.

The subgroup K̄ is compact, and thus the image of K̄ × Ā × N̄ →
K̄ × ĀN̄ → Ḡ is the product of a compact set and a closed set and is
closed. Also the image is open since the map is everywhere regular
(Lemma 6.44) and since the equality g = k ⊕ a ⊕ n shows that the
dimensions add properly. Since the image of K̄ × Ā × N̄ is open and
closed and since Ḡ is connected, the image is all of Ḡ.

Thus the multiplication map is smooth, regular, and onto. Finally
K̄ ∩ ĀN̄ = {1} since a rotation matrix with positive eigenvalues is 1.
Since Ā × N̄ → ĀN̄ is one-one, it follows that K̄ × Ā × N̄ → Ḡ is
one-one. This completes the proof for the adjoint group Ḡ.

We now lift the above result to G. Let e : G → Ḡ = Ad(G) be the
covering homomorphism. Using a locally defined inverse of e, we can
write the map (k, a, n) �→ kan locally as

(k, a, n) �→ (e(k), e(a), e(n)) �→ e(k)e(a)e(n) = e(kan) �→ kan,

and therefore the multiplication map is smooth and everywhere regular.
Since A and N are connected, e|A and e|N are covering maps to Ā and
N̄ , respectively. Since Ā and N̄ are simply connected, it follows that e
is one-one on A and on N and that A and N are simply connected.

Let us prove that the multiplication map is onto G. If g ∈ G is given,
write e(g) = k̄ān̄. Put a = (e|A)−1(ā) ∈ A and n = (e|N )−1(N̄ ) ∈ N .
Let k be in e−1(k̄). Then e(kan) = k̄ān̄, so that e(g(kan)−1) = 1. Thus
g(kan)−1 = z is in the center of G. By Theorem 6.31e, z is in K .
Therefore g = (zk)an exhibits g as in the image of the multiplication
map.

Finally we show that the multiplication map is one-one. Since
Ā × N̄ → ĀN̄ is one-one, so is A × N → AN . The set of products
AN is a group, just as in the adjoint case, and therefore it is enough to
prove that K ∩ AN = {1}. If x is in K ∩ AN , then e(x) is in K̄ ∩ ĀN̄ = {1}.
Hence e(x) = 1. Write x = an ∈ AN . Then 1 = e(x) = e(an) = e(a)e(n),
and the result for the adjoint case implies that e(a) = e(n) = 1. Since e
is one-one on A and on N , a = n = 1. Thus x = 1. This completes the
proof.

Recall from §IV.5 that a subalgebra h of g is called a Cartan
subalgebra if hC is a Cartan subalgebra of gC. The rank of g is the
dimension of any Cartan subalgebra; this is well defined since Proposi-
tion 2.15 shows that any two Cartan subalgebras of gC are conjugate via
Int gC.
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Proposition 6.47. If t is a maximal abelian subspace of m = Zk(a),
then h = a ⊕ t is a Cartan subalgebra of g.

PROOF. By Corollary 2.13 it is enough to show that hC is maximal
abelian in gC and that adgC hC is simultaneously diagonable.

Certainly hC is abelian. Let us see that it is maximal abelian. If
Z = X + iY commutes with hC, then so do X and Y . Thus there is no
loss in generality in considering only X . The element X commutes with
hC, hence commutes with a, and hence is in a ⊕ m. The same thing is
true of θ X . Then X + θ X , being in k, is in m and commutes with t, hence
is in t, while X − θ X is in a. Thus X is in a ⊕ t, and we conclude that hC

is maximal abelian.
In the basis of Lemma 6.45, the matrices representing ad t are skew

symmetric and hence are diagonable over C, while the matrices repre-
senting ad a are already diagonal. Since all the matrices in question form
a commuting family, the members of ad hC are diagonable.

With notation as in Proposition 6.47, h = a ⊕ t is a Cartan subalgebra
of g, and it is meaningful to speak of the set � = �(gC, hC) of roots
of gC with respect to hC. We can write the corresponding root-space
decomposition as

(6.48a) gC = hC ⊕
⊕

α∈�

(gC)α.

Then it is clear that
(6.48b) gλ = g ∩

⊕

α∈�,
α|a=λ

(gC)α

and
(6.48c) mC = tC ⊕

⊕

α∈�,
α|a=0

(gC)α.

That is, the restricted roots are the nonzero restrictions to a of the roots,
and m arises from t and the roots that restrict to 0 on a.

Corollary 6.49. If t is a maximal abelian subspace of m = Zk(a),
then the Cartan subalgebra h = a ⊕ t of g has the property that all of the
roots are real on a ⊕ it. If m = 0, then g is a split real form of gC.

PROOF. In view of (6.48) the values of the roots on a member H of
h are the eigenvalues of ad H . For H ∈ a, these are real since ad H is
self adjoint. For H ∈ t, they are purely imaginary since ad H is skew
adjoint. The first assertion follows.

If m = 0, then t = 0. So the roots are real on h = a. Thus g contains
the real subspace of a Cartan subalgebra hC of gC where all the roots are
real, and g is a split real form of gC.
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By nondegeneracy of B on a, [Eλ, θ Eλ] = B(Eλ, θ Eλ)Hλ. Finally
B(Eλ, θ Eλ) = −Bθ (Eλ, Eλ) < 0 since Bθ is positive definite.

(b) Put

H ′
λ = 2

|λ|2 Hλ, E ′
λ = 2

|λ|2 B(Eλ, θ Eλ)
Eλ, E ′

−λ = θ Eλ.

Then (a) shows that

[H ′
λ, E ′

λ] = 2E ′
λ, [H ′

λ, E ′
−λ] = −2E ′

−λ, [E ′
λ, E ′

−λ] = H ′
λ,

and (b) follows.
(c) Note from (a) that the normalization B(Eλ, θ Eλ) = −2/|λ|2 is

allowable. If λ(H) = 0, then

Ad(k)H = Ad(exp π
2 (Eλ + θ Eλ))H

= (exp ad π
2 (Eλ + θ Eλ))H

=
∞∑

n=0

1
n! (ad π

2 (Eλ + θ Eλ))
n H

= H.

On the other hand, for the element H ′
λ, we first calculate that

(ad π
2 (Eλ + θ Eλ))H ′

λ = π(θ Eλ − Eλ)

(ad π
2 (Eλ + θ Eλ))

2 H ′
λ = −π2 H ′

λ.and

Therefore

Ad(k)H ′
λ =

∞∑

n=0

1
n! (ad π

2 (Eλ + θ Eλ))
n H ′

λ

=
∞∑

m=0

1
(2m)! ((ad π

2 (Eλ + θ Eλ))
2)m H ′

λ

+
∞∑

m=0

1
(2m+1)! (ad π

2 (Eλ + θ Eλ))((ad π
2 (Eλ + θ Eλ))

2)m H ′
λ

=
∞∑

m=0

1
(2m)! (−π2)m H ′

λ +
∞∑

m=0

1
(2m+1)! (−π2)mπ(θ Eλ − Eλ)

= (cos π)H ′
λ + (sin π)(θ Eλ − Eλ)

= −H ′
λ,

and (c) follows.
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This is a group of linear transformations of a, telling all possible ways
that members of K can act on a by Ad. We have already seen that
W (�) ⊆ W (G, A), and we are going to prove that W (�) = W (G, A).

We write M for the group Z K (a). Modulo the center of G, M is
a compact group (being a closed subgroup of K ) with Lie algebra
Zk(a) = m. After Proposition 6.40 we saw examples of restricted-root
space decompositions and the associated Lie algebras m. The following
examples continue that discussion.

EXAMPLES.
1) Let G = SL(n, K), where K is R, C, or H. The subgroup M consists

of all diagonal members of K . When K = R, the diagonal entries are
±1, but there are only n − 1 independent signs since the determinant is
1. Thus M is finite abelian and is the product of n − 1 groups of order
2. When K = C, the diagonal entries are complex numbers of modulus
1, and again the determinant is 1. Thus M is a torus of dimension n − 1.
When K = H, the diagonal entries are quaternions of absolute value 1,
and there is no restriction on the determinant. Thus M is the product of
n copies of SU (2).

2) Let G = SU (p, q) with p ≥ q. The group M consists of all unitary
matrices of determinant 1 that are arbitrary in the upper left block of size
p − q, are otherwise diagonal, and have the (p − i + 1)st diagonal entry
equal to the (p + i)th diagonal entry for 1 ≤ i ≤ q. Let us abbreviate
such a matrix as

m = diag(ω, eiθq , . . . , eiθ1 , eiθ1 , . . . , eiθq ),

where ω is the upper left block of size p −q. When p = q, the condition
that the determinant be 1 says that

∑q
j=1 θj ∈ πZ. Thus we can take

θ1, . . . , θq−1 to be arbitrary and use eiθq = ±e−i(θ1+···+θq−1). Consequently
M is the product of a torus of dimension q − 1 and a 2-element group.
When p > q, M is connected. In fact, the homomorphism that maps the
above matrix m to the 2q-by-2q diagonal matrix

diag(eiθq , . . . , eiθ1 , eiθ1 , . . . , eiθq )

has a (connected) q-dimensional torus as image, and the kernel is iso-
morphic to the connected group SU (p − q); thus M itself is connected.

3) Let G = SO(p, q)0 with p ≥ q. The subgroup M for this example
is the intersection of SO(p)×SO(q) with the M of the previous example.
Thus M here consists of matrices that are orthogonal matrices of total
determinant 1, are arbitrary in the upper left block of size p − q, are
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otherwise diagonal, have q diagonal entries ±1 after the upper left block,
and then have those q diagonal entries ±1 repeated in reverse order. For
the lower right q entries to yield a matrix in SO(q), the product of the
q entries ±1 must be 1. For the upper left p entries to yield a matrix
in SO(p), the orthogonal matrix in the upper left block of size p − q
must have determinant 1. Therefore M is isomorphic to the product of
SO(p − q) and the product of q − 1 groups of order 2.

Lemma 6.56. The Lie algebra of NK (a) is m. Therefore W (G, A) is
a finite group.

PROOF. The second conclusion follows from the first, since the first
conclusion implies that W (G, A) is 0-dimensional and compact, hence
finite. For the first conclusion, the Lie algebra in question is Nk(a). Let
X = H0 + X0 + ∑

λ∈� Xλ be a member of Nk(a), with H0 ∈ a, X0 ∈ m,
and Xλ ∈ gλ. Since X is to be in k, θ must fix X , and we see that X
may be rewritten as X = X0 + ∑

λ∈�+(Xλ + θ Xλ). When we apply ad H
for H ∈ a, we obtain [H, X] = ∑

λ∈�+ λ(H)(Xλ − θ Xλ). This element is
supposed to be in a, since we started with X in the normalizer of a, and
that means [H, X] is 0. But then Xλ = 0 for all λ, and X reduces to the
member X0 of m.

Theorem 6.57. The group W (G, A) coincides with W (�).

REMARK. This theorem should be compared with Theorem 4.54.

PROOF. Let us observe that W (G, A) permutes the restricted roots. In
fact, let k be in NK (a), let λ be in �, and let Eλ be in gλ. Then

[H, Ad(k)Eλ] = Ad(k)[Ad(k)−1 H, Eλ] = Ad(k)(λ(Ad(k)−1 H)Eλ)

= λ(Ad(k)−1 H)Ad(k)Eλ = (kλ)(H)Ad(k)Eλ

shows that kλ is in � and that Ad(k)Eλ is a restricted-root vector for kλ.
Thus W (G, A) permutes the restricted roots.

We have seen that W (�) ⊆ W (G, A). Fix a simple system �+ for
�. In view of Theorem 2.63, it suffices to show that if k ∈ NK (a) has
Ad(k)�+ = �+, then k is in Z K (a).

The element Ad(k) = w acts as a permutation of �+. Let 2δ denote
the sum of the reduced members of �+, so that w fixes δ. If λi is a
simple restricted root, then Lemma 2.91 and Proposition 2.69 show that
2〈δ, λi 〉/|λi |2 = 1. Therefore 〈δ, λ〉 > 0 for all λ ∈ �+.

Let u = k ⊕ ip be the compact real form of gC associated to θ , and let
U be the adjoint group of u. Then AdgC(K ) ⊆ U , and in particular Ad(k)

is a member of U . Form S = {exp irad Hδ} ⊆ U . Here S is a torus in U ,
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and we let s be the Lie algebra of S. The element Ad(k) is in ZU (S), and
the claim is that every member of ZU (S) centralizes a. If so, then Ad(k)

is 1 on a, and k is in Z K (a), as required.
By Corollary 4.51 we can verify that ZU (S) centralizes a by showing

that Zu(s) centralizes a. Here

Zu(s) = u ∩ ZgC(s) = u ∩ ZgC(Hδ).

To evaluate the right side, we complexify the statement of Lemma 6.50.
Since 〈λ, δ〉 �= 0, the centralizer ZgC(Hδ) is just aC ⊕ mC. Therefore

Zu(s) = u ∩ (aC ⊕ mC) = ia ⊕ m.

Every member of the right side centralizes a, and the proof is complete.

6. Cartan Subalgebras

Proposition 6.47 showed that every real semisimple Lie algebra has a
Cartan subalgebra. But as we shall see shortly, not all Cartan subalgebras
are conjugate. In this section and the next we investigate the conjugacy
classes of Cartan subalgebras and some of their relationships to each
other.

We revert to the use of subscripted Gothic letters for real Lie al-
gebras and to unsubscripted letters for complexifications. Let g0 be
a real semisimple Lie algebra, let θ be a Cartan involution, and let
g0 = k0 ⊕ p0 be the corresponding Cartan decomposition. Let g be the
complexification of g0, and write g = k ⊕ p for the complexification
of the Cartan decomposition. Let B be any nondegenerate symmetric
invariant bilinear form on g0 such that B(θ X, θY ) = B(X, Y ) and such
that Bθ , defined by (6.13), is positive definite.

All Cartan subalgebras of g0 have the same dimension, since their
complexifications are Cartan subalgebras of g and are conjugate via
Int g, according to Theorem 2.15.

Let K = Intg0(k0). This subgroup of Int g0 is compact.

EXAMPLE. Let G = SL(2, R) and g0 = sl(2, R). A Cartan subalgebra
h0 complexifies to a Cartan subalgebra of sl(2, C) and therefore has
dimension 1. Therefore let us consider which 1-dimensional subspaces
RX of sl(2, R) are Cartan subalgebras. The matrix X has trace 0, and we
divide matters into cases according to the sign of det X . If det X < 0,
then X has real eigenvalues µ and −µ, and X is conjugate via SL(2, R)

to a diagonal matrix. Thus, for some g ∈ SL(2, R),

RX = {Ad(g)Rh}.
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noncompact Cartan subalgebra. To correlate this information, we need
to be able to track down the conjugacy via g = (g0)

C of a maximally
compact Cartan subalgebra and a maximally noncompact one.

Cayley transforms are one-step conjugacies of θ stable Cartan sub-
algebras whose iterates explicitly relate any θ stable Cartan subalgebra
with any other. We develop Cayley transforms in this section and show
that in favorable circumstances we can see past the step-by-past process
to understand the composite conjugation all at once.

There are two kinds of Cayley transforms, essentially inverse to each
other. They are modeled on what happens in sl(2, R). In the case of
sl(2, R), we start with the standard basis h, e, f for sl(2, C) as in (1.5), as
well as the members hB, eB, fB of sl(2, C) defined in (6.58). The latter
elements satisfy the familiar bracket relations

[hB, eB] = 2eB, [hB, fB] = −2 fB, [eB, fB] = hB .

The definitions of eB and fB make eB + fB and i(eB − fB) be in sl(2, R),
while i(eB + fB) and eB − fB are in su(2). The first kind of Cayley
transform within sl(2, C) is the mapping

Ad

(√
2

2

(
1 i
i 1

))
= Ad(exp π

4 ( fB − eB)),

which carries hB, eB, fB to complex multiples of h, e, f and carries the
Cartan subalgebra R

(
0 1

−1 0

)
to iR

(
1 0

0 −1

)
. When generalized below, this

Cayley transform will be called cβ .
The second kind of Cayley transform within sl(2, C) is the mapping

Ad

(√
2

2

(
1 −i

−i 1

))
= Ad(exp i π

4 (− f − e)),

which carries h, e, f to complex mutliples of hB, eB, fB and carries the
Cartan subalgebra R

(
1 0

0 −1

)
to iR

(
0 1

−1 0

)
. In view of the explicit formula

for the matrices of the Cayley transforms, the two transforms are inverse
to one another. When generalized below, this second Cayley transform
will be called dα.

The idea is to embed each of these constructions into constructions in
the complexification of our underlying semisimple algebra that depend
upon a single root of a special kind, leaving fixed the part of the Cartan
subalgebra that is orthogonal to the embedded copy of sl(2, C).
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In terms of our discussion above of sl(2, C), the correspondence is

H ′
α ↔

(
1 0

0 −1

)

Eα ↔
(

0 1

0 0

)

θ Eα ↔
(

0 0

−1 0

)

i(θ Eα − Eα) ↔
(

0 −i

−i 0

)
.

Define

(6.67a) dα = Ad(exp i π
4 (θ Eα − Eα))

and

(6.67b) h0 = g0 ∩ dα(h′) = ker(α|h′
0
) ⊕ R(Eα + θ Eα).

To see that (6.67b) is valid, we can use infinite series to calculate that

dα(H ′
α) = i(Eα + θ Eα)(6.68a)

dα(Eα − θ Eα) = Eα − θ Eα(6.68b)

dα(Eα + θ Eα) = i H ′
α.(6.68c)

Then (6.68a) implies (6.67b).

Proposition 6.69. The two kinds of Cayley transforms are essentially
inverse to each other in the following senses:

(a) If β is a noncompact imaginary root, then in the computation of
dcβ (β) ◦cβ the root vector Ecβ (β) can be taken to be icβ(Eβ) and this choice
makes the composition the identity.

(b) If α is a real root, then in the the computation of cdα(α) ◦ dα the
root vector Edα(α) can be taken to be −idα(Eα) and this choice makes the
composition the identity.

PROOF.
(a) By (6.66),

cβ(Eβ) = 1
2 cβ(Eβ + Eβ) + 1

2 cβ(Eβ − Eβ) = − 1
2 H ′

β + 1
2 (Eβ − Eβ).

Both terms on the right side are in ig0, and hence icβ(Eβ) is in g0. Since
H ′

β is in k while Eβ and Eβ are in p,

θcβ(Eβ) = − 1
2 H ′

β − 1
2 (Eβ − Eβ).
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Put Ecβ (β) = icβ(Eβ). From B(Eβ, Eβ) = 2/|β|2, we obtain

B(Ecβ (β), θ Ecβ (β)) = −2/|β|2 = −2/|cβ(β)|2.

Thus Ecβ (β) is properly normalized. Then dcβ (β) becomes

dcβ (β) = Ad(exp i π
4 (θ Ecβ (β) − Ecβ (β)))

= Ad(exp π
4 (cβ(Eβ) − θcβ(Eβ)))

= Ad(exp π
4 (Eβ − Eβ)),

and this is the inverse of

cβ = Ad(exp π
4 (Eβ − Eβ)).

(b) By (6.68),

dα(Eα) = 1
2 dα(Eα + θ Eα) + 1

2 dα(Eα − θ Eα) = 1
2 i H ′

α + 1
2 (Eα − θ Eα).

Since H ′
α, Eα, and θ Eα are in g0,

dα(Eα) = − 1
2 i H ′

α + 1
2 (Eα − θ Eα).

Put Edα(α) = −idα(Eα). From B(Eα, θ Eα) = −2/|α|2, we obtain

B(Edα(α), Edα(α)) = 2/|α|2 = 2/|dα(α)|2.

Thus Edα(α) is properly normalized. Then cdα(α) becomes

cdα(α) = Ad(exp π
4 (Edα(α) − Edα(α)))

= Ad(exp i π
4 (dα(Eα) + dα(Eα)))

= Ad(exp i π
4 (Eα − θ Eα)),

and this is the inverse of

dα = Ad(exp i π
4 (θ Eα − Eα)).

Proposition 6.70. Let h0 be a θ stable Cartan subalgebra of g0. Then
there are no noncompact imaginary roots if and only if h0 is maximally
noncompact, and there are no real roots if and only if h0 is maximally
compact.
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Computation shows that

� = {±ej ± ek ± ( f j − fk) | j �= k} ∪ {±2el | 1 ≤ l ≤ n}.
Roots that involve only ej ’s are imaginary, those that involve only f j ’s
are real, and the remainder are complex. It is apparent that there are no
real roots, and therefore h0 is maximally compact. The involution θ acts
as +1 on the ej ’s and −1 on the f j ’s. We define a lexicographic ordering
by using the spanning set

e1, . . . , en, f1, . . . , fn,

and we obtain

�+ =



ej + ek ± ( f j − fk), all j �= k

ej − ek ± ( f j − fk), j < k

2el , 1 ≤ l ≤ n.

The Vogan diagram is

en−1−en+( fn−1− fn) e1−e2+( f1− f2)

2en

en−1−en−( fn−1− fn) e1−e2−( f1− f2)

Theorem 6.74. Let g0 and g′
0 be real semisimple Lie algebras. With

notation as above, if two triples (g0, h0, �
+) and (g′

0, h
′
0, (�

′)+) have the
same Vogan diagram, then g0 and g′

0 are isomorphic.

REMARK. This theorem is an analog for real semisimple Lie algebras
of the Isomorphism Theorem (Theorem 2.108) for complex semisimple
Lie algebras.

PROOF. Since the Dynkin diagrams are the same, the Isomorphism
Theorem (Theorem 2.108) shows that there is no loss of generality in
assuming that g0 and g′

0 have the same complexification g. Let u0 =
k0 ⊕ ip0 and u′

0 = k′
0 ⊕ ip′

0 be the associated compact real forms of g. By
Corollary 6.20, there exists x ∈ Int g such that xu′

0 = u0. The real form
xg′

0 of g is isomorphic to g′
0 and has Cartan decomposition xg′

0 = xk′
0⊕xp′

0.
Since xk′

0 ⊕ i xp′
0 = xu′

0 = u0, there is no loss of generality in assuming
that u′

0 = u0 from the outset. Then

(6.75) θ(u0) = u0 and θ ′(u0) = u0.
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Let us write the effect of the Cartan decompositions on the Cartan
subalgebras as h0 = t0 ⊕ a0 and h′

0 = t′0 ⊕ a′
0. Then t0 ⊕ ia0 and t′0 ⊕ ia′

0
are maximal abelian subspaces of u0. By Theorem 4.34 there exists
k ∈ Int u0 with k(t′0 ⊕ ia′

0) = t0 ⊕ ia0. Replacing g′
0 by kg′

0 and arguing as
above, we may assume that t′0 ⊕ ia′

0 = t0 ⊕ ia0 from the outset. Therefore
h0 and h′

0 have the same complexification, which we denote h. The space

u0 ∩ h = t0 ⊕ ia0 = t′0 ⊕ ia′
0

is a maximal abelian subspace of u0.
Now that the complexifications g and h have been aligned, the root

systems are the same. Let the positive systems given in the respective
triples be �+ and �+′. By Theorems 4.54 and 2.63 there exists k ′ ∈ Int u0

normalizing u0 ∩ h with k ′�+′ = �+. Replacing g′
0 by k ′g′

0 and arguing
as above, we may assume that �+′ = �+ from the outset.

The next step is to choose normalizations of root vectors relative to h.
For this proof let B be the Killing form of g. We start with root vectors
Xα produced from h as in Theorem 6.6. Using (6.12), we construct a
compact real form ũ0 of g. The subalgebra ũ0 contains the real subspace
of h where the roots are imaginary, which is just u0 ∩ h. By Corollary
6.20, there exists g ∈ Int g such that gũ0 = u0. Then gũ0 = u0 is built
by (6.12) from g(u0 ∩ h) and the root vectors gXα. Since u0 ∩ h and
g(u0 ∩ h) are maximal abelian in u0, Theorem 4.34 produces u ∈ Int u0

with ug(u0 ∩ h) = u0 ∩ h. Then u0 is built by (6.12) from ug(u0 ∩ h)

and the root vectors ugXα. For α ∈ �, put Yα = ugXα. Then we have
established that

(6.76) u0 =
∑
α∈�

R(i Hα) +
∑
α∈�

R(Yα − Y−α) +
∑
α∈�

Ri(Yα + Y−α).

We have not yet used the information that is superimposed on the
Dynkin diagram of �+. Since the automorphisms of �+ defined by θ

and θ ′ are the same, θ and θ ′ have the same effect on h∗. Thus

(6.77) θ(H) = θ ′(H) for all H ∈ h.

If α is an imaginary simple root, then

θ(Yα) = Yα = θ ′(Yα) if α is unpainted,(6.78a)

θ(Yα) = −Yα = θ ′(Yα) if α is painted.(6.78b)

We still have to deal with the complex simple roots. For α ∈ �, write
θYα = aαYθα. From (6.75) we know that

θ(u0 ∩ span{Yα, Y−α}) ⊆ u0 ∩ span{Yθα, Y−θα}.
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In view of (6.76) this inclusion means that

θ(R(Yα − Y−α) + Ri(Yα + Y−α)) ⊆ R(Yθα − Y−θα) + Ri(Yθα + Y−θα).

If x and y are real and if z = x + yi , then we have

x(Yα − Y−α) + yi(Yα + Y−α) = zYα − z̄Y−α.

Thus the expression θ(zYα − z̄Y−α) = zaαYθα − z̄a−αY−θα must be of the
form wYθα − w̄Y−θα, and we conclude that

(6.79) a−α = aα.

Meanwhile aαa−α = B(aαYθα, a−αY−θα) = B(θYα, θY−α) = B(Yα, Y−α) =
1 shows that

(6.80) aαa−α = 1.

Combining (6.79) and (6.80), we see that

(6.81) |aα| = 1.

Next we observe that

(6.82) aαaθα = 1

since Yα = θ2Yα = θ(aαYθα) = aαaθαYα.
For each pair of complex simple roots α and θα, choose square roots

a1/2
α and a1/2

θα so that

(6.83) a1/2
α a1/2

θα = 1.

This is possible by (6.82).
Similarly write θ ′Yα = bαYθα with

(6.84) |bα| = 1,

and define b1/2
α and b1/2

θα for α and θα simple so that

(6.85) b1/2
α b1/2

θα = 1.

By (6.81) and (6.84), we can define H and H ′ in u0 ∩h by the conditions
that α(H) = α(H ′) = 0 for α imaginary simple and

exp( 1
2α(H)) = a1/2

α , exp( 1
2θα(H)) = a1/2

θα ,

exp( 1
2α(H ′)) = b1/2

α , exp( 1
2θα(H ′)) = b1/2

θα
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for α and θα complex simple.
We shall show that

(6.86) θ ′ ◦ Ad(exp 1
2 (H − H ′)) = Ad(exp 1

2 (H − H ′)) ◦ θ.

In fact, the two sides of (6.86) are equal on h and also on each Xα for
α imaginary simple, by (6.77) and (6.78), since the Ad factor drops out
from each side. If α is complex simple, then

θ ′ ◦ Ad(exp 1
2 (H − H ′))Yα = θ ′(e

1
2 α(H−H ′)Yα)

= bαa1/2
α b−1/2

α Yθα

= b1/2
α a−1/2

α θYα

= b−1/2
θα a1/2

θα θYα by (6.83) and (6.85)

= Ad(exp 1
2 (H − H ′)) ◦ θYα.

This proves (6.86).
Applying (6.86) to k and then to p, we see that

(6.87)
Ad(exp 1

2 (H − H ′))(k) ⊆ k′

Ad(exp 1
2 (H − H ′))(p) ⊆ p′,

and then equality must hold in each line of (6.87). Since the element
Ad(exp 1

2 (H−H ′)) carries u0 to itself, it must carry k0 = u0∩k to k′
0 = u0∩k′

and p0 = u0 ∩ p to p′
0 = u0 ∩ p′. Hence it must carry g0 = k0 ⊕ p0 to

g′
0 = k′

0 ⊕ p′
0. This completes the proof.

Now let us address the question of existence. We define an abstract
Vogan diagram to be an abstract Dynkin diagram with two pieces of
additional structure indicated: One is an automorphism of order 1 or 2
of the diagram, which is to be indicated by labeling the 2-element orbits.
The other is a subset of the 1-element orbits, which is to be indicated by
painting the vertices corresponding to the members of the subset. Every
Vogan diagram is of course an abstract Vogan diagram.

Theorem 6.88. If an abstract Vogan diagram is given, then there exist
a real semisimple Lie algebra g0, a Cartan involution θ , a maximally
compact θ stable Cartan subalgebra h0 = t0 ⊕ a0, and a positive system
�+ for � = �(g, h) that takes it0 before a0 such that the given diagram
is the Vogan diagram of (g0, h0, �

+).

REMARK. Briefly the theorem says that any abstract Vogan diagram
comes from some g0. Thus the theorem is an analog for real semisimple
Lie algebras of the Existence Theorem (Theorem 2.111) for complex
semisimple Lie algebras.
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positive roots α and β and if α + β is a root, then it holds for α + β. In
the notation of Theorem 6.6, we have

θ Xα+β = N−1
α,βθ[Xα, Xβ] = N−1

α,β[θ Xα, θ Xβ]

= N−1
α,βaαaβ[Xθα, Xθβ] = N−1

α,β Nθα,θβaαaβ Xθα+θβ .

Therefore
aα+β = N−1

α,β Nθα,θβaαaβ.

Here aαaβ = ±1 by assumption, while Theorem 6.6 and the fact that θ

is an automorphism of � say that Nα,β and Nθα,θβ are real with

N 2
α,β = 1

2 q(1 + p)|α|2 = 1
2 q(1 + p)|θα|2 = N 2

θα,θβ .

Hence aα+β = ±1, and (6.91) is proved.
Let us see that

θ(R(Xα − X−α) + Ri(Xα + X−α)) ⊆ R(Xθα − X−θα) + Ri(Xθα + X−θα).

(6.92)

If x and y are real and if z = x + yi , then we have

x(Xα − X−α) + yi(Xα + X−α) = zXα − z̄ X−α.

Thus (6.92) amounts to the assertion that the expression

θ(zXα − z̄ X−α) = zaα Xθα − z̄a−α X−θα

is of the form wXθα − w̄X−θα, and this follows from (6.91) and (6.90).
Since θ carries roots to roots,

(6.93) θ
( ∑

α∈�

R(i Hα)
) =

∑

α∈�

R(i Hα).

Combining (6.92) and (6.93) with (6.89), we see that θu0 = u0.
Let k and p be the +1 and −1 eigenspaces for θ in g, so that g = k ⊕ p.

Since θu0 = u0, we have

u0 = (u0 ∩ k) ⊕ (u0 ∩ p).

Define k0 = u0 ∩ k and p0 = i(u0 ∩ p), so that

u0 = k0 ⊕ ip0.
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Lemma 6.98. Let g0 be a noncomplex simple real Lie algebra, and
let the Vogan diagram of g0 be given that corresponds to the triple
(g0, h0, �

+). Write h0 = t0 ⊕ a0 as usual. Let V be the span of the
simple roots that are imaginary, let �0 be the root system � ∩ V, let H
be the subset of it0 paired with V, and let � be the subset of H where
all roots of �0 take integer values and all noncompact roots of �0 take
odd-integer values. Then � is nonempty. In fact, if α1, . . . , αm is any
simple system for �0 and if ω1, . . . , ωm in V are defined by 〈ωj , αk〉 = δjk ,
then the element

ω =
∑

i with αi
noncompact

ωi .

is in �.

PROOF. Fix a simple system α1, . . . , αm for �0, and let �+
0 be the

set of positive roots of �0. Define ω1, . . . , ωm by 〈ωj , αk〉 = δjk . If
α = ∑m

i=1 niαi is a positive root of �0, then 〈ω, α〉 is the sum of the ni

for which αi is noncompact. This is certainly an integer.
We shall prove by induction on the level

∑m
i=1 ni that 〈ω, α〉 is even if

α is compact, odd if α is noncompact. When the level is 1, this assertion
is true by definition. In the general case, let α and β be in �+

0 with α +β

in �, and suppose that the assertion is true for α and β. Since the sum
of the ni for which αi is noncompact is additive, we are to prove that
imaginary roots satisfy

(6.99)

compact + compact = compact

compact + noncompact = noncompact

noncompact + noncompact = compact.

But this is immediate from Corollary 2.35 and the bracket relations
(6.24).

PROOF OF THEOREM 6.96. Define V, �0, and � as in Lemma 6.98.
Before we use Lemma 6.97, it is necessary to observe that the Dynkin
diagram of �0 is connected, i.e., that the roots in the Dynkin diagram
of � fixed by the given automorphism form a connected set. There is
no problem when the automorphism is the identity, and we observe the
connectedness in the other cases one at a time by inspection.

Let �+
0 = �+ ∩ V . The set � is discrete, being a subset of a lattice,

and Lemma 6.98 has just shown that it is nonempty. Let H0 be a member
of � with norm as small as possible. By Proposition 2.67 we can choose
a new positive system �+

0
′ for �0 that makes H0 dominant. The main

step is to show that

(6.100) at most one simple root of �+
0

′ is painted.
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Let us summarize our results.

Theorem 6.105 (classification). Up to isomorphism every simple
real Lie algebra is in the following list, and everything in the list is a
simple real Lie algebra:

(a) the Lie algebra gR, where g is complex simple of type An for
n ≥ 1, Bn for n ≥ 2, Cn for n ≥ 3, Dn for n ≥ 4, E6, E7, E8, F4,
or G2

(b) the compact real form of any g as in (a)
(c) the classical matrix algebras

su(p, q) with p ≥ q > 0, p + q ≥ 2
so(p, q) with p > q > 0, p + q odd, p + q ≥ 5

or with p ≥ q > 0, p + q even, p + q ≥ 8
sp(p, q) with p ≥ q > 0, p + q ≥ 3
sp(n, R) with n ≥ 3
so∗(2n) with n ≥ 4
sl(n, R) with n ≥ 3
sl(n, H) with n ≥ 2

(d) the 12 exceptional noncomplex noncompact simple Lie algebras
given in Figures 6.2 and 6.3.

The only isomorphism among Lie algebras in the above list is so∗(8) ∼=
so(6, 2).

REMARKS. The restrictions on rank in (a) prevent coincidences in
Dynkin diagrams. These restrictions are maintained in (b) and (c) for
the same reason. Note for sl(n, R) and sl(n, H) that the restrictions
on n force the automorphism to be nontrivial. In (c) there are no
isomorphisms within a series because the k0’s are different. To have an
isomorphism between members of two series, we need at least two series
with the same Dynkin diagram and automorphism. Then we examine
the possibilities and are led to compare so∗(8) with so(6, 2). The standard
Vogan diagrams for these two Lie algebras are isomorphic, and hence
the Lie algebras are isomorphic by Theorem 6.74.

11. Restricted Roots in the Classification

Additional information about the simple real Lie algebras of §10
comes by switching from a maximally compact Cartan subalgebra to
a maximally noncompact Cartan subalgebra. The switch exposes the
system of restricted roots, which governs the Iwasawa decomposition
and some further structure theory that will be developed in Chapter VII.
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According to §7 the switch in Cartan subalgebra is best carried out
when we can find a maximal strongly orthogonal sequence of noncom-
pact imaginary roots such that, after application of the Cayley trans-
forms, no noncompact imaginary roots remain. If g0 is a noncomplex
simple real Lie algebra and if we have a Vogan diagram for g0 as in
Theorem 6.96, such a sequence is readily at hand by an inductive con-
struction. We start with a noncompact imaginary simple root, form the
set of roots orthogonal to it, label their compactness or noncompactness
by means of Proposition 6.72, and iterate the process.

EXAMPLE. Let g0 = su(p, n − p) with p ≤ n − p. The distinguished
Vogan diagram is of type An−1 with ep − ep+1 as the unique noncompact
imaginary simple root. Since the Dynkin diagram does not have a double
line, orthogonality implies strong orthogonality. The above process
yields the sequence of noncompact imaginary roots

(6.106)

2 fp = ep − ep+1

2 fp−1 = ep−1 − ep+2

...

2 f1 = e1 − e2p.

We do a Cayley transform with respect to each of these. The order is
irrelevant; since the roots are strongly orthogonal, the individual Cayley
transforms commute. It is helpful to use the same names for roots
before and after Cayley transform but always to remember what Cartan
subalgebra is being used. After Cayley transform the remaining imagi-
nary roots are those roots involving only indices 2p + 1, . . . , n, and such
roots are compact. Thus a maximally noncompact Cartan subalgebra has
noncompact dimension p. The restricted roots are obtained by projecting
all ek − el on the linear span of (6.106). If 1 ≤ k < l ≤ p, we have

ek − el = 1
2 (ek − e2p+1−k) − 1

2 (el − e2p+1−l) + (orthogonal to (6.106))

= ( fk − fl) + (orthogonal to (6.106)).

Thus fk − fl is a restricted root. For the same k and l, ek −e2p+1−l restricts
to fk + fl . In addition, if k + l = 2p + 1, then ek − el restricts to 2 fk ,
while if k ≤ p and l > 2p, then ek − el restricts to fk . Consequently the
set of restricted roots is

� =
{ {± fk ± fl} ∪ {±2 fk} ∪ {± fk} if 2p < n

{± fk ± fl} ∪ {±2 fk} if 2p = n.

Thus � is of type (BC)p if 2p < n and of type Cp if 2p = n.


