1. Let $f(x) = x^2 + 3x$ with domain all real numbers. Let $A = (1, f(1))$ and $B = (2, f(2))$. There is also the point $C = (x, f(x))$ with x close to 1.

(a) Calculate the slope of the line through A and B.

Solution. The line through two points (x_1, y_1) and (x_2, y_2) has slope

$$m = \frac{y_2 - y_1}{x_2 - x_1}.$$

In this case take $(x_1, x_2) = A = (1, f(1)) = (1, 4)$ and $(x_2, y_2) = B = (2, f(2)) = (2, 10)$.

This gives

$$m = \frac{10 - 4}{2 - 1} = 6.$$

(b) Give an equation for the line through A and B.

Solution. An equation for the line with slope m which contains a point (x_1, y_1) is

$$y - y_1 = m(x - x_1).$$

By part (a) we know that the slope is $m = 6$. Taking $(x_1, y_1) = A = (1, 4)$ gives the equation

$$y - 4 = 6(x - 1)$$

which can be simplified to

$$y - 6x + 2 = 0.$$

(c) Explain that the slope of the line through A and C is given by

$$\text{slope} = \frac{x^2 + 3x - 4}{x - 1}.$$

Solution. By the same reasoning used in part (a), the slope of the line through $A = (1, 4)$ and $C = (x, f(x))$ is

$$\text{slope} = \frac{f(x) - 4}{x - 1} = x^2 + 3x - 4x - 1.$$
(d) Calculate the slope of the tangent line to the graph of \(f \) at \(A \).

Solution. The slope of the tangent line to the graph of \(f \) at \(A \) is the limit as \(C \) approaches \(A \) of the slope of the line through \(A \) and \(C \). As \(C \) approaches \(A \), \(x \) approaches 1. Using the result of (c), we can write the slope of the tangent line to the graph of \(f \) at \(A \) as

\[
\text{slope} = \lim_{x \to 1} \frac{x^2 + 3x - 4}{x - 1}.
\]

To calculate this limit we use the factorization

\[
x^2 + 3x - 4 = (x + 4)(x - 1).
\]

Now we can calculate the limit:

\[
\text{slope} = \lim_{x \to 1} \frac{x^2 + 3x - 4}{x - 1} = \lim_{x \to 1} \frac{(x + 4)(x - 1)}{x - 1} = \lim_{x \to 1} (x + 4) = 1 + 4 = 5.
\]

2.

(a) Calculate the limit

\[
\lim_{x \to 2} \frac{3x^2 - 15x + 18}{x - 2}.
\]

Solution. Observe that we can factor the numerator as

\[
3x^2 - 15x + 18 = 3(x^2 - 5x + 6) = 3(x - 2)(x - 3).
\]

This allows us to calculate the limit:

\[
\lim_{x \to 2} \frac{3x^2 - 15x + 18}{x - 2} = \lim_{x \to 2} \frac{3(x - 2)(x - 3)}{x - 2} = \lim_{x \to 2} 3(x - 3) = 3(2 - 3) = -1.
\]

(b) Calculate the limit

\[
\lim_{x \to 2} \frac{3x^2 - 15x + 19}{x - 2}.
\]
Solution. This limit does not exist (even as an infinite limit). First note that
\[\lim_{x \to 2^-} \frac{1}{x - 2} = -\infty, \quad \text{and} \quad \lim_{x \to 2^+} \frac{1}{x - 2} = +\infty. \]
Since \(\lim_{x \to 2^-} (3x^2 - 15x + 19) = 1 \), the limit laws (which are valid for
infinite limits) tell us that
\[
\lim_{x \to 2^-} \frac{3x^2 - 15x + 19}{x - 2} = \left(\lim_{x \to 2^-} (3x^2 - 15x + 19) \right) \left(\lim_{x \to 2^-} \frac{1}{x - 2} \right) = -\infty.
\]
The analogous calculation shows that
\[
\lim_{x \to 2^+} \frac{3x^2 - 15x + 19}{x - 2} = +\infty.
\]
Since the left limit is not equal to the right limit, we conclude that the
limit does not exist.

3. Explain whether the function
\[f(x) = \begin{cases}
\frac{x^2 - 3x}{x^2 - 9} & x \neq 3 \\
21 & x = 3
\end{cases} \]
is continuous at \(x = 3 \) or not.

Solution. The function is continuous at \(x = 3 \) if and only if \(\lim_{x \to 3} f(x) = f(3) \). But
\[
\lim_{x \to 3} \frac{x^2 - 3x}{x^2 - 9} = \lim_{x \to 3} \frac{x(x - 3)}{(x - 3)(x + 3)} = \lim_{x \to 3} \frac{x}{x + 3} = \frac{3}{6} = \frac{1}{2}.
\]
Therefore the value of the limit is different from \(f(3) = 21 \), so the function is
not continuous at \(x = 3 \).

4. Given the function
\[f(x) = \left[\frac{1}{1-x} + \frac{1}{x-3} \right] + \cos(\pi x), \]
with domain the numbers between 1 and 3, \(1 < x < 3 \).
(a) Calculate \(f(2)\).

Solution. Since \(\cos(2\pi) = 1\),

\[
f(2) = \left[\frac{1}{2 - 1} + \frac{1}{2 - 3}\right] + \cos(2\pi) = [1 - 1] + 1 = 0 + 1 = 1.
\]

(b) Is there a solution, a number \(x\) between 1 and 3, of \(f(x) = 0\)?

Solution. Yes. First note that

\[
f\left(\frac{5}{2}\right) = \left[\frac{1}{\frac{5}{2} - 1} + \frac{1}{\frac{5}{2} - 3}\right] + \cos\left(\frac{5\pi}{2}\right) = \left[\frac{1}{\frac{3}{2} - \frac{1}{2}}\right] + 0 = \frac{2}{3} - 2 = -\frac{4}{3}.
\]

The function \(f\) is continuous on the closed interval \([2, \frac{5}{2}]\) and satisfies \(f(2) > 0, f\left(\frac{5}{2}\right) < 0\). By the intermediate value theorem there exists a number \(x \in (2, \frac{5}{2})\) with \(f(x) = 0\).

5. Calculate

\[
\lim_{x \to \infty} \frac{3x^2 + 21}{7x^4 + 31x}.
\]

Solution. First write

\[
\frac{3x^2 + 21}{7x^4 + 31x} = \frac{3x^2 + 21}{7x^4 + 31x} \cdot \frac{1/x^4}{1/x^4} = \frac{3/x^2 + 21/x^4}{7 + 31/x^3}.
\]

Using the limit laws and the fact that

\[
\lim_{x \to \infty} \frac{1}{x^n} = 0
\]

for any positive integer \(n\), we get

\[
\lim_{x \to \infty} \frac{3x^2 + 21}{7x^4 + 31x} = \lim_{x \to \infty} \frac{3/x^2 + 21/x^4}{7 + 31/x^3} = \frac{3 \lim_{x \to \infty} (1/x) + 21 \lim_{x \to \infty} (1/x^4)}{7 + 31 \lim_{x \to \infty} (1/x^3)} = \frac{3 \cdot 0 + 21 \cdot 0}{7 + 31 \cdot 0} = 0.
\]

6.
(a) Calculate
\[\lim_{x \to 0^+} e^{-1/x}. \]

Solution. If \(x > 0 \) then \(-1/x < 0\), and
\[\lim_{x \to 0^+} (-1/x) = -\infty. \]

By the law for limits of compositions,
\[\lim_{x \to 0^+} e^{-1/x} = \lim_{y \to -\infty} e^y = 0. \]

(b) Calculate
\[\lim_{x \to 0^-} e^{-1/x}. \]

Solution. If \(x < 0 \) then \(-1/x > 0\) and
\[\lim_{x \to 0^-} (-1/x) = +\infty. \]

By the law for limits of compositions,
\[\lim_{x \to 0^-} e^{-1/x} = \lim_{y \to +\infty} e^y = +\infty. \]

7. Explain in words
\[\lim_{x \to \infty} f(x) = L. \]

Solution. This means that the values of the function \(f(x) \) can be made arbitrarily close to \(L \) by taking \(x \) sufficiently large.
8. Sketch the graph of an example of a function f which satisfies all of the following conditions.

- $f(0) = 0$
- $f(7) = 11$
- $\lim_{x \to 7^-} f(x) = 3$
- $\lim_{x \to 7^+} f(x) = -3$
- $\lim_{x \to \infty} f(x) = 0$
- $\lim_{x \to 2^+} f(x) = \infty$
- $\lim_{x \to 2^-} f(x) = -\infty$
- $f(1) = 3$
- $f(2) = 3$

Solution: One such graph is shown below. Other choices are possible, some are right, some are wrong.