Degeneration of Abelian Differentials and Period Matrices

Motivations

- The Hodge bundle $\Omega \mathcal{M}_g$ over the moduli of curves \mathcal{M}_g extends to $\overline{\mathcal{M}}_q^{DM}$.
- Goal: 1) Study this extension by giving the expansion of an abelian differential in local coordinates near the boundary of $\overline{\mathcal{M}}_q$.
- 2) To study the degeneration of the period matrices, i.e. gives a description of the boundary of the Torelli image of $\overline{\mathcal{M}}_q$ in $\overline{\mathcal{A}}_q$, the moduli of ppav.

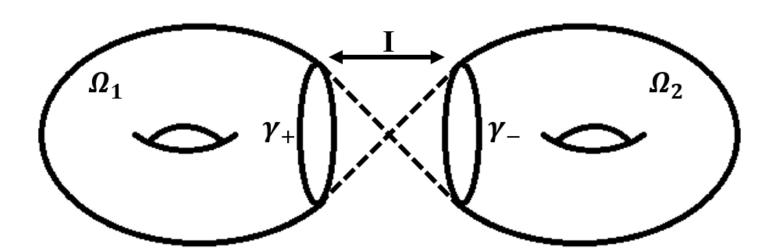
Outline

- We give an explicit expansion in plumbing coordinates for an **arbitrary degenerate** abelian differential.
- We compute the ¹variational formula for the period over **any** given cycle of the abelian differential.
- As a corollary, we give the variational formula for the **period matrices** near an arbitrary boundary stratum of $\overline{\mathcal{M}}_q$.

Plumbing Coordinates

Want: Construct a smooth curve X_s from a nodal curve X.

• We cut out neighborhoods at the two pre-images q_e and q_{-e} of each node $q_{|e|}$ of X, and identify their boundaries via a gluing map $I_e: z_e \mapsto s_e/z_e$.



- **Before:** Local equation near a node $q_{|e|}$: $z_e \cdot z_{-e} = 0.$
- After: Local equation near the seams $\gamma_{\pm e}$: $z_e \cdot z_{-e} = s_e.$
- $|s_e|$ is called the **plumbing parameter** at the node $q_{|e|}$.
- The plumbing parameters $\underline{s} := (s_1, \ldots, s_n)$ give versal deformation coordinates on $\overline{\mathcal{M}}_q$ to the boundary stratum containing the point X.

Xuntao Hu^1 and Chaya Norton²

2. Concordia University, and CRM, Université de Montréal 1. Mathematics Department, Stony Brook University,

Jump Problem

- Given a stable differential Ω on X, denote Ω_v the restriction of a stable differential Ω on the connected component X_v .
- We have the mis-matches $\{\Omega_v(e)|_{\gamma_e} I_e^*(\Omega_{v(-e)}|_{\gamma_{-e}})\}$ (which we call the **jumps** of Ω) on the seams.
- Want: Correction differentials $\{\eta_{v,s}\}$ that matches the jumps of Ω_v .
- Then $\Omega_{v,s} := \Omega_v \eta_{v,s}$ glue correctly to be a global meromorphic differential Ω_s on X_s .
- This construction is called (solving) the jump problem. It is first developed and used in a real-analytic setting in [GKN17].

Main Result: Degeneration of Abelian Differentials

The solution to the jump problem $\eta_{v,\underline{s}}$ can be constructed explicitly as $\eta_{v,\underline{s}} = \sum_{k=1}^{\infty} \eta_{v,\underline{s}}^{(k)}$. • The <u>s</u>-expansion of $\eta_v^{(k)}$ is given as follows:

$$\eta_v^{(k)}(z) = (-1)^k \sum_{l_v^k} \prod_{i=1}^k s_{e_i} \cdot \omega_v(z,q_{e_1})eta_v$$

• For each k, $||\eta_v^{(k)}||_{L^2}$ is controlled by $\sqrt{|\underline{s}|^k}$. Therefore $||\eta_{v,s}||_{L_2}$ is controlled by $\sqrt{|\underline{s}|}$.

Degeneration of general periods

- Let α be any oriented loop on X.
- Let $\{q_1, \ldots, q_N\}$ be the collection of nodes that α passes through (with possible repetition).

Corollary 1 (General Periods)

The variational formula for a general period of Ω_s is given by:

$$\hat{\Omega}_{\underline{s}} \Omega_{\underline{s}} = \sum_{i=1}^{N} \left(r_{e_i} \ln |s_{e_i}| + c_i + l_i \right) + O(|\underline{s}|^2),$$

here c_i and l_i are the constant and linear terms in \underline{s} respectively, which are explicitly given.

Degeneration of period matrices

- Choose a suitable symplectic basis ${A_{i,s}, B_{i,s}}_{i=1}^g$ of $H_1(X_s, \mathbb{Z})$.
- Choose a normalized basis of 1-forms $\{v_i\}_{i=1}^g$ w.r.t $\{A_{i,0}, B_{i,0}\}$ on X.
- Apply the jump problem and get $\{v_{i,s}\}$ on X_s . We claim that $\{v_{i,s}\}$ is a normalized basis of $H^{1,0}(X_s, \mathbb{C})$ with respect to $\{A_{i,s}, B_{i,\underline{s}}\}$.

 $B(l_v^k) \operatorname{hol}(\Omega)(q_{-e_k}) + O(|\underline{s}|^{k+1}).$

Corollary 2 (Period Matrices)

For any fixed h, k, the variational formula for the period matrix $\tau_{h,k}(\underline{s})$ is given by

$$\tau_{h,k}(\underline{s}) = \sum_{e \in E_X} N_{|e|,h} \cdot N_{|e|,k} \cdot \ln|s_e|$$
(2)

 $+ c_{h,k} + l_{h,k} + O(|\underline{s}|)$ where $N_{|e|,k} := \gamma_{|e|} \times B_{k,\underline{s}}$, E_X is the set of nodes of X, $\{q_{|e_i|}\}_{i=0}^{N-1}$ is the set of nodes B_h passes through. Explicitly,

$$c_{h,k} = \lim_{\underline{s}\to 0} \sum_{i=1}^{N} \left(\int_{p_i}^{p_{i+1}} v_k - N_{|e_i|,h} N_{|e_i|,k} \ln |s_{e_i}| \right)$$

$$l_{h,k} = -\sum_{e \in E_X} s_e \left(\operatorname{hol}(v_k)(q_e) \operatorname{hol}(v_h)(q_{-e}) \right).$$

Prior Works

• Yamada [Yam80] and Fay [Fay73] computed the variational formula of the period matrices on stable curves with one node. We reprove their results by restricting formula (1) to the case n = 1.

• For general n, the logarithmic term in formula (2) gives the main result of [Tan91]. • Our result is a total generalization of these works.

(1)

Both authors thank **Samuel Grushevsky**. The second author would like to thank Marco Bertola and Igor Krichever. We thank Scott Wolpert for his valuable comments.

Compactification of Strata

• Using our method we also give an alternative proof for the main result in [BCGGM16], which gives the necessary and sufficient conditions for an abelian differential to lie in the boundary of the *incidence* variety compactification of strata.

Future Works

• Compute the variational formula for the period coordinates on the strata of abelian differentials $\Omega \mathcal{M}_q(\mu)$.

• Apply the jump problem to a **more** general setting: compute the expansion of a section of any vector bundle as the curve degenerates. For instance, the Higgs bundle.

3 Use the variational formulas of the period matrices of the totally degenerate curve to obtain information about **Teichmüller** curves.

References

[BCGGM16] M. Bainbridge, D. Chen, Q. Gendron, S. Grushevsky and M. Moeller. Compactification of strata of abelian differentials. Preprint, arXiv:1604.08834, 2016.

[Fay73] J. Fay. Theta functions on Riemann surfaces. Lecture Notes in Mathematics, Vol. 352. Berlin-New York: Springer-Verlag, 1973.

[GKN17] S. Grushevsky, I. Krichever, and C. Norton. Real-Normalized Differentials: Limits on Stable Curves. Preprint, arXiv:1703.07806, 2017.

[Tan91] M. Taniguchi. On the singularity of the periods of abelian differentials with normal behavior under pinching deformation. J. Math. Kyoto Univ., 31 no.4(1991): 1063–1069.

[Yam80] A. Yamada. Precise variational formulas for abelian differentials. Kodai Math. J., 3 no.1(1980): 114–143.

Acknowledgements

Variational formula = Expansion in terms of s_e and $\ln s_e$.