Essays on Complexity:

1. Life and Humanity

John Milnor

Table of Contents

Introduction .. 2

Part I. Life

1. Overview: The Variety and Complexity of Life 5
 The cell. Diversity of life. Many scales of time.

2. The Molecular Basis of Life 20
 DNA and chromosomes. Chromosome duplication. Genes and protein
 Virtues of sex. Immune system and autoimmune disease. Viruses etc..
 Symbionts and parasites. References and remarks.

3. Selection and Evolution 39
 The selection principle. Selection among genes, individuals, popula-
 tions or species? Epigenesis. Genetic landscapes. Progress? Major
 steps. Symbiosis and parasitism. Biological complexity. Survival of
 the fittest. Internal selection. Speed of evolution. Mathematical exer-
 cises. References and remarks.

4. The Brain and the Nervous System 56

Part II. Humanity

5. Competitive Equilibrium 75
 Economics, politics, crime and war. Nash’s theorem. Ecology and

6. Selection and Human History 88
 Science and history. Selection among humans. Selection by atrocity.
 Remarks and references.

7. Human Languages .. 101
 Classification. Language and genes. Indo-European origins. Ancient
 writing. References

8. Human Biology and Human Societies 107
 Remarks.

Part III. Generalities
Introduction: The goal of this book

The understanding of complex interactions and complex behaviors will surely be a dominant theme in the science of the coming century; and inputs from many different sciences are likely to be needed as such studies develop. As just one illustration of this, consider some of the most fundamental problems of human biology: How does the human genome encode directions for building and operating a body? How is the correct folding of proteins managed? How are sensory inputs processed and filtered so as to become intelligible to the brain? How are memories and thought processes encoded? Such questions involve understanding on the molecular level, where considerations of information, entropy, and energy within a quantum mechanical framework probably play an important role. In seeking answers, biologists will surely need help from many other sciences, such as chemistry, physics, mathematics, and computer science.

This book, and its companion volume “Essays on Complexity: the Mathematical Sciences” make no attempt to attack such basic problems; they have a much more modest aim. The goal was to play a small part in encouraging cooperation between the sciences by presenting a broad survey of a number of different ideas and ways of thinking, centering around different forms and concepts of “complexity”. Far too many of us are trained in just one field, and have a great deal of difficulty in understanding scientists in other areas.

*** to be continued ***