Math 125 Solutions to Midterm 2 (Inigo Montoya)

1. For each of the functions $f(x)$ given below, find $f'(x)$.

(a) $f(x) = \frac{1 + 2x^2}{1 + x^5}$

Solution: This is a straightforward quotient rule problem:

$$f'(x) = \frac{(4x)(1 + x^5) - (1 + 2x^2)(5x^4)}{(1 + x^5)^2} = \frac{4x - 5x^4 - 6x^6}{(1 + x^5)^2}$$

The simplification is not required.

(b) $f(x) = \sin(3x) \tan(x)$

Solution: Apply the product rule, with a chain rule for the $\sin(3x)$ term to get

$$f'(x) = 3 \cos(3x) \tan(x) + \sin(3x) \sec^2(x).$$

(c) $f(x) = \arctan \left(\sqrt{1 + 4x} \right)$

Solution: Applying the chain rule, we get

$$\frac{1}{1 + (\sqrt{1 + 4x})^2} \cdot \frac{1}{2} (1 + 4x)^{-1/2} \cdot (4) = \frac{2}{(2 + 4x)\sqrt{1 + 4x}}$$

2. Compute each of the following derivatives as indicated:

(a) $\frac{d}{du} \left[\frac{u^3}{2} + \frac{2}{u^3} \right]$

Solution: Write this as $\frac{1}{2}u^3 + 2u^{-3}$ and apply the power rule to get

$$\frac{3}{2}u^2 - 6u^{-4}.$$

(b) $\frac{d}{dx} \left[e^x - \pi^4 \right]$

Solution: Remember that π^4 is a constant and so its derivative is zero. Thus, we have $\frac{d}{dx} \left[e^x - \pi^4 \right] = e^x.$
(c) \(\frac{d}{dw} \left[\sqrt{1 + \sqrt{1 + w}} \right] \)

Solution: View this as \(\frac{d}{dw} \left[\left(1 + (1 + w)^{1/2}\right)^{1/2} \right] \) and apply the chain rule:

\[
\frac{1}{2} \left(1 + (1 + w)^{1/2}\right)^{-\frac{3}{2}} \cdot \frac{1}{2} (1 + w)^{-\frac{1}{2}} = \frac{1}{4\sqrt{1 + w} \sqrt{1 + \sqrt{1 + w}}}
\]

3. The set of points \((x, y)\) which satisfy the relationship

\[
y^2(y^2 - 4) = x^2(x^2 - 5)
\]

lie on what is known as a “devil’s curve”, shown at right.

Write the equation of the line tangent to the given devil’s curve at the point \((\sqrt{5}, 2)\).

Solution:

First, we use implicit differentiation to determine the slope of the tangent line. This will be slightly easier if we rewrite the equation as \(y^4 - 4y^2 = x^4 - 5x^2\) first. Differentiating with respect to \(x\) gives

\[
4y^3 y' - 4 \cdot 2y \cdot y' = 4x^3 - 5 \cdot 2x \quad \text{and so} \quad y' = \frac{x(2x^2 - 5)}{y(2y^2 - 4)}.
\]

At our desired point, \(x = \sqrt{5}\) and \(y = 2\), and so the slope is

\[
y' = \frac{\sqrt{5} \cdot 5}{2 \cdot 4} = \frac{5\sqrt{5}}{8}.
\]

This means the desired line is

\[
y - 2 = \frac{5\sqrt{5}}{8}(x - \sqrt{5}).
\]
4. Let \(f(x) = x \ln(3x) \)

(a) Calculate \(f'(x) \)

Solution: Applying the product rule (and the chain rule) gives
\[
f'(x) = \ln(3x) + x \cdot \frac{1}{3x} \cdot 3 = \ln(3x) + 1.
\]

(b) Calculate \(f''(x) \)

Solution: Taking the derivative of the above, we get \(f''(x) = \frac{1}{x} \).

(c) For what values of \(x \) is \(f(x) \) increasing?

Solution: As we all know, \(f(x) \) is increasing when \(f'(x) > 0 \). Thus, using our answer from part (a) tells us that we need to know when
\[
\ln(3x) + 1 > 0 \quad \text{or, equivalently,} \quad \ln(3x) > -1.
\]
Exponentiating both sides gives \(3x > e^{-1} \), so we know that
\[
f(x) \text{ is increasing for } x > \frac{1}{3e}.
\]

(d) For what values of \(x \) is \(f(x) \) concave down?

Solution: We need to determine when \(f''(x) < 0 \). From part (b), this means
\[
\frac{1}{x} < 0 \quad \text{that is,} \quad x < 0.
\]
However, remember that \(\ln(\ln(4x)) \) is only defined for \(x > 0 \). Thus \(f(x) \) is concave up for all values of \(x \) in its domain. There are no values of \(x \) where \(f(x) \) is concave down.

5. Give the \(x \) and \(y \) coordinates of the (absolute) maximum and minimum values of the function
\[
y = x^4 - 8x^2 - 2 \quad \text{where} \quad -1 \leq x \leq 3.
\]

Solution: First, we locate the critical points. Since the function is a polynomial, \(f'(x) \) is defined everywhere, so we only need concern ourselves with the \(x \) for which \(f'(x) = 0 \).
Since \(f'(x) = 4x^3 - 16x = 4x(x^2 - 4) = 4x(x - 2)(x + 2) \), we have the critical points

\[
x = 0 \quad x = 2 \quad x = -2
\]

However, since we are concerned only with \(-1 \leq x \leq 3\), we discard \(x = -2 \).

Now we evaluate \(f \) at each of the critical points, and the endpoints:

- \(f(0) = -2 \).
- \(f(2) = 16 - 32 - 2 = -18 \).
- \(f(-1) = 1 - 8 - 2 = -9 \).
- \(f(3) = 81 - 72 - 2 = 7 \).

The largest value of the above occurs at \(x = 3, y = 7 \). This is our absolute maximum. The smallest occurs when \(x = 2 \) and \(y = -18 \), which is our absolute minimum.

6. Calvin’s family is visiting a winery in Cutchogue, and he wanders off into the fermenting room and dives into one of the large cylindrical\(^\dagger\) wine vats. The vat has a diameter of 6 feet and is 8 feet tall. The vinter hears the splash and quickly opens the taps to drain the vat, which drains at a rate of 5 cubic feet per minute. How quickly is the height of wine in the tank dropping when the wine is 4 feet deep?

\(^\dagger\)The volume of a cylinder of height \(h \) and radius \(r \) is \(\pi r^2 h \) and its surface area (excluding top and bottom) is \(2\pi rh \). The density of the wine is about .98 kg/L or 61 pounds per cubic foot. 5 cubic feet is about 38 gallons or 142 liters. The wine is a rather sweet Riesling, but is probably less sweet after Calvin has been in it.

Solution: We have the formula for the volume of a cylinder \(V = \pi r^2 h \). In our case, \(r = 3 \) since the diameter is 6, so we have \(V = 9\pi h \). We want to know \(dh/dt \).

Since the vat is draining at a rate of 5 cubic feet per minute, we have \(dV/dt = 5 \).

Using implicit differentiation, we get \(dV/dt = 9\pi (dh/dt) \). So, we see that

\[
\frac{5}{9\pi} = \frac{dh}{dt}
\]
7. For each of the 4 functions graphed in the left column, find the corresponding derivative function among any of the 8 choices on the right (not just on the same row) and put its letter in the corresponding box. If the graph does not occur, use the letter X.