CHAPTER VI

Structure Theory of Semisimple Groups

Abstract. Every complex semisimple Lie algebra has a compact real form, as a
consequence of a particular normalization of root vectors whose construction uses the
Isomorphism Theorem of Chapter I1. If go isareal semisimple Lie algebra, then the use
of acompact real form of (go) leads to the construction of a“Cartan involution” 6 of
go. Thisinvolution has the property that if go = € @ po is the corresponding eigenspace
decomposition or “ Cartan decomposition,” then ¢, @i po isacompact real form of (go)C.
Any two Cartan involutions of go are conjugate by an inner automorphism. The Cartan
decomposition generalizes the decomposition of a classical matrix Lie algebrainto its
skew-Hermitian and Hermitian parts.

If G isasemisimple Lie group, then a Cartan decomposition go = & & po Of itsLie
agebraleadsto aglobal decomposition G = K exppo, where K isthe analytic subgroup
of G with Liealgebraty. Thisglobal decomposition generalizesthe polar decomposition
of matrices. The group K contains the center of G and, if the center of G isfinite, isa
maximal compact subgroup of G.

The Iwasawa decomposition G = K AN exhibits closed subgroups A and N of G
such that A issimply connected abelian, N is simply connected nilpotent, A normalizes
N, and multiplication from K x A x N to G is a diffeomorphism onto. This decom-
position generalizes the Gram-Schmidt orthogonalization process. Any two lwasawa
decompositions of G are conjugate. The Lie algebra ap of A may be taken to be any
maximal abelian subspace of po, and the Lie algebra of N is defined from a kind of
root-space decomposition of go with respect to ag. The simultaneous eigenspaces are
called “restricted roots,” and the restricted roots form an abstract root system. The Weyl
group of this system coincides with the quotient of normalizer by centralizer of ag in K.

A Cartan subalgebra of go is a subalgebra whose complexification is a Cartan sub-
algebra of (go)©. One Cartan subalgebra of go is obtained by adjoining to the above
ap amaximal abelian subspace of the centralizer of ag in &. This Cartan subalgebrais
6 stable. Any Cartan subalgebra of gg is conjugate by an inner automorphism to a ¢
stable one, and the subalgebra built from ag as above is maximally noncompact among
al o stable Cartan subalgebras. Any two maximally noncompact Cartan subalgebras
are conjugate, and so are any two maximally compact ones. Cayley transforms allow
one to pass between any two ¢ stable Cartan subalgebras, up to conjugacy.

A Vogan diagram of go superimposes certain information about the real form go on
the Dynkin diagram of (go)C. The extra information involves a maximally compact ¢
stable Cartan subalgebra and an allowable choice of a positive system of roots. The
effect of 6 on simplerootsislabeled, and imaginary simple roots are painted if they are
“noncompact,” left unpainted if they are “compact.” Such a diagram is not unique for
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294 V1. Structure Theory of Semisimple Groups

according to Proposition 1.96, and this property is not always shared by
other forms. To take advantage of this property, we shall insist that B
is the Killing form in §881-3. After that, we shall alow more general
formsin place of B.)

For each pair {«, —a} in A, wefix E, € g, and E_, € g_, SO that
B(E., E_y) = 1. Then[E,, E_,] = H, by Lemma 2.18a. Let o and g
beroots. If « + g isin A, define C, 4 by

[Eav Eﬁ] = Ca,ﬁ Ea+/3-
If « +BisnotinA, putC, s =0.
Lemma6.2. C, s = —Cgp,.
Proor. This follows from the skew symmetry of the bracket.
Lemma6.3. If o, 8,and y arein A and o + 8+ y =0, then
Cop=Cs, =C,q.
Proor. By the Jacobi identity,

[[Ea» Eﬂ]y Ey] + [[Eﬂ» Ey]v Ea] + [[EV’ Ea]a Eﬁ] =0.

Thus Ca,ﬂ[EfW EV] + Cﬂ,y[Efou E.] + wa[Efﬂv Eﬂ] =0

and CepH, +Cs,Hys +C, oHg =0.

Substituting H, = —H, — H, and using the linear independence of
{Hq, Hg}, we obtain the result.

Lemma 6.4. Let o, B, and « + 8 bein A, and let 8 + na, with
—p <n <q,bethea string containing 8. Then

Cap: Cowmp = —30(1+ p)laf’.
Proor. By Corollary 2.37,
[E_v. [Ea. Esll = 3a(1 + p)lal®B(Eq, E_)Eg.

The left side is C_, ++4CqsEs, and B(E,, E_,) = 1 on the right side.
Therefore

(6.5) CovatpCap = 3A(L+ Plaf®

Since (—a) + (@ + B) + (—pB) = 0, Lemmas 6.3 and 6.2 give
Cfa,onrﬂ = Cfﬁ,fut = _Cfot,fﬂs

and the result follows by substituting this formulainto (6.5).
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Finally
[(Xot - X,a), i (Xa + X,O,)] = 2| Ha»

and thereforeug isclosed under brackets. Consequently ugpisareal form.
To show that uy isacompact Lie algebra, it isenough, by Proposition
4.27, to show that the Killing form of v, isnegative definite. TheKilling
forms B,, of up and B of g are related by B, = B|y,xy,, according to
(1.20). Thefirst termontheright side of (6.12) isorthogonal to the other
two termsby Proposition 2.17a, and B ispositiveon Y RH, by Corollary
2.38. Hence B is negative on >_ Ri H,. Next we use Proposition 2.17a
to observefor g # +« that

B((Xe — Xa), (Xg = X_p)) =0

B((Xo — X_0), 1(Xg+X_4)) =0

B(i (Xo + X_a),1(Xg + X_5)) = 0.

Finally we have

B((Xa - X,a), (Xa - X,D,)) = _ZB(xaa xfa) =-2
B(I (Xot + X—Ot)v [ (Xa + X—Dt)) = _ZB(XOH X—a) = _27

and therefore B, ., IS negative definite.

2. Cartan Decomposition on the Lie Algebra Level

To detect semisimplicity of some specific Lie algebras of matricesin
8.8, we made critical use of the conjugate transpose mapping X — X*.
Slightly better isthe map 6(X) = —X*, which isactually an involution,
i.e., anautomorphism of the Lie algebrawith square equal to theidentity.
To see that 6 respects brackets, we just write

OX, Y] = —[X, Y]" = —[Y*, X = [-X*, =Y ] = [6(X), 6(Y)].

Let B be the Killing form. The involution 6 has the property that
By (X, Y) = —B(X, 8Y) issymmetric and positive definite because Propo-
sition 1.96 gives

By(X,Y) = —B(X,0Y) = —B(0X, 6%Y)
=—-B@BX,Y)=—B(Y,0X) = By(Y, X)
and (6.1) gives

By (X, X) = —B(X, 6X) = —Tr((ad X)(ad6 X))
= Tr((ad X)(ad X*)) = Tr((ad X)(ad X)*) > 0.
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Lemma 6.15. Let go bearea finite-dimensional Lie algebra, and let
o be an automorphism of go that is diagonabl e with positive eigenvalues
di, ..., dn and corresponding eigenspaces (go)g. FOr —oo < r < oo,
define o' to be the linear transformation on go that isdf on (go)- Then
{p"} isaone-parameter group in Aut go. If go issemisimple, then o' lies
inIntgo.

Proor. If X isin (go)q and Y isin (go)q;, then
p[X, Y] =[pX, pY] = diqi[X, Y]
since p isan automorphism. Hence[X, Y] isin (go)dq , and we obtain
P [X, Y] = (did) [X,Y] =[d X,d Y] =[p" X, p"Y].

Consequently p" isan automorphism. Therefore {o"} isaone-parameter
group in Autgg, hence in the identity component (Autge)o. If go is
semisimple, then Propositions 1.97 and 1.98 show that (Aut go)o = Int go,
and the lemmafollows.

Theorem 6.16. Let go be area semisimple Lie algebra, let 6 be
a Cartan involution, and let o be any involution. Then there exists
¢ € Intgo such that 8¢~ commutes with o.

Proor. Since g isgiven asa Cartan involution, By isan inner product
for go. Put w = o6. Thisisan automorphism of go, and Proposition 1.96
shows that it leaves B invariant. From o2 = 62 = 1, we therefore have

B(wX,0Y) = B(X, 0 10Y) = B(X, 6wY)

and hence By(@X,Y) = By(X, 0Y).

Thus » is symmetric, and its square p = »? is positive definite. Write
o' for the positive-definite r" power of p, —oco <1 < co. Lemma6.15
shows that p" isaone-parameter group in Intge. Consideration of w as
adiagona matrix showsthat p" commutes with . Now

00 = 0’0 = 00000 = 6o = 00000 = w2 = Hp L.
In terms of a basis of gq that diagonalizes p, the matrix form of this
equationis
Pii O =9ij,0j7jl for al i andj
Considering separately the cases 6,; = 0 and 6;; # 0, we see that

o6 = 0ijp;j'
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Proor. Let 6 and 6’ be two Cartan involutions. Taking o = 6’ in
Theorem 6.16, we can find ¢ e Intgo such that g9p—! commutes with
6’. Here 8¢~ is another Cartan involution of go. So we may as well
assume that ¢ and ' commute from the outset. We shall prove that
0=0.

Since 6 and ¢’ commute, they have compatible eigenspace decom-
positions into +1 and —1 eigenspaces. By symmetry it is enough to
show that no nonzero X € go isin the +1 eigenspace for ¢ and the —1
eigenspace for ¢’. Assuming the contrary, suppose that 6X = X and
6’X = —X. Then we have

0 < By(X, X) = —B(X,8X) = —B(X, X)
0 < By (X, X) = —B(X, 6'X) = +B(X, X),

contradiction. We conclude that & = ¢’, and the proof is complete.

Corollary 6.20. If g isacomplex semisimple Lie algebra, then any
two compact real forms of g are conjugate vialnt g.

Proor. Each compact real form has an associated conjugation of g
that determines it, and this conjugation is a Cartan involution of g®, by
Proposition 6.14. Applying Corollary 6.19 to g*, we see that the two
conjugationsareconjugate by amember of Int(g®). Sincelnt(g®) = Int g,
the corollary follows.

Corollary 6.21. If A = (Aij)},jzl is an abstract Cartan matrix, then
there exists, up to isomorphism, one and only one compact semisimple
Lie algebra go whose complexification g has a root system with A as
Cartan matrix.

Proor. Existence of g isgivenin Theorem 2.111, and uniqueness of g
isgivenin Example 1 of 811.10. Thepassagefrom g to go isaccomplished
by Theorem 6.11 and Corollary 6.20.

Corollary 6.22. If g isacomplex semisimple Lie algebra, then the
only Cartan involutions of g® are the conjugations with respect to the
compact real forms of g.

Proor. Theorem 6.11 and Proposition 6.14 produce a Cartan involu-
tion of g® that is conjugation with respect to some compact rea form
of g. Any other Cartan involution is conjugate to this one, according
to Corollary 6.19, and hence is aso the conjugation with respect to a
compact real form of g.
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A Cartan involution 6 of gg yields an eigenspace decomposition
(6.23) go =t D po

of go into +1 and —1 eigenspaces, and these must bracket according to
the rules

(6.24) [t0, to] < o, [0, o] S po,  [po, po] S to
since # isaninvolution. From (6.23) and (6.24) it follows that
(6.25) £, and po are orthogonal under By, and under By

Infact, if Xisintgand Y isinypg, thenad X adY carries, to po and po to
to. Thusit hastrace 0, and By, (X, Y) = 0; sinceY = —Y, By(X,Y) =0
aso.

Since By is positive definite, the eigenspaces ¢, and po in (6.23) have
the property that

(6.26) " { negative definite on ¢,

positive definite on po.

A decomposition (6.23) of g, that satisfies (6.24) and (6.26) is called a
Cartan decomposition of go.
Conversely a Cartan decomposition determines a Cartan involution 6
by the formula
p +1 ontg
B { -1 onp.

Here (6.24) shows that ¢ respects brackets, and (6.25) and (6.26) show
that By is positive definite. (B, is symmetric by Proposition 1.96 since
6 hasorder 2.)

If go = £ @ po is a Cartan decomposition of go, then & @ ipg isa
compact real form of g = (go)©. Conversaly if ho and qo are the +1 and
—1 eigenspaces of an involution o, then o isa Cartan involution only if
thereal form ho @ iqo of g = (go)* iS compact.

If gisacomplex semisimple Lie agebra, then it follows from Corol-
lary 6.22 that the most genera Cartan decomposition of g® is g® =
up @ iug, Whereug isacompact real form of g.

Corollaries6.18 and 6.19 have shown for an arbitrary real semisimple
Liea gebragg that Cartan decompositionsexist and are unique up to con-
jugacy by Int go. Let us see as a consequence that every real semsimple
Liealgebracan berealized asaLiealgebraof real matrices closed under
transpose.
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and 1.98 show that Intgo = (Autgo)o, K* isclosed in GL(go). Since K*
is contained in the orthogonal group, K# is compact. The Lie algebra
of K¥ isthe subalgebraof al T € adgo whered(T) = T, and thisisjust
ady, (to).

Consider the smooth mapping ¢g : K* x ad,(po) — G given by
9s(k,S) = kexpS. Let us prove that 5 maps onto G. Given x € G,
define X e ad,, (po) by (6.35), and put p = exp3X. The element p is
in Ad(G), and p* = p. Put k = xp!, so that x = kp. Then k*k =
(pH*x*xp~t = (exp—3X)(exp X)(exp—1X) = 1, and hence k* = k2.
Consequently ®(k) = (k*)~* = k, and we conclude that ¢ is onto.

Let usseethat ¢ isone-one. If x = kexp X, then x* = (exp X*)k* =
(exp X)k* = (exp X)k~1. Hence x*x = exp2X. The two sides of this
eguationareequal positivedefinitelinear transformations. Their positive
definite r powers must be equal for all real r, necessarily to exp2r X.
Differentiating (x*X)" = exp2r X with respect tor and puttingr = 0, we
seethat x determines X. Hence x determines also k, and ¢g is one-one.

To complete the proof of (c) (but with K replaced by K#), we are
to show that the inverse map is smooth. It is enough to prove that the
corresponding inverse map in the case of all n-by-n real nonsingular
matrices is smooth, where n = dimgo. In fact, the given inverse map
is arestriction of the inverse map for al matrices, and we recall from
§l.10that if M isan analytic subgroup of aLie group M’, then asmooth
map into M’ with imagein M issmooth into M.

Thuswe are to prove smoothness of the inverse for the case of matri-
ces. Theforward mapis O(n) x p(n, R) — GL(n, R) with (k, X) — keX,
where p(n, R) denotes the vector space of real symmetric matrices. Itis
enough to prove local invertibility of this mapping near (1, Xo). Thus
we examine the differential at k = 1 and X = Xg of (k, X) — keXe %o,
identifying tangent spaces as follows. At k = 1, we use the linear
Lie algebra of O(n), which is the space so(n) of skew-symmetric real
matrices. Near X = Xp, write X = Xg + S, and use {S} = p(n,R) as
tangent space. InGL (n, R), weusethelinear Lieagebra, which consists
of al real matrices.

To compute the differential, we consider restrictions of the forward
map with each coordinate fixed in turn. The differential of (k, X¢) —~ k
iS(T,0) — T for T € so(n). Themap (1, X) — eXe %o has derivative at
t = 0 along the curve X = Xq +tSequa to

d
Xo+tSa—Xo
e e t=0-
dt |

Thus we ask whether it is possible to have
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and therefore the diagram

KX]JO L)

el xadg, le
K X wgo(po) e > G

commutes. The maps on the sides are covering maps since K is con-
nected, and ¢ is a diffeomorphism by (c) for G. If we show that ¢g
IS one-one onto, then it follows that ¢ is a diffeomorphism, and (c) is
proved for G.

First let us check that ¢ isone-one. Suppose k expg X = k' expg X'.
Applying e, we have e(k) expg (ady, (X)) = e(K') expg(ady, (X"). Then
X = X’ from (c) for G, and consequently k = k'.

Second let us check that ¢ isonto. Let x € G be given. Write
e(x) = kexpg(ad,, (X)) by (c) for G, and let k be any member of e~1(k).
Then e(x) = e(kexpg X), and we seethat x = zk expg X for somez € Z.
Since Z C K, x = (zk) expg X is the required decomposition. This
compl etes the proof of (c) for G.

Thenext stepisto construct ©. Let G beasimply connected covering
group of G, let K be the analytic subgroup of G with Lie algebra to, let
Z bethecenter of G, andlet & : G — G bethe covering homomorphism.
Since G is simply connected, there exists a unique involution ® of G
with differential 6. Since ¢ is1 on &, ® is1 on K. By (e) for G,
Z C K. Thereforekeré c K, and ® descends to an involution © of G
with differential 6. This proves (a) for G.

Suppose that x is a member of G with ®(x) = x. Using (c), we can
write x = kexpg X and see that

k(expg X) ™t = kexpg X = kO(eXpg X) = O(x) = x = kexpg X.

Then expg 2X = 1, and it follows from (c) that X = 0. Thusx isin K,
and (b) is proved for G.

Finally we areto prove (g) for G. Supposethat K iscompact and that
K < K; with K; compact. Applying e, we obtain a compact subgroup
e(K;) of G that contains K. By (g) for G, e(K;) = e(K). Therefore
K; € ZK = K, and we must have K; = K. This completes the proof of
the theorem.

The Cartan decomposition onthe Lie algebralevel led in Proposition
6.28 to the conclusion that any real semisimple Lie algebra can be
realized asalie algebra of real matrices closed under transpose. There
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of SL (m, C) amountsto the Gram-Schmidt orthogonalization process, let
{eq, ..., em} bethe standard basisof C™, let g € G be given, and formthe
basis {gey, . ... gen}. The Gram-Schmidt processyields an orthonormal
basis v, ..., vm such that

vy € R*(gg) + span{vy, ..., vj_1}

for 1 < j < m. Defineamatrix k e U(m) by k=*v; = ¢. Thenklgis
upper triangular with positive diagonal entries. Since g has determinant
1 and k has determinant of modulus 1, k must have determinant 1. Then
kisin K = SU(m), k-*gisin AN, and g = k(k~1g) exhibits g asin
K(AN). Thisprovesthat K x A x N — G isonto. It isone-one since
KN AN = {1}, and theinverseis smooth because of the explicit formulas
for the Gram-Schmidt process.

The decomposition in the example extends to all semisimple Lie
groups. To prove such atheorem, we first obtain a Lie algebra decom-
position, and then we lift the result to the Lie group.

Throughout this section, G will denote a semisimple Lie group.
Changing notation from earlier sections of this chapter, we write g for
theLiealgebraof G. (Weshall haverelatively little use for the complex-
ification of the Lie algebra in this section and write g in place of go to
make the notation less cumbersome.) Let 6 be a Cartan involution of g
(Corollary 6.18), let g = ¢dp bethe corresponding Cartan decomposition
(6.23), and let K be the analytic subgroup of G with Lie algebra.

Insistence on using the Killing form as our nondegenerate symmetric
invariant bilinear form on g will turn out to beinconvenient later whenwe
want to compare theform on g with acorresponding form on asemisim-
ple subalgebra of g. Thus we shall allow some flexibility in choosing
aform B. For now it will be enough to let B be any nondegenerate
symmetric invariant bilinear form on g such that B(@ X, 0Y) = B(X,Y)
for all X and Y in g and such that the form B, defined in terms of B
by (6.13) is positive definite. Then it follows that B is negative definite
on the compact real form ¢ @ ip. Therefore B is negative definite on a
maximal abelian subspace of £ @ ip, and we conclude as in the remarks
with Corollary 2.38 that, for any Cartan subalgebra of g©, B is positive
definite on the real subspace where all the roots are real-valued.

The Killing form is one possible choice for B, but there are others.
In any event, B, is an inner product on g, and we use it to define
orthogonality and adjoints.

Let a be a maximal abelian subspace of p. This exists by finite-
dimensionality. Since (adX)* = —ad6X by Lemma 6.27, the set
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consists of all skew-Hermitian diagonal matricesin g. For K = R this
is0, and for K = C itisal purely imaginary matrices of trace 0 and has
dimensionn — 1. For K = H, m consists of all diagonal matrices whose
diagonal entries x; have x; = —x; and isisomorphic to the direct sum of
n copies of su(2); itsdimension is 3n.

2) Let G = SU(p,q) with p > g. We can write the Lie agebrain
block form as

P q
_(a b)p
(6.41) g_(b* d)q

with all entries complex, with a and d skew Hermitian, and with
Tra+ Trd = 0. Wetake ¢ to be all matricesin g with b = 0, and we
take p to be al matricesin g witha = 0and d = 0. Oneway of forming
a maximal abelian subspace a of p isto alow b to have nonzero real
entries only in the lower-left entry and the entries extending diagonally
up from that one:

(6.42) b=|0 - a
a; 0

with p—qrowsof O'sat thetop. Let f; bethe member of a* whosevalue
onthea matrix indicatedin (6.42) isa;. Thentherestricted rootsinclude
all linear functionals + f; + fj withi # j and +2f; for ali. Alsothe+f;
arerestricted rootsif p # q. The restricted-root spaces are described as
follows: Leti < j,andlet J(2), |, (2), and | _(2) be the 2-by-2 matrices

J(z):(_(;;), |+(z)=(;‘_z)), |,(z)=(;_‘2’).

Here z is any complex number. The restricted-root spaces for =+ f; + f;
are 2-dimensional and are nonzero only in the 16 entries corresponding
torow and columnindicesp—j+1, p—i+1, p+i, p+ j, wherethey
are

oo =132 52 - {72 52
C @ -J@ /)" T L@ -J@)/)’

_ J(2) —l_(2) _ J(20 1_(2
=\l e )0 T e @)



4. Iwasawa Decomposition 315

The restricted-root spaces for £2f; have dimension 1 and are nonzero
only in the 4 entries corresponding to row and columnindices p—i +1
and p +i, wherethey are

. 1 -1 . 1 1
ngi:”R(l _1) and ngi:|R<_1 _1)-

The restricted-root spaces for +f; have dimension 2(p — q) and are
nonzero only in the entries corresponding to row and column indices 1
top—q,p—i+1andp+i,wherethey are

0 v —v 0 v w
gfi={<—v* 0 O)} and g_fi={<—v* 0 0)}
—v* 0 O v 0 0

Here v is any member of CP-9. The subalgebram of Proposition 6.40d
consists of all skew-Hermitian matrices of trace O that are arbitrary in
the upper left block of size p — q, are otherwise diagonal, and have
the (p — i + 1) diagonal entry equal to the (p + i)™ diagonal entry for
1 <i <q;thusm = su(p —q) ®RY. Inthe next section we shall seethat
> is an abstract root system; this example shows that this root system
need not be reduced.

3) Let G = SO(p, q)o With p > g. We can write the Lie algebrain
block form asin (6.41) but with all entries real and with a and d skew
symmetric. Asin Example 2, we take ¢ to be al matrices in g with
b = 0, and we take p to be all matricesin g witha =0andd = 0.
We again choose a asin (6.42). Let f; be the member whose value on
the matrix in (6.42) is a. Then the restricted roots include al linear
functionals +f; + f; withi # j. Also the & f; are restricted roots if
p # q. The restricted-root spaces are the intersections with so(p, q)
of the restricted-root spaces in Example 2. Then the restricted-root
spacesfor + f; + f; are 1-dimensional, and the restricted-root spaces for
+f; have dimension p — q. The linear functionals +2f; are no longer
restricted roots. The subalgebram of Proposition 6.40d consists of all
skew-symmetric matrices that are nonzero only in the upper left block
of size p—q; thusm = so(p — q).

Choose a notion of positivity for a* in the manner of 8I1.5, as for
example by using a lexicographic ordering. Let =+ be the set of pos-
itive roots, and define n = @, 5+ g:. By Proposition 6.40b, nisalie
subalgebra of g and is nilpotent.

Proposition 6.43 (Iwasawa decomposition of Lie algebra). With
notation as above, g is a vector-space direct sum g = €@ a ® n. Here
a isabelian, n is nilpotent, a & n is a solvable Lie subalgebra of g, and
[adnadn] =n.
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Lemma 6.45. There exists a basis {X;} of g such that the matrices
representing ad g have the following properties:

(8) the matrices of ad¢ are skew symmetric
(b) the matrices of ada are diagonal with real entries
(c) thematricesof adn areupper triangular with 0’'son the diagonal .

Proor. Let {X;} be an orthonormal basis of g compatible with the
orthogonal decomposition of g in Proposition 6.40a and having the
property that X; € g, and X; € g,, withi < j impliesx; > ;. For
X e ¢ we have (ad X)* = —addX = —ad X from Lemma 6.27, and
this proves (a). Since each X; is arestricted-root vector or isin go, the
matrices of ad a are diagonal, necessarily with real entries. This proves
(b). Conclusion (c) follows from Proposition 6.40b.

Theorem 6.46 (Iwasawa decomposition). Let G be a semisimple
Lie group, let g = £ ® a ® n be an lwasawa decomposition of the Lie
algebrag of G, andlet Aand N be the analytic subgroups of G with Lie
algebras a and n. Then the multiplication map K x A x N — G given
by (k,a, n) — kan is adiffeomorphism onto. The groups A and N are
simply connected.

ProoF. Let G = Ad(G), regarded as the closed subgroup (Aut g)o of
GL(g) (Propositions 1.97 and 1.98). We shall prove the theorem for G
and then lift the result to G.

We impose the inner product B, on g and write matricesfor elements
of G and adg relative to the basisin Lemma 6.45. Let K = Ad,(K),
A = Ad,(A), and N = Ady(N). Lemma 6.45 shows that the matrices of
K are rotation matrices, those for A are diagonal with positive entries
on the diagonal, and those for N are upper triangular with 1's on the
diagonal. We know that K is compact (Proposition 6.30 and Theorem
6.31f). The diagonal subgroup of GL(g) with positive diagonal entries
is simply connected abelian, and A is an analytic subgroup of it. By
Corollary 1.111, Aisclosed in GL(g) and hence closed in G. Similarly
theupper-triangular subgroup of GL (g) with 1’sonthediagonal issimply
connected nilpotent, and N is an analytic subgroup of it. By Corollary
1.111, N isclosed in GL(g) and hence closed in G.

Themap A x N into GL (g) given by (&, i) — an isone-one since we
can recover a from the diagonal entries, and it is onto a subgroup AN
since ;M ; = && (&, 'Nid)n, and (an)~* = n~ta! = a~l@na).
This subgroup is closed. In fact, if [imanim = X, let a be the diagonal
matrix with the same diagonal entriesasx. Thenlima,, = &, and a must
bein Asince Aisclosedin GL(g). AlSO iy = 8, (&mNm) haslimit a-1x,
which hasto bein N since N isclosed in G. Thuslima,n, isin AN,
and AN isclosed.
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Clearly the closed subgroup AN has Lie algebraa @ n. By Lemma
6.44, A x N — AN isadiffeomorphism.

The subgroup K is compact, and thus the image of K x Ax N —
K x AN — G isthe product of a compact set and a closed set and is
closed. Also thei image is open since the map is everywhere regular
(Lemma 6.44) and since the equality g = ¢ @ a @ n shows that the
dimensions add properly. Since the image of K x A x N is open and
closed and since G is connected, theimageisall of G.

Thus the multiplication map is smooth, regular, and onto. Finaly
K N AN = {1} since a rotation matrix with positive eigenvalues is 1.
Since A x N — AN is one-ong, it followsthat K x Ax N — G is
one-one. This completes the proof for the adjoint group G.

We now lift the above result to G. Lete: G — G = Ad(G) be the
covering homomorphism. Using alocally defined inverse of e, we can
write the map (k, a, n) — kan locally as

(k,a,n) — (ek), e(a), e(n)) — e(k)e(a)e(n) = e(kan) — kan,

and therefore the multiplication map is smooth and everywhere regular.
Since A and N are connected, €|, and e|y are covering maps to A and
N, respectively. Since A and N are simply connected, it follows that e
isone-oneon A and on N and that A and N are simply connected.

Let us prove that the multiplication map isonto G. If g € G isgiven,
write e(g) = kan. Put a = (e]a) %@ € Aand n = (e|y)"%(N) € N.
Let k bein e 1(k). Then e(kan) = kan, so that e(g(kan)~1) = 1. Thus
g(kan)™! = z isin the center of G. By Theorem 6.31e, z isin K.
Therefore g = (zk)an exhibits g as in the image of the multiplication
map.

Finally we show that the multlpllcatlon map is one-one. Since
Ax N — AN isoneone s0is Ax N — AN. The set of products
AN isagroup, just asin the adjoint case, and therefore it is enough to
provethat K N AN = {1}. If xisin KN AN, thene(x) isinK N AN = {1}.
Hencee(x) = 1. Writex = an € AN. Then1 = e(x) = e(an) = e(a)e(n),
and the result for the adjoint case impliesthat e(a) = e(n) = 1. Sincee
isone-oneon Aandon N, a =n = 1. Thusx = 1. Thiscompletes the
proof.

Recall from 8IV.5 that a subalgebra  of g is called a Cartan
subalgebra if §© is a Cartan subalgebra of g©. The rank of g isthe
dimension of any Cartan subalgebra; thisiswell defined since Proposi-
tion 2.15 shows that any two Cartan subalgebras of g are conjugate via
Int g€.



4. Iwasawa Decomposition 319

Proposition 6.47. If t isamaximal abelian subspace of m = Z(a),
then b = a @ tisa Cartan subalgebra of g.

Proor. By Corollary 2.13 it is enough to show that h* is maximal
abelian in ¢© and that ad,c h° is simultaneously diagonable.

Certainly h© is abelian. Let us see that it is maximal abelian. If
Z = X +iY commutes with h€, then so do X and Y. Thus there is no
lossin generdity in considering only X. The element X commutes with
h®, hence commutes with a, and henceisin a @ m. The same thing is
trueof 6X. Then X +60X, beingin ¢, isinm and commuteswith t, hence
isint, while X —@X isina. Thus X isin a @ t, and we conclude that
ismaximal abelian.

In the basis of Lemma 6.45, the matrices representing ad t are skew
symmetric and hence are diagonable over C, while the matrices repre-
senting ad a are aready diagonal. Sinceall the matricesin questionform
a commuting family, the members of adh®© are diagonable.

With notation asin Proposition 6.47, h = a & t isaCartan subalgebra
of g, and it is meaningful to speak of the set A = A(g®, h®) of roots
of g€ with respect to h©. We can write the corresponding root-space
decomposition as

(6.483) “ =P ..
aeA
Then it isclear that
(6.48b) g=0n P @
gﬁi}\
and
(6.48c) m® =@ P @)
a€EA,
o|,=0

That is, the restricted roots are the nonzero restrictions to a of theroots,
and m arises from t and the roots that restrict to 0 on a.

Corollary 6.49. If tisamaximal abelian subspace of m = Z(a),
then the Cartan subalgebrah = a @ t of g hasthe property that all of the
rootsarerea ona@it. If m = 0, then g isasplit real form of g°.

Proor. In view of (6.48) the values of the roots on a member H of
h are the eigenvalues of adH. For H € qa, these arereal since adH is
self adjoint. For H € t, they are purely imaginary since ad H is skew
adjoint. Thefirst assertion follows.

Ifm=0,thent=0. Sotherootsarerea onh = a. Thus g contains
the real subspace of a Cartan subalgebrah® of g© where al the roots are
real, and g isasplit real form of gC.



322 V1. Structure Theory of Semisimple Groups

By nondegeneracy of B on a, [E;,0E,] = B(E,,0E)H,. Finaly
B(E,,0E,) = —By(E,, E;) < 0since B, is positive definite.
(b) Put
/ 2 r_ 2
»=hE ™ BT hEeE. e

Then (a) shows that

. EL, =0E,.

[H,,E]]=2E,, [H,, E,]l=-2E,, [E,E,]=H,

and (b) follows.
(c) Note from (a) that the normalization B(E;,6E,) = —2/|A|? is
allowable. If A(H) =0, then

Ad(kH = Ad(exp Z(E, + 6E)H
= (expad Z(E, + 0E,)H
= Z 2 (ad Z(E, + 0E)"H
n=0
= H.
On the other hand, for the element H;, we first calcul ate that
(@d%(E, +0E))H; = 7(UE, — E))

and (ad Z(E, +0E)?H; = —n?H,.
Therefore
Ad(oH] =Y 2@ (E, +0E;,)"H;
n=0
= m(@%(E; +0E))™H]
m=0
+ Y g (@ 3(Ex + 0E)) (@ 5 (E; + 0E)))™H]
m=0
=Y e (—TOH + Y ik (-7 (0E; — Ey)
m=0 m=0
= (CoSm)H; + (Sinx)(VE;, — E;)
= —H)i’

and (c) follows.
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Thisisagroup of linear transformations of a, telling all possible ways
that members of K can act on a by Ad. We have already seen that
W(Z) € W(G, A), and we are going to prove that W(X) = W(G, A).

We write M for the group Zk (a). Modulo the center of G, M is
a compact group (being a closed subgroup of K) with Lie algebra
Z:(a) = m. After Proposition 6.40 we saw examples of restricted-root
space decompositions and the associated Lie algebrasm. Thefollowing
examples continue that discussion.

ExAMPLES.

1) LetG = SL(n, K), whereKisR, C, or H. Thesubgroup M consists
of al diagona members of K. When K = R, the diagonal entries are
+1, but there are only n — 1 independent signs since the determinant is
1. Thus M isfinite abelian and is the product of n — 1 groups of order
2. When K = C, the diagonal entries are complex numbers of modulus
1, and again the determinant is 1. Thus M isatorusof dimensionn — 1.
When K = H, the diagonal entries are quaternions of absolute value 1,
and thereis no restriction on the determinant. Thus M is the product of
n copies of SU (2).

2) Let G = SU(p, q) with p > g. Thegroup M consists of al unitary
matrices of determinant 1 that are arbitrary in the upper left block of size
p — g, are otherwise diagonal, and have the (p — i + 1)® diagonal entry
equal to the (p + i)™ diagonal entry for 1 < i < g. Let us abbreviate
such amatrix as

m=diag(w, €%, ..., &% %, .. . éd%),

where w isthe upper left block of size p—g. When p = g, the condition
that the determinant be 1 saysthat Y/, 6; € =Z. Thus we can take
01, .. .,0q-1 to be arbitrary and use €% = +e'@+-+%-1 . Consequently
M isthe product of atorus of dimension g — 1 and a 2-element group.
When p > g, M isconnected. In fact, the homomorphism that maps the
above matrix m to the 2g-by-2q diagonal matrix

diage®, ... % &% ... %)

has a (connected) g-dimensional torus as image, and the kernel is iso-
morphic to the connected group SU (p — q); thus M itself is connected.

3) Let G = SO(p, q)o With p > g. The subgroup M for this example
istheintersection of SO(p) x SO(q) withthe M of the previousexample.
Thus M here consists of matrices that are orthogonal matrices of total
determinant 1, are arbitrary in the upper left block of size p — q, are
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otherwisediagonal, have g diagonal entries +1 after the upper left block,
and then have those q diagonal entries 41 repeated in reverse order. For
the lower right g entries to yield a matrix in SO(q), the product of the
g entries =1 must be 1. For the upper left p entries to yield a matrix
in SO(p), the orthogonal matrix in the upper left block of size p —q
must have determinant 1. Therefore M isisomorphic to the product of
SO(p — q) and the product of g — 1 groups of order 2.

Lemma 6.56. The Lie agebra of Nk (a) ism. Therefore W(G, A) is
afinite group.

Proor. The second conclusion follows from the first, since the first
conclusion implies that W(G, A) is O-dimensional and compact, hence
finite. For thefirst conclusion, the Lie agebrain question is Ng(a). Let
X = Ho+ Xo + Y, 5 X, be amember of Ne(a), with Hy € a, Xo € m,
and X, € g,. Since X istobein g 9 must fix X, and we see that X
may berewrittenas X = Xo + Y, .+ (Xx + 6X;). When we apply ad H
for H € a, weobtain[H, X] = Y, .+« A(H)(X; — 6X;). Thiselement is
supposed to bein a, since we started with X in the normalizer of a, and
that means [H, X] is0. But then X; = Ofor al x, and X reducesto the
member X of m.

Theorem 6.57. The group W(G, A) coincides with W(x).
RemARK. This theorem should be compared with Theorem 4.54.

Proor. Let us observe that W(G, A) permutes the restricted roots. In
fact, let k bein Nk (a), let A bein £, and let E, being,. Then

[H, Ad(K)E;] = Ad(k[Ad®K) IH, E;] = Adk) (A(Adk)*H)E,)
= A(Ad(K)"TH)AJKK) E; = (kr)(H)AdK)E;,

showsthat kx isin = and that Ad(k)E, isarestricted-root vector for k.
Thus W(G, A) permutes the restricted roots.

We have seen that W(Z) € W(G, A). Fix asimple system =+ for
¥. In view of Theorem 2.63, it suffices to show that if k € Nk (a) has
Adkyzt = =+, thenkisin Zk (a).

The element Ad(k) = w acts as a permutation of =*. Let 25 denote
the sum of the reduced members of £+, so that w fixess. If A; isa
simple restricted root, then Lemma2.91 and Proposition 2.69 show that
2(8, 2{)/|xi|> = 1. Therefore (5, 1) > Oforal A € ©+.

Letu =t @ ip bethe compact real form of g© associated to 4, and let
U betheadjoint group of u. Then Ad,(K) < U, andin particular Ad(k)

isamember of U. Form S= {expirad H;} € U. Here Sisatorusinu,
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andwelet s betheLiealgebraof S. Theelement Adk) isin Zy (S), and
the claim isthat every member of Zy (S) centralizes a. If so, then Ad(k)
islona,andkisin Zg (a), asrequired.

By Corallary 4.51 we can verify that Zy (S) centralizes a by showing
that Z,(s) centralizes a. Here

Zy(s) =uNZge(s) =un Zge(Hy).

To evaluate the right side, we complexify the statement of Lemma 6.50.
Since (1, 8) # 0, the centralizer Z,c(Hs) isjust a® @ mC. Therefore

Zus)=un@om®) =iaem.

Every member of theright side centralizes a, and the proof is complete.

6. Cartan Subalgebras

Proposition 6.47 showed that every real semisimpleLieagebrahasa
Cartan subalgebra. But asweshall seeshortly, not all Cartan subalgebras
are conjugate. In this section and the next we investigate the conjugacy
classes of Cartan subalgebras and some of their relationships to each
other.

We revert to the use of subscripted Gothic letters for rea Lie al-
gebras and to unsubscripted letters for complexifications. Let go be
a real semisimple Lie algebra, let  be a Cartan involution, and let
go = £ @ po be the corresponding Cartan decomposition. Let g be the
complexification of go, and write g = ¢ @ p for the complexification
of the Cartan decomposition. Let B be any nondegenerate symmetric
invariant bilinear form on gy such that B(9 X, 0Y) = B(X, Y) and such
that By, defined by (6.13), is positive definite.

All Cartan subalgebras of go have the same dimension, since their
complexifications are Cartan subalgebras of g and are conjugate via
Int g, according to Theorem 2.15.

Let K = Inty, (t). Thissubgroup of Intgo is compact.

ExAMPLE. Let G = SL(2,R) and go = sl(2, R). A Cartan subalgebra
ho complexifies to a Cartan subalgebra of si(2, C) and therefore has
dimension 1. Therefore let us consider which 1-dimensiona subspaces
RX of sI(2, R) are Cartan subalgebras. Thematrix X hastrace 0, and we
divide matters into cases according to the sign of det X. If det X < 0,
then X hasrea eigenvalues u and —u, and X is conjugate via SL (2, R)
to adiagonal matrix. Thus, for someg € SL(2, R),

RX = {Ad(g)Rh}.
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noncompact Cartan subalgebra. To correlate this information, we need
to be able to track down the conjugacy via g = (go)© of a maximally
compact Cartan subalgebra and a maximally noncompact one.

Cayley transforms are one-step conjugacies of ¢ stable Cartan sub-
algebras whose iterates explicitly relate any 6 stable Cartan subalgebra
with any other. We develop Cayley transformsin this section and show
that in favorable circumstances we can see past the step-by-past process
to understand the composite conjugation all at once.

There are two kinds of Cayley transforms, essentially inverse to each
other. They are modeled on what happens in si(2, R). In the case of
sl(2, R), we start with the standard basish, e, f for si(2, C) asin (1.5), as
well as the members hg, eg, fg Of s1(2, C) defined in (6.58). The latter
elements satisfy the familiar bracket relations

[he.es] =2eg, [hg, fs] = —2fs, [es, fg] =hs.

The definitions of eg and fg makeeg + fg andi(eg — fg) beinsi(2, R),
while i(eg + fg) and eg — fg are in su(2). The first kind of Cayley
transform within s((2, C) is the mapping

5 1
Ad (g <|1 '1)) — Ad(exp % (fe — ep)).

which carries hg, eg, fg to complex multiples of h, e, f and carries the
Cartan subalgebraR (_01 ;) toiR (é _°1> When generalized below, this
Cayley transform will be called c;.

The second kind of Cayley transform within si(2, C) isthe mapping

V2( 1 i .

which carries h, e, f to complex mutliples of hg, eg, fg and carries the

Cartan subalgebraR ((1) _2) toiR (_(1’ *)- Inview of theexplicit formula

for the matrices of the Cayley transforms, thetwo transforms areinverse
to one another. When generalized below, this second Cayley transform
will becaled d,.

Theideaisto embed each of these constructionsinto constructionsin
the complexification of our underlying semisimple algebrathat depend
upon asingle root of aspecial kind, leaving fixed the part of the Cartan
subalgebrathat is orthogonal to the embedded copy of s((2, C).
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In terms of our discussion above of sl(2, C), the correspondenceis
, 10
H, < (0 _1)

(c0)

00
00
OE, < (_1 0)
0

(]

E, <

i (OE, — E,) < *;)
Define
(6.673) d, = Ad(expi Z(PE, — Eo))
and
(6.67b) bo = go Nda(h) = ker(aly,) ® R(Ey + 0E,).
To seethat (6.67b) isvalid, we can use infinite series to calculate that
(6.683) do(Hy) =i (Eq +60Ey)
(6.68b) dy(Ey —0E,) = E, — 0E,
(6.68c) do(Ey +0E,) =iH,.

Then (6.68a) implies (6.67b).

Proposition 6.69. Thetwo kindsof Cayley transformsare essentially
inverse to each other in the following senses:

(@) If B isanoncompact imaginary root, then in the computation of
dc,s) o Cs theroot vector E., s can betakento beicg(E) and thischoice
makes the composition the identity.

(b) If « isaredl root, then in the the computation of ¢y, () o d, the
root vector Ey,(,, Can betaken to be —id, (E,) and this choice makesthe
composition the identity.

Proor.
(a) By (6.66),

Cs(Ep) = 3Cs(Ep + Ep) + 3Cs(Ep — Ep) = —3H} + 3(Ep — Ep).

Both termson theright side areinigo, and henceicg(Ep) isin go. Since
H; isint while E; and Eg areinp,

0Cs(Ep) = —3H, — 3(Es — Ep).
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Put Ec,s) = ics(Eg). From B(Eg, Ep) = 2/|8/%, we obtain
B(Ec, (), 0 Ecyp) = —2/IBIP = —=2/1Cs(B) >,
Thus Ec, g is properly normalized. Then d,, s, becomes

de,(p) = Ad(EXPi  (OEc,5) — Ecy(5))
= Ad(exp Z (Cs(Ep) — 0Cs(Ep)))

= Ad(exp Z(Es — Ep)).
and thisis the inverse of
Cs = Ad(exp Z(Es — Ep)).
(b) By (6.68),
do(Eo) = 30a(Eq +0E,) + 30a(Eq — 0E,) = 5iH; + 5(Ey — 0E,).
Since H., E,, and 0 E, arein go,
do(Eo) = =31 Hy + 3(Eq — 6Eo).
Put Eq, ) = —id,(E,). From B(E,, 0E,) = —2/|«|?, we obtain
B(Eq, @ Ed,@) = 2/la|* = 2/|da(@)]".
Thus Eg, ) is properly normalized. Then ¢y, becomes

Ca. ) = AAEXP % (Ed, @) — Ed,@))
= Ad(expl %(da(Ea) + da(Ea)))
= Ad(eXp| %(sz - eEa))a

and thisisthe inverse of
d, = Ad(expi  (OEs — Eo)).
Proposition 6.70. Let ho beaé stable Cartan subalgebra of go. Then
there are no noncompact imaginary rootsif and only if ko is maximally

noncompact, and there are no real roots if and only if ho is maximally
compact.
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Computation shows that
A={tegteax(fi—f)lj#kU{£28|1<] <n}.

Roots that involve only g’s are imaginary, those that involve only f;’s
are real, and the remainder are complex. It is apparent that there are no
real roots, and therefore ho is maximally compact. Theinvolution 6 acts
as+1lonthee’sand —1onthe f;’s. We define alexicographic ordering
by using the spanning set

el»"'sens flv"'s fns

and we obtain

g +e £ (fj — fo), alj#£k
A*:Iej—a(i(f,——fk), j<k
2q, 1<I<n.

The Vogan diagram is

en—1—en+(fno1—fn) e1—ex+(f1—f2)
-—- O
2en I I
--- O

en—1—en—(fr_1—fn) e1—e—(f1—"f3)

Theorem 6.74. Let go and g, be real semisimple Lie algebras. With
notation as above, if two triples (go, ho, A™) and (gg, by, (A)") have the
same Vogan diagram, then go and g;, are isomorphic.

RemARK. Thistheorem isan analog for real semisimple Lie algebras
of the Isomorphism Theorem (Theorem 2.108) for complex semisimple
Lie agebras.

Proor. Since the Dynkin diagrams are the same, the Isomorphism
Theorem (Theorem 2.108) shows that there is no loss of generality in
assuming that go and g have the same complexification g. Let up =
o @ ipo and uy = &, & i p, be the associated compact real forms of g. By
Corollary 6.20, there exists x e Intg such that xuy = up. The real form
xgy Of g isisomorphicto g, and hasCartan decomposition xgy = x&,dxpy.
Since xt, @ ixpy = xugy = ug, thereis no loss of generality in assuming
that uy = up from the outset. Then

(675) 6 (ug) = up and 9/(u0) = Up.
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Let us write the effect of the Cartan decompositions on the Cartan
subalgebras as ho = to @ ap and hy = ty @ ay. Thento @ iag and ty @ iag
are maximal abelian subspaces of uy. By Theorem 4.34 there exists
k € Intup Withk(ty @iag) = to @ iao. Replacing g;, by kgg and arguing as
above, we may assumethat t, ®iay = to®iap fromthe outset. Therefore
ho and by, have the same compl exification, which we denote . The space

uoﬂ[’)ZfoEBiCl():té@iﬂ/o

isamaximal abelian subspace of u,.

Now that the complexifications g and h have been aligned, the root
systems are the same. Let the positive systems given in the respective
triplesbe A+ and A*". By Theorems4.54 and 2.63 thereexistsk’ € Intug
normalizing up N h with K A* = A*. Replacing g; by k'gy and arguing
as above, we may assume that A = A+ from the outset.

The next step isto choose normalizations of root vectorsrelativeto .
For this proof let B be the Killing form of g. We start with root vectors
X, produced from  asin Theorem 6.6. Using (6.12), we construct a
compact real formip of g. The subalgebrauip containsthe real subspace
of h where the roots are imaginary, which is just up N . By Corollary
6.20, there exists g e Intg such that giip = ug. Then gup = up is built
by (6.12) from g(uo N h) and the root vectors gX,. Since up N h and
g(ug N b) are maximal abelian in up, Theorem 4.34 produces u < Intug
with ug(up N h) = up N h. Then v is built by (6.12) from ug(uo N h)
and the root vectors ugX,. Fora € A, put Y, = ugX,. Then we have
established that

(6.76) uo=Y RGiH)+ D RNYe—Y.o)+ ) Ri(Ye+Yoo)

acA aeA aeA

We have not yet used the information that is superimposed on the
Dynkin diagram of A*. Since the automorphisms of A* defined by 6
and 0’ are the same, # and ¢’ have the same effect on y*. Thus

(6.77) O(H) =6'(H) foral H €.

If « isanimaginary simple root, then

(6.783) O(Yy) =Yy =0'(Yy) if o isunpainted,
(6.78b) O0(Yy) = =Yy = 6'(Yy) if « ispainted.

We still have to deal with the complex ssmpleroots. For o € A, write
0Y, = a,Ys,. From (6.75) we know that

e(uO N Span{Yav Y—a}) C Up N Span{YG(xs Y—Ga}~
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In view of (6.76) thisinclusion means that
OR(Yo — Y_o) + Ri (Yo + Y_0)) € R(Ygo — Y-po) + Ri (Yoo + Y_p0).
If x and y arereal and if z= x + yi, then we have
XYy = Yoo) 4+ Vi (Yo + Yoo) = 2Y, — ZY_q.

Thus the expression 6(zY, — ZY_,) = 23, Ysa — Za_,Y_g, Must be of the
form wYy, — wY_ge, and we conclude that

(6.79) a,=37,.

Meanwhile a,a_, = B(a, You, 8 o Y_04) = BOYy, 0Y_y) = B(Y,, Y_,) =
1 shows that

(6.80) aga_y, = 1.
Combining (6.79) and (6.80), we see that
(6.81) gl = 1.
Next we observe that

(6.82) A, = 1

since Y, = 02Y, = 0(8, You) = 3804 Ya-
For each pair of complex simpleroots « and #«, choose square roots
al’2 and a? so that

(6.83) al?al/? = 1.

Thisis possible by (6.82).
Similarly write 'Y, = b, Yy, with

(6.84) b| =1,
and define by/* and by/? for « and 6o simple so that
(6.85) bY/2by? = 1.

By (6.81) and (6.84), we can define H and H’ inug N b by the conditions
that a(H) = a(H’) = 0 for o« imaginary simple and

expa(H) = al?,  exp(oa(H)) =a)l%

exp(la(H)) = bY2  exp(lfa(H") = b}/2
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for o and 6o complex simple.
We shall show that

(6.86) 0 o Ad(exp2(H — H") = Ad(exp3(H — H")) 0 6.

In fact, the two sides of (6.86) are equal on h and also on each X, for
« imaginary simple, by (6.77) and (6.78), since the Ad factor drops out
from each side. If « is complex simple, then

6' o Ad(exp i(H — H)Y, = 6'(e:*H-HY,)
= baaolt/zbgl/zyea
= b/%a, 20,
=b,%al?0Y, by (6.83) and (6.85)
=AdEexpi(H - H") 0 0Y,.

This proves (6.86).
Applying (6.86) to ¢ and then to p, we see that

Adexp3(H — H)(®) < ¥

(6.87) : , /
Ad(exp 3(H — H) (@) < p',

and then equality must hold in each line of (6.87). Since the element
Ad(exp (H—H") carriesug toitself, itmust carry £ = upNEtoty = upNe’
and po = up Np to py = up N p’. Hence it must carry go = € ® po tO
go = & @ py. This completes the proof.

Now let us address the question of existence. We define an abstract
Vogan diagram to be an abstract Dynkin diagram with two pieces of
additional structure indicated: One is an automorphism of order 1 or 2
of the diagram, which isto beindicated by |abeling the 2-element orbits.
The other isasubset of the 1-element orbits, which isto beindicated by
painting the vertices corresponding to the members of the subset. Every
Vogan diagram is of course an abstract Vogan diagram.

Theorem 6.88. If an abstract Vogan diagramisgiven, thenthere exist
areal semismple Lie agebra go, a Cartan involution 6, a maximally
compact 6 stable Cartan subalgebra by = ty @ ag, and a positive system
AT for A = A(g, b) that takesitg before ag such that the given diagram
isthe Vogan diagram of (go, ho, A™).

RemARK. Briefly the theorem says that any abstract Vogan diagram
comes from some go. Thusthe theoremisan analog for real semisimple
Lie algebras of the Existence Theorem (Theorem 2.111) for complex
semisimple Lie algebras.
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positive roots o and g and if o + B isaroot, then it holds for « + 8. In
the notation of Theorem 6.6, we have

0 Xarp = Ny 50[Xa. Xp] = N 5[0 X, 0 Xg]
= Na_éaaaﬁ[x%u Xop] = N,;é No 688088 Xoa+08-

Therefore
Auip = Na_,}; Ny, 0p8085.

Here a,a; = +1 by assumption, while Theorem 6.6 and the fact that o
is an automorphism of A say that N, s and Ny, ¢ arereal with

N2, = 1qd + plaf? = Jad+ p)loal> = N2, ;4.

Hence a,. s = £+1, and (6.91) is proved.
Let us see that

(6.92)
Q(R(Xa - X—a) + Ri (Xot + X—a)) c R(X(M - X—Ha) + Ri (X9a + X—Hot)-

If xandy arereal and if z = x + yi, then we have
X(Xg — X_g) + Vi (Xg + X_g) = Xy — ZX_q.
Thus (6.92) amounts to the assertion that the expression
0(zXy — ZX_y) = Za, Xgo — Za_oy X_po

is of the form wX,, — wX_y,, and this follows from (6.91) and (6.90).
Since 6 carries roots to roots,

(6.93) Q(ZR(i Hy)) = ZR(i Hy).

aeA aeA

Combining (6.92) and (6.93) with (6.89), we see that Hug = uo.
Let ¢ and p bethe +1 and —1 eigenspacesfor 9 ing, sothat g = ¢t @ p.
Since ug = ug, We have
Uup = (ug N &) & (up N p).
Definetg = upN ¢ and po=1i(upNp), S0 that

ug = & @ ipo.
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Lemma 6.98. Let go be a noncomplex simple real Lie algebra, and
let the Vogan diagram of go be given that corresponds to the triple
(g0, ho, AT). Write hg = to ® ag as usual. Let V be the span of the
simple roots that are imaginary, let Ay betheroot system AN V, let »
be the subset of ity paired with V, and let A be the subset of + where
al roots of Ag take integer values and all noncompact roots of Aq take
odd-integer values. Then A is nonempty. In fact, if oy, ..., am is any
smplesystemfor Ag andif wy, ..., wminV aredefined by (wj, ax) = §j«,
then the element

w = Z wj.

i with o
noncompact
isin A.

Proor. Fix a simple system s, ..., am for Ao, and let A} be the
set of positive roots of Aq. Define wy, ..., om by (), ) = &jk. If
a =Y " no isapositive root of Ao, then (w, «) is the sum of the n;
for which «; is noncompact. Thisis certainly an integer.

We shall prove by induction onthelevel "™, n; that (w, o) isevenif
a iscompact, odd if « isnoncompact. Whenthelevel is 1, thisassertion
istrue by definition. Inthe general case, let« and g bein A witha + 8
in A, and suppose that the assertion is true for « and 8. Since the sum
of the n; for which «; is noncompact is additive, we are to prove that
imaginary roots satisfy

compact + compact = compact
(6.99) compact + noncompact = noncompact
noncompact + noncompact = compact.

But this is immediate from Corollary 2.35 and the bracket relations
(6.24).

Proor oF THEOREM 6.96. Define V, Ag, and A as in Lemma 6.98.
Before we use Lemma 6.97, it is necessary to observe that the Dynkin
diagram of A is connected, i.e., that the roots in the Dynkin diagram
of A fixed by the given automorphism form a connected set. Thereis
no problem when the automorphism is the identity, and we observe the
connectedness in the other cases one at a time by inspection.

Let A{ = ATNV. Theset A isdiscrete, being a subset of alattice,
and Lemma6.98 hasjust shown that it isnonempty. Let Hy beamember
of A withnormassmall aspossible. By Proposition 2.67 we can choose
anew positive system A}’ for A, that makes Ho dominant. The main
step isto show that

(6.100) at most one simpleroot of A}’ is painted.
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L et us summarize our results.

Theorem 6.105 (classification). Up to isomorphism every simple
rea Lie algebrais in the following list, and everything in the list isa
simplereal Lie algebra:

(@) the Lie algebra g, where g is complex simple of type A, for
n>1 B,forn> 2 C,forn> 3, D, forn > 4, Eg, E7, Eg, F4,
or G,

(b) the compact real form of any g asin (a)

(c) theclassical matrix algebras

su(p, g) with p>qg>0, p+gq=>2

s0(p, Q) with p>q>0, p+qgodd, p+q=>5
or with  p>q>0, p+qeven, p+q>38

sp(p, Q) with p>q>0, p+q=>3

sp(n, R) with n>3

50*(2n) with n>4

sl(n, R) with n>3

sl(n, H) with n>2

(d) the 12 exceptional noncomplex noncompact simple Lie algebras
givenin Figures 6.2 and 6.3.

The only isomorphism among Lie algebras in the above list iss0%(8) =
50(6, 2).

RemARKs. The restrictions on rank in (a) prevent coincidences in
Dynkin diagrams. These restrictions are maintained in (b) and (c) for
the same reason. Note for si(n, R) and sl(n, H) that the restrictions
on n force the automorphism to be nontrivial. In (c) there are no
isomorphisms within a series because the ¢,’s are different. To have an
isomorphism between members of two series, weneed at |east two series
with the same Dynkin diagram and automorphism. Then we examine
thepossibilitiesand areled to compareso* (8) withso(6, 2). Thestandard
Vogan diagrams for these two Lie algebras are isomorphic, and hence
the Lie algebras are isomorphic by Theorem 6.74.

11. Restricted Roots in the Classification

Additional information about the smple rea Lie algebras of 8§10
comes by switching from a maximally compact Cartan subalgebra to
a maximally noncompact Cartan subalgebra. The switch exposes the
system of restricted roots, which governs the lwasawa decomposition
and some further structure theory that will be developed in Chapter V1.
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According to 87 the switch in Cartan subalgebra is best carried out
when we can find a maximal strongly orthogonal sequence of noncom-
pact imaginary roots such that, after application of the Cayley trans-
forms, no noncompact imaginary roots remain. If go is a noncomplex
simple real Lie agebra and if we have a Vogan diagram for go as in
Theorem 6.96, such a sequence is readily at hand by an inductive con-
struction. We start with a noncompact imaginary simple root, form the
set of roots orthogonal toit, 1abel their compactness or noncompactness
by means of Proposition 6.72, and iterate the process.

EXAMPLE. Let go = su(p, n — p) with p < n— p. The distinguished
Vogan diagram is of type A,_1 with e, — e, as the unigque noncompact
imaginary simpleroot. Sincethe Dynkin diagram doesnot haveadouble
line, orthogonality implies strong orthogonality. The above process
yields the sequence of noncompact imaginary roots

2fp 1 =61 €2
(6.106)

2f1 =€ —ep.

We do a Cayley transform with respect to each of these. The order is
irrelevant; sincetherootsare strongly orthogonal, theindividual Cayley
transforms commute. It is helpful to use the same names for roots
before and after Cayley transform but always to remember what Cartan
subalgebrais being used. After Cayley transform the remaining imagi-
nary roots are thoserootsinvolving only indices2p+1, ..., n, and such
rootsarecompact. Thusamaximally noncompact Cartan subalgebrahas
noncompact dimension p. Therestricted rootsare obtained by projecting
al e — g onthelinear span of (6.106). If 1 <k <| < p, we have

& — 8 = 3(& — &p+1-k) — 3(8 — eps1-1) + (orthogona to (6.106))
= (fx — fi) + (orthogonal to (6.106)).
Thus f,— fi isarestricted root. For thesamek and|, e —eyp.1- restricts
to fx + fi. Inaddition, if k +1 = 2p + 1, then e, — g restricts to 2 f,,

whileif k < pandl > 2p, then g, — g restrictsto f,. Consequently the
set of restricted rootsis

s _ (i £ iU (E2f) U {Efi} if 2p<n
_{{j:fkiﬁ}u{j:ka} if 2p=n.

Thus £ isof type (BC), if 2p < nand of type C, if 2p =n.



