Remarks on Piecewise Monotone Maps

John Milnor

Stony Brook University

Bremen, August, 2015
PM-maps $f : (\mathcal{I}, \partial \mathcal{I}) \to (\mathcal{I}, \partial \mathcal{I})$ where $\mathcal{I} = [0, 1]$.

Maximal intervals of monotonicity: $\mathcal{I}_j = [c_{j-1}, c_j]$ where $0 = c_0 < c_1 < \cdots < c_{d-1} < c_d = 1$.

The vector $v = (v_0, v_1, \ldots, v_d) \in \mathcal{I}^{d+1}$ where $v_j = f(c_j)$ will be called the critical value vector.

Caution: In this talk the word “critical” will be used to mean local maximum or minimum point. Inflection points are not “critical”.
The Polynomial Case.

Theorem. Given a PM-map $f(x)$ with critical value vector (v_0, v_1, \ldots, v_d), there is one and only one polynomial PM-map $g(x)$ of degree d with the same critical value vector.

Proofs by deMelo and vanStrien, 1993; by Milnor and Tresser (and also by Douady and Sentenac in appendix), 2000.

PROBLEMS:
1. The proofs are non-constructive.
2. I don’t know any efficient algorithm for finding g if $d \geq 5$.
Construction of polynomial map from critical values.
An Easy Lemma

Suppose that we are given two different PM-maps f and g with the same critical value vector.

LEMMA. There is one and only one “connecting homeomorphism”

$h = h_{f,g}$ from $(\mathcal{I}, \partial \mathcal{I})$ to itself which maps each interval of monotonicity $\mathcal{I}_j(f)$ to the corresponding interval $\mathcal{I}_j(g)$ and which satisfies $g \circ h = f$.

Graph of f,

$\mathcal{I}_j(f)$

$\mathcal{I}_j(g)$

Graph of g,

$h(x)$
Suppose that we start with any PM-map f_0.

\[\mathcal{I} \xrightarrow{f_0} \mathcal{I}. \]
Suppose that we start with any PM-map f_0. Then there is a unique polynomial map g_0 of minimal degree with the same critical value vector.
Suppose that we start with any PM-map f_0.

Then there is a unique polynomial map g_0 of minimal degree with the same critical value vector.

By the Lemma, there is a connecting homeomorphism

$$h_0 = h_{f_0,g_0} \quad \text{with} \quad g_0 \circ h_0 = f_0.$$
The Thurston Tower Construction

Suppose that we start with any PM-map \(f_0 \).

Then there is a unique polynomial map \(g_0 \) of minimal degree with the same critical value vector.

By the Lemma, there is a connecting homeomorphism

\[h_0 = h_{f_0,g_0} \quad \text{with} \quad g_0 \circ h_0 = f_0. \]

Now define \(f_1 \) to be \(h_0 \circ g_0 \).
Continue Inductively.
Continue Inductively.
Continue Inductively.
Continue Inductively.
Iteration.

This construction defines a continuous correspondence

\[f_0 \mapsto f_1 \]

such that \(f_1 \) is topologically conjugate to \(f_0 \).

Iterating, we obtain an infinite sequence of topologically conjugate maps

\[f_0 \mapsto f_1 \mapsto f_2 \mapsto \cdots. \]

Problem: For which \(f_0 \) does this sequence converge uniformly to a polynomial map?

According to Thurston:

If \(f_0 \) is critically finite, with at least 4 postcritical points, and with no Thurston obstruction, then the auxiliary sequence \{\(g_n \)\} converges uniformly.

But what can one say about the \(f_n \) and the \(h_n \)?
An Example with $d = 3$.
An Example with $d = 3$.
An Example with $d = 3$.
An Example with $d = 3$.

(movie 1)
Here f_0 has critical orbit:

$$(2) \leftrightarrow (5) \leftrightarrow (1) \leftrightarrow (4) \leftrightarrow (3).$$
Critically preperiodic example (continued):
Critically preperiodic example (continued):
Critically preperiodic example (continued):
Critically preperiodic example (continued):
Jumping from f_0 to f_n.

We can skip the intermediate steps and look at the topological conjugacy

\[I \xrightarrow{f_n} I \]

\[I \xrightarrow{f_0} I \]

where

\[H_n = h_{n-1} \circ h_{n-2} \circ \cdots \circ h_1 \circ h_0. \]

Thus $f_n = H_n \circ f_0 \circ H_n^{-1}$.

(movie 3)
A Critically Periodic Example

Critical orbit: \((2) \leftrightarrow (3) \leftrightarrow (1) \leftrightarrow (2) \). (movie 4)
Empirical conclusions.

“Good Convergence”: For “many” choices of f_0 the sequences $\{f_n\}$ and $\{g_n\}$ seem to converge uniformly to a common polynomial limit f_∞, and the sequence $\{h_n\}$ seems to converge to the identity.

But this limit map f_∞ may not be topologically conjugate to f_0.

And the sequence of compositions $H_n = h_{n-1} \circ \cdots \circ h_1 \circ h_0$ may not converge to a homeomorphism.

The graph of H_n does seem to converge to a limit in the Hausdorff topology.

The set of all limits of graphs of homeomorphisms forms a compact metric space.

Every such limit is a geodesic in the Manhattan metric.

$|dx| + |dy|$.
Numerical Problem:

We have

\[f_n = H_n \circ f_0 \circ H_n^{-1}, \]

where the maps \(H_n \) and \(H_n^{-1} \) may have points with derivative tending to infinity as \(n \to \infty \).

Therefore computation of \(f_n \) could become very unstable as \(n \to \infty \).

This seems to be particularly a problem for maps with topological entropy zero.
A More General Construction.

Given \(d \geq 2 \) and \(v_0 \in \{0, 1\} \):

Let \(\mathcal{F} = \mathcal{F}(d, v_0) \) be the metric space consisting of all PM-maps \(f \) with \(d \) intervals of monotonicity and with \(f(0) = v_0 \), where

\[
\text{dist}(f, g) = \max_x (|f(x) - g(x)|).
\]

Definition. A subset \(\mathcal{G} \subset \mathcal{F} \) is parametrized by critical values if, for any \(f \in \mathcal{F} \) there is one and only one \(g = g_f \in \mathcal{G} \) with the same critical value vector \(\mathbf{v} \).

For each such \(\mathcal{G} \) there is an associated Thurston tower construction

\[
\Theta_{\mathcal{G}} : f \mapsto h_{f,g} \circ g \quad \text{where} \quad g = g_f
\]

which maps each \(f \in \mathcal{F} \) to a topologically conjugate map \(\Theta_{\mathcal{G}}(f) \in \mathcal{F} \).
Examples of sets \mathcal{G} parametrized by critical values.

1. Polynomials.

 The space $\mathcal{G}_{\text{poly}}$ of polynomial maps of $(I, \partial I)$ with all critical points real and distinct, and in the interior of I.

2. A trivial example. Take evenly spaced critical points $c_j = j/d$, and suppose that g is linear on each $I_j = [c_{j-1}, c_j]$.

3. Constant Slope. By definition, a map f of the interval has constant slope $s \geq 0$ if f is piecewise linear with derivative satisfying $|f'(x)| = s$ almost everywhere.

 Lemma. The set $\mathcal{G}_{\text{CS}} \subset \mathcal{F}$ consisting of all PM-maps with constant slope is parametrized by critical values.

 Proof Outline: Suppose that $g_f \in \mathcal{G}_{\text{CS}}$ has the same critical value vector as f. Then the slope s of g_f must be equal to the total variation of f (or of g_f):

 $$s = \sum_{j=1}^{d} |v_j - v_{j-1}| > 0.$$

 Now compute the critical points of g_f inductively \ldots. □
Topological Entropy

Theorem of Misiurewicz and Slenk:

If \(g : \mathcal{I} \rightarrow \mathcal{I} \) has constant slope \(s \geq 0 \), then its topological entropy is given by

\[
 h_{\text{top}}(g) = \log^+(s) \geq 0.
\]

Thus if iteration of \(\Theta_{\mathcal{G}_{cs}} \) converges to a map of constant slope, then we can easily compute the topological entropy of the limit map \(f_\infty \).

Question. For which \(f_0 \in \mathcal{F} \), does the sequence

\[
 \Theta_{\mathcal{G}_{cs}} : f_0 \mapsto f_1 \mapsto f_2 \mapsto \cdots
\]

converge uniformly to a map of constant slope, **with the same entropy**?
A Degree Four Example

In this example, \(f_n \) converges to the standard tent map, and \(s \) converges to 2. Therefore

\[
\mathbf{h}_{\text{top}}(f_0) = \log(2)
\]

Conjecture. For any (reasonable?) \(f_0 \), the associated sequence of constant slope maps \(g_n \) converges, and yields the correct topological entropy \(\mathbf{h}_{\text{top}}(f_0) = \log^+(s(g_\infty)) \).

(However, the sequence of topologically conjugate maps \(f_n \) does not always converge to a constant slope map; and the sequence of \(h_n \) does not always converge to the identity map.)
Example: \(f_0(x) = 3.8 \, x(1 - x) \).
Anomalous Convergence: \(f_0(x) = 2.8 \, x(1 - x) \).

There seems to be uniform convergence:

\[
f_n \to f_\infty, \quad g_n \to g_\infty, \quad h_n \to h_\infty \quad \text{as} \quad n \to \infty; \]

but \(f_\infty \neq g_\infty \) , and the homeomorphism \(h_\infty \) is not the identity map.
A Conditional Result.

Theorem. If the sequence \(\{f_n\} \) converges uniformly, then the sequences \(\{g_n\} \) and \(\{h_n\} \) also converge uniformly; and the limit maps \(f_\infty, g_\infty, \) and \(h_\infty \) commute with each other. Furthermore

\[
h_{\text{top}}(f_\infty) = h_{\text{top}}(g_\infty) = \log^+ (s(g_\infty)) ;
\]

and if \(h_{\text{top}} > 0 \) we have “good convergence”:

\[f_\infty = g_\infty, \quad \text{and} \quad h_\infty \text{ is the identity map.} \]

Lemma. If \(g = g_\infty \) has constant slope \(s > 1 \), then no non-trivial orientation preserving homeomorphism \(h = h_\infty \) can commute with \(g \).

Proof:

Step 1. Precritical points of \(g \) are everywhere dense,

Step 2. Any precritical point of \(g \) must be fixed by \(h \).

But does \(h_{\text{top}}(f_\infty) = \lim_{n \to \infty} h_{\text{top}}(f_n) \) ?
Appendix: The Balmforth-Spiegel-Tresser Algorithm
(Phys. Rev. Let. 72, 1994; or arXiv, 1993)

Given a PM-map \(f \) with critical points \(c_j \), let \(P_m \subset I \) be the finite set consisting of all \(f^0h(c_j) \) with \(0 \leq h < m \).
This subdivides \(I \) into finitely many intervals \(J_1, \ldots, J_N \).

Construct an \(N \times N \) matrix \(M = [a_{ik}] \) with

\[
a_{ik} = \begin{cases}
1 & \text{if } f(J_i) \supset J_k, \\
0 & \text{if } f(J_i) \text{ is disjoint from the interior of } J_k, \\
.5 & \text{if } f(J_i) \text{ covers part of } J_k.
\end{cases}
\]

If we replace each \(.5\) by a zero, we get a matrix \(M_0 \) whose leading eigenvalue is a lower bound for \(s = \exp(h_{\text{top}}(f)) \).
Similarly, if we replace each \(.5\) by a one, we get a matrix \(M_1 \) whose leading eigenvalue is an upper bound for \(s \).

Theorem (BST). As \(m \to \infty \), these upper and lower bounds both converge to \(\exp(h_{\text{top}}(f)) \).
It began with a classic Mechoui

And with Misha and Carsten and Cui

But time’s running out

So let’s get up and shout

Three cheers for John Hamal Hubbard,
and for Dynamical Holomorphie!