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My interests are the theory of Riemann surfaces, Teichmüller theory, and algebraic geometry.
To be more specific, I use algebraic and analytic tools to study the algebro-geometric properties
of the moduli spaces of algebraic curves, the moduli spaces of principally polarized abelian
varieties (ppav), and the moduli spaces of abelian differentials, as well as their compactifications.

1. Overview

In this section I will give an overview of my thesis work and anticipated future projects, with
the finer details being addressed in section 2 ∼ 5.

The main objects I focus on are the moduli spaces of abelian differentials (or strata of abelian
differentials). Let µ = (m1, . . . ,mn) be an integral partition of 2g − 2, then set-theoretically a
stratum is defined as

ΩMg,n(µ) :=

{
(X; p1, . . . , pn;ω) :

X smooth genus g curve with n marked points at pi,
ω ∈ H1,0(X,C), div(ω) =

∑g
i=1mipi

}
,

These spaces are intensively studied in Teichmüller dynamics. Kontsevich and Zorich [KZ03]
classified the connected components of ΩMg,n(µ) for all g and µ. The compactification of strata
was worked out by Bainbridge, Chen, Grushevsky, Gendron, and Möller [BCGGM16] (see also
Farkas-Pandharipande [FP16]).

There is an SL2(R)-action on ΩMg,n(µ) naturally arising from the study of dynamics in the
game of billiards. The guiding problem in Teichmüller dynamics is to classify all the orbit
closures of this action. Given that the action itself is nowhere near algebraic, it is striking that
its orbit closures are indeed algebraic varieties. This result is due to the renowned recent works
of Eskin-Mirzakhani-Mohammadi [EM13] [EMM15] and Filip [Fil16], and can be seen as an
analog - for the Teichmüller flow - of Ratner’s theorems on the unipotent flows on homogeneous
spaces.

The closed orbits of the SL2(R)-action are known to be totally geodesic with respect to the
Teichmüller metric (these are called Teichmüller curves). The Teichmüller curves are extremely
interesting objects due to their analytic and dynamical nature and their algebro-geometric and
number-theoretic properties: they parametrize curves whose Jacobians admit real multiplica-
tion. The classification of Teichmüller curves in genus 2 was done by McMullen [McM05a]
[McM05b] [McM06]. Partial work in genus 3 and 4 is due to Bainbridge, Möller, Habegger, and
Zagier [BM12] [BM14] [BHM16] [MZ16]. However, given any stratum in genus ≥ 3, a complete
classification of Teichmüller curves within the stratum still remains an open problem.

With the tools introduced in my thesis work [Hu17] [HN17], I believe that it is possible to
classify the Teichmüller curves in the minimal stratum ΩModd

3 (4) in genus 3. Our approach in
[HN17] also allows us to study the degeneration of period coordinates on any stratum, which we
hope will lead to an analytic alternative proof of the algebraicity of the SL2(R)-orbit closure.

1.1. A modular form for ΩModd
3 (4). In genus 3, the stratum of lowest dimension is ΩM3(4).

Its generic points correspond to plane quartics with a hyperflex point. We call the component
containing a generic point the hyperflex locus ΩModd

3 (4). In [Hu17], I study the imageModd
3 (4)

of the hyperflex locus in M3 (forgetting the differential), and prove the following theorem:

Theorem 1.1 (=Theorem 3.1). The modular form defined by:

Ω77(τ) : = [θ01θ10θ37θ43θ52θ75θ42θ06θ30θ21θ55 + θ02θ25θ34θ40θ67θ76θ33θ05θ14θ60θ42]
2

− 4θ01θ02θ10θ25θ34θ37θ40θ43θ52θ67θ75θ76θ00θ04θ57θ70θ61θ73θ20θ07θ00θ16.
1
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cuts out the Torelli image of the locus of plane quartics with a hyperflex Modd
3 (4) on a level

cover of A3, where A3 is the moduli space of ppav of dimension 3.

The θij in the theorem are the Riemann theta constants with even characteristics, which
we will properly define in section 3. Using the modular form and the degeneration of theta
constants, we also compute the class of the closure of the hyperflex locus in the Deligne-Mumford
compactification M3:

[Modd
3 (4)] = 308λ− 32δ0 − 76δ1,

where λ is the Hodge class on M3, and δ0, δ1 are the classes of the boundary divisors. This
class is first computed in [Cuk89] using a different approach.

1.2. Degeneration of abelian differentials and period matrices. The variational formula
of the period matrices in plumbing coordinates is first considered by Yamada [Yam80], Fay
[Fay73], and Taniguchi [Tan89]. In [HN17], we improve their results in full generality. We give
variational formulas for arbitrarily degenerate abelian differentials in plumbing coordinates:

Theorem 1.2 (=Theorem 4.1). Given any stable differential (X,Ω) ∈ ∂ΩMg where X is a
stable curve with n nodes, there is an explicit construction of a family of smooth differentials
(Xs,Ωs) where s = (s1, . . . , sn) are the plumbing coordinates. Moreover, the s-expansion of Ωs

can be written down explicitly to an arbitrary degree of precision.

We then explicitly compute the variational formula for a general period of a given differential
(see Theorem 4.2), and as a corollary, we give the variational formula of the period matrices
(see Corollary 4.3). The special case n = 1 in Theorem 1.2 gives the main result by Yamada
and Fay. Corollary 4.3 gives the same logarithmic term as in [Tan89]. We moreover explicitly
compute the constant and linear terms.

1.3. Incidence variety compactification of strata. In [BCGGM16], the authors define the

incidence variety compactification (IVC) of strata PΩMinc
g,n(µ) by taking the closure of the strata

in the projectivized compactification of the Hodge bundle PΩMg,n. They further prove that the
existence of a twisted differential Ξ and a level function l on the vertices of the dual graph of X -
with certain compatibility conditions - is necessary and sufficient for a stable differential (X,Ω)
to lie in the boundary of the IVC. In [HN17], we give an alternative proof of such conditions,
which gives more information about the neighborhood of the boundary.

1.4. Future work. I will now briefly describe some natural questions that I plan to investigate
in the near future. Please find a more detailed discussion of these projects in section 5.

Project 1. Using the expansion of a general period of any abelian differential given in our
paper [HN17], one can understand the degeneration of the period coordinates on the strata.
Furthermore, one can study the boundary of affine invariant submanifolds in the strata, since
by definition they are locally R-linear in the period coordinates. From this approach, I look
forward to giving an alternative proof of Filip’s celebrated result on the algebraicity of the affine
invariant submanifolds [Fil16].

Project 2. I want to study the Teichmüller curves in the minimal stratum in genus 3 us-
ing the modular form given in [Hu17]. It is known that the Teichmüller curves only intersect
the deepest boundary strata where points correspond to the totally degenerate curves. The
degeneration of the period matrix near such boundary strata is given in [HN17]. The under-
standing of such degenerations and the real-multiplication condition on the Jacobians gives
strong constraints on the whereabouts of the Teichmüller curves in the minimal stratum.

Other projects. Our degeneration technique in [HN17] can also be applied in a more
general setting to study the degeneration of any global section of a vector bundle as the curve
degenerates, for instance, the Higgs field. Moreover, I am also interested in algebro-geometric
questions about the strata, in particular their cohomology. It seems promising to give a bound
on the dimension of the complete subvarieties in the strata by imitating the proof of Diaz’s
theorem given in Grushevsky-Krichever [GK09].
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2. Background

2.1. Period coordinates. The strata ΩMg,n(µ) are equipped with local coordinates. For a
pointed abelian differential (X; p1, . . . , pn;ω), a basis of the integral relative homology group
H1(X,Σ;Z) is given by a symplectic basis (A1, . . . , Ag;B1, . . . , Bg) of the absolute homology
H1(X;Z), together with paths (γ1, . . . , γn−1) where γk connects p1 and pk. The period coordi-
nates on strata are locally given by the integrals of ω over {Ai, Bi} (these are called absolute
coordinates), and over {γk} (these are called relative coordinates).

2.2. Action of SL2(R) and Teichmüller curves. A translation structure on a Riemann sur-
face X is an atlas of complex charts {(Uα, fα)}α∈I , where all transition functions are locally
translations. By identifying C with R2, the group SL2(R) acts on the set of translation struc-
tures on X by post-composing the chart maps fα with the linear map.

For an abelian differential (X,ω) it is known that X\Zred(ω) has a translation structure.
Therefore the group SL2(R) acts on the Hodge bundle ΩMg. This action preserves the number
and multiplicities of the zeroes of the 1-form, i.e., the stratum ΩMg,n(µ) is SL2(R)-invariant.
One can also interpret this action using the flat model of an abelian differential (see [Zor06],
[Wri15]). The breakthrough work of Eskin-Mirzakhani-Mohammadi [EM13] [EMM15] gives:

Theorem 2.1. Any SL2(R)-orbit closure is locally cut out by linear equations of real coefficients
in period coordinates.

The above-stated locally R-linear objects are called affine invariant submanifolds of the strata.
In this context, Filip [Fil16] further showed the following:

Theorem 2.2. All affine invariant submaniolds are quasi-projective varieties.

The closure of an SL2(R)-orbit can have dimension between 1 and the dimension of the
stratum. When the orbit is closed, its image under the projection from ΩMg to Mg is totally
geodesic with respect to the Teichmüller metric [Vee95] [SW04], and the converse is also true
[McM03]. Such geodesics are called Teichmüller curves.

2.3. Moduli spaces of ppav and Hilbert modular varieties. The arithmetic perspective
has proven to be effective in tackling the problem of classifying Teichmüller curves. One im-
portant arithmetic property of the Teichmüller curve is that for any point [X] on the curve,
Jac(X) admits real multiplication (see [McM03] for genus two and [Möl06] for general genus).

Let F be a totally real number field with degree g, i.e., F is a degree g extension of Q
with the property that all its g embeddings into the complex numbers factor through R. Real
multiplication by F on a principally polarized abelian variety (ppav) A is an embedding ρ :
F → EndQ(A). Such embeddings depend on the integral structure of F : ρ is determined by the
underlying map from an order o of F to EndZ(A).

Let Ag = Hg/Sp(2g,Z) be the moduli space of ppav of dimension g, where Hg is the Siegel
upper half plane. We have the Torelli map from Mg to Ag sending X to Jac(X). By the
Riemann bilinear relations, the local coordinates on Ag are given by the period matrices. Given
a symplectic basis (A1, . . . , Ag;B1, . . . , Bg) of H1(X,Z). Let {v1, . . . , vg} be a normalized basis
of H1,0(X,C) dual to the A-cycles. The period matrix of X is then defined as the g× g matrix
(
∫
Bi
vj)i,j=1,...,g.

Hilbert modular varieties Ho := Hg/SL(o⊗ o∨) parametrize abelian varieties with real mul-
tiplication, and map to Ag by descending from the map φ : Hg → Hg:

φ : (τ1, . . . , τg) 7→M · diag(τ1, . . . , τg) ·MT ,

where M is a g × g matrix determined by the order o and the g distinct embeddings of F .
When g = 2, Ho is called the Hilbert modular surface. It is used in classifying the Teichmüller

curves in genus two by McMullen [McM03]. A further study of the relationship between Hilbert
modular varieties and Teichmüller curves in g = 2, 3, 4 is done by Bainbridge-Möller [BM12]
[BM14], Bainbridge-Habegger-Möller [BHM16], and Möller-Zagier [MZ16].
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3. Minimal stratum in genus three

3.1. The Riemann theta function and the theta-null modular form. The stratum
ΩModd

3 (4) is called the minimal stratum in genus three. The locus Modd
3 (4) ⊂M3 obtained by

forgetting the differential can be seen as the locus where one of the 28 bitangent lines of a plane
quartic X is in fact a hyperflex line, i.e. its two tangent points comes together. Equivalently, it
is the locus where X has a Weierstrass point p of weight 4, i.e. 4p ≡ KX . The classification of
the affine invariant submanifolds of dimension ≥ 2 in ΩModd

3 (4) was done by Aulicino-Nguyen-
Wright [ANW16]. The classification of the Teichmüller curves in this stratum is still an open
problem.

It is known that for a given curve X, the Riemann theta function with characteristics is a
section of the line bundle 1

2K twisted by a two-torsion line bundle. One can identify the set of

two-torsion points in Jac(X) with (Z2)
3 × (Z2)

3, sending m = (τε+ δ)/2 to the characteristics
(ε, δ), where τ is the period matrix of X. Technically our discussion depends on the choice of
such an identification, and hence should be on a level cover of A3. In order to simplify the
discussion, we choose to neglect these issues here.

The Riemann theta constants with characteristics θ[ εδ ](τ, 0) are known to be modular forms
of weight 1

2 . The theta-null modular form is defined as Θnull(τ) :=
∏

(ε,δ)even θ[
ε
δ ](τ, 0), where

the parity on the characteristics is given by the Weil pairing. It is known that the theta-null
modular form cuts out the hyperelliptic locus in genus 3.

3.2. A modular form for the stratum ΩModd
3 (4). In [Hu17], I give a modular form that

cuts out the locusModd
3 (4). For simplicity, let us denote the characteristics (ε, δ) by (i, j), where

i = 4ε1 + 2ε2 + ε3, j = 4δ1 + 2δ2 + δ3. For instance, ([1, 1, 0], [0, 1, 1]) is denoted by (6, 3).

Theorem 3.1 ([Hu17, Theorem 2.5]). On A3, the modular form Ω77(τ) defined by

Ω77(τ) : = [θ01θ10θ37θ43θ52θ75θ42θ06θ30θ21θ55 + θ02θ25θ34θ40θ67θ76θ33θ05θ14θ60θ42]
2

− 4θ01θ02θ10θ25θ34θ37θ40θ43θ52θ67θ75θ76θ00θ04θ57θ70θ61θ73θ20θ07θ00θ16

vanishes at the period matrix τ of a smooth plane quartic X if and only if X has a Weierstrass
point P of weight 4 such that the 2-torsion point [12KX − 2P ] on Aτ corresponds to the char-
acteristic (i, j) = (7, 7). Here θij := θij(τ, 0) is the Riemann theta constant with characteristics
(i, j).

The requirement that the 2-torsion point correspond to the characteristic (i, j) = (7, 7) is
merely a technical condition to fix the choice of the identification Aτ [2] ' (Z/2Z)6. In other
words, the modular form Ω77 cuts out a locus on the level two cover of A3 that maps one-to-one
onto the image of Modd

3 (4) in A3.

3.3. Computation of the class. Let M3 be the Deligne-Mumford compactification of M3.
I use the modular form Ω77 to compute the divisor class of the closure of the locus Modd

3 (4) in
M3:

[Modd
3 (4)] = 308λ− 32δ0 − 76δ1,

where λ is the Hodge class on M3, and δ0, δ1 are the classes of the boundary divisors. This
class is first computed in [Cuk89] using a different method.

Generally speaking, the weight of a modular form F gives the multiplicity of the Hodge
class in the class of the locus cut out by F . In order to compute the analogous coefficients of
the boundary divisor classes, one computes the vanishing orders of F at the boundary compo-
nents. We therefore study the degeneration of the theta constants with characteristics near the
boundary of M3, which requires an understanding of the degeneration of the period matrices.

4. Degeneration of periods

The variational formula of the period matrices in plumbing coordinates is studied by Yamada
[Yam80] and Fay [Fay73] for the case when the stable curve has only 1 node. For the more general
cases, Taniguchi [Tan89] computes the logarithmic term in the variational formula of the period
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matrices. However, their methods do not provide a variational formula for an arbitrary abelian
differential, and hence are not enough for further usage such as computing the degeneration of
period coordinates.

In the collaboration with C. Norton [HN17], we compute the Taylor expansion of any stable
differentials in plumbing coordinates, and give the explicit variational formula for the degener-
ation of any periods of the differential near an arbitrary stable curve, in particular the period
matrices, generalizing the results of Yamada-Fay and Taniguchi.

4.1. Plumbing coordinates. Given a stable nodal curve X with n nodes, the standard plumb-
ing construction cuts out neighborhoods at the two pre-images qe and q−e of each node q|e| of
X, and identifies their boundaries (called seams, denoted by γ±e) via a gluing map Ie sending ze
to z−e := se/ze, where |se| � 1 is called the plumbing parameter and ze and z−e are chosen local
coordinates near qe and q−e respectively. The plumbing construction gives a family of curves
X → ∆ with the central fiber identified with X, where ∆ is the small polydisc neighborhood of
0 ∈ Cn with coordinates given by the plumbing parameters s := (s1, . . . , sn). Depending on cir-
cumstances (s1, . . . , sn) are also called the plumbing coordinates, as they give versal deformation
coordinates on Mg to the boundary stratum containing the point X.

4.2. Degeneration of abelian differentials. The technique we use to construct the degen-
erating family {Xs,Ωs} is called (solving) the jump problem, which was developed and used in
the real-analytic setting by Grushevsky-Krichever-Norton [GKN17]. Roughly speaking, given
a stable differential Ω on X, we have the mis-matches {Ω|γe − I∗e (Ω|γ−e)} (which we call the
jumps of Ω) on the seams γ±e at opposite sides of each node. The solution to the jump problem
with initial conditions from Ω is a“correction” differential η that matches the jumps of Ω. By
subtracting η from Ω on each irreducible component, one obtains new differentials with zero
jumps, which can thus be glued to get a global meromorphic differential Ωs on Xs. In [HN17],
we construct explicitly the solution to the jump problem:

Theorem 4.1 ([HN17, Theorem 3.3]). Let (X,Ω) ∈ ∂ΩMg be a stable differential. Let Ωv

be the restriction of Ω on the connected component Xv. For any |s| small enough, {Ωv,s :=
Ωv + ηv} defines a meromorphic differential Ωs on Xs satisfying Ωv = lims→0 Ωs|Xv , where

ηv =
∑∞

k=1 η
(k)
v is the unique solution with vanishing A-periods to the jump problem with the

initial conditions from Ω. Furthermore, we have ||ηv,s||L2 = O(
√
|s|).

Furthermore, we compute the leading term of the s-expansion for η
(k)
v , which in particular

gives the linear term of the s-expansion for Ωs. Let lkv = (e1, . . . , ek) be a path of length k
starting from a given vertex v = v(e1) in the dual graph ΓX . Let ωv(z, w) be the fundamental

normalized bidifferential on Xv and βe,e′ := hol(ωv)(qe, qe′). The s-expansion of η
(k)
v is given by:

(4.1) η(k)v (z) = (−1)k
∑
lkv

k∏
i=1

sei · ωv(z, qe1)

k−1∏
j=1

β−ej ,ej+1 hol(Ω)(q−ek) +O(|s|k+1),

where z ∈ Xs. In the one node case, this expansion is the same as in [Yam80].

4.3. Degeneration of periods. Denote re := resqe Ω. We have re = −r−e. Let α be any
oriented loop in X. Let {q1, . . . , qN} be the ordered collection of nodes that α passes through
(with possible repetition). Let αs be a perturbation of α such that its restrictions on each Xv

minus the caps at each node glue correctly to give a loop on Xs.

Theorem 4.2 ([HN17, Theorem 4.1]). The variational formula of the period of Ωs over αs is
given by: ∫

αs

Ωs =
N∑
i=1

(rei ln |sei |+ ci + li) +O(|s|2),

here ci and li are the constant and linear terms in s respectively, which are explicitly given.
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The expression for the constant and linear terms can be found in our paper [HN17, Theo-

rem 4.1]. This theorem in particular shows that
∫
αs

Ωs −
∑N

i=1 rei ln |sei | is holomorphic in s.

This observation along with the following corollary gives the main result in [Tan89].
For the degeneration of the period matrices, we choose a suitable symplectic basis {Ak,s, Bk,s}gk=1

of H1(Xs,Z). We take a normalized basis {v1, . . . , vg} of H1(X,C), such that after applying
the jump problem construction, the resulting set of differentials {vk,s}gk=1 is a normalized basis

of H1(Xs,C). We then have:

Corollary 4.3 ([HN17, Corollary 4.5]). For any fixed h, k, the expansion of τh,k(s) is given by

τh,k(s) =
∑
e∈EX

N|e|,h ·N|e|,k
2

· ln |se|+ ch,k + lh,k,

where N|e|,k := γ|e|×Bk,s, and EX is the set of oriented edges of the dual graph of X. Moreover,

let {q|ei|}
N−1
i=0 be the set of nodes Bh passes through, then the constant term ch,k and the linear

term lh,k are given explicitly as follows:

ch,k = lim
s→0

N∑
i=1

(∫ z−1
ei

(
√
|sei |)

z−1
−ei−1

(
√
|sei−1 |)

vk −N|ei|,hN|ei|,k ln |sei |

)
lh,k =−

∑
e∈EX

se (hol(vk)(qe) hol(vh)(q−e)) +O(|s|2),

4.4. Alternative approach to the incidence variety compactification of strata. As
introduced in section 1.3, in Bainbridge-Chen-Gendron-Grushevsky-Möller [BCGGM16] the
authors construct the incidence variety compactification (IVC) of strata, and they give the
necessary and sufficient conditions for a stable pointed differential to lie in the boundary of the
IVC. The obviously harder direction in their proof is the sufficiency of the conditions, which
essentially requires a construction of a degenerating family of abelian differentials in the stratum
to the given limit differential (X,Ω) with the compatible data (Ξ, l). In [BCGGM16], the au-
thors give two such constructions by using a plumbing argument and a flat geometry argument
respectively. Both arguments only give rise to one-parameter degenerating families.

In [HN17, Theorem 6.4] we construct, via the jump problem approach, a degenerating family
that is different to the two mentioned above. The number of parameters in our degenerating
family is equal to the number of levels in the level graph ΓX minus 1, which is the maximal num-
ber of parameters allowed in such degenerating family. In particular, we reprove the sufficiency
of the conditions for a stable differential to lie in the boundary of the IVC.

5. Work in progress

5.1. Degeneration of period coordinates and algebraicity of affine invariant subman-
ifolds. Using Theorem 4.2 and [HN17, Theorem 6.4], I expect similar variational formulas can
be written down for the period coordinates on the strata. There is a small difficulty: the solution
of the jump problem η will break a zero (of the original differential) with higher multiplicity
into a number of nearby simple zeroes. In our proof of the sufficiency of the IVC, we applied a
local surgery to merge these simple zeroes back to the correct multiplicity. The expansion for
the differential after this local surgery remains to be computed. Fortunately, this is a minor
problem that is expected to be solved by applying the jump problem technique again.

The understanding of the degeneration of period coordinates will allow me to study the
local structures near the boundary of the strata. Therefore I expect to extend the results in
Mirzakhani-Wright [MW17] to the boundary of the IVC compactification. Furthermore, since
the affine invariant submanifolds are defined locally to be R-linear in period coordinates, I want
to study the closure of these objects in the IVC by extending the local defining equations onto
the boundary. This will lead to an alternative proof of the algebraicity of the strata (Theorem
2.2). The current proof in [Fil16] uses Hodge theory and dynamics, and no other proof is known.
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5.2. Classification of Teichmüller curves in genus 3. Theta constants have proven to
be useful in finding Teichmüller curves (see Möller-Zagier [MZ16]), since they can be viewed
as Hilbert modular forms when we pull them back from Ag to the Hilbert modular varieties.
Therefore both the theta-null modular form and our hyperflex modular form can be seen as
Hilbert modular forms. Since the Hilbert modular varieties parametrize abelian varieties with
real multiplication, these are the only possible places for Teichmüller curves to exist. Therefore
the Teichmüller curves in the hyperelliptic locus in genus three and the stratum ΩModd

3 (4) must
lie in the locus cut out by the corresponding modular forms.

It is a known fact that Teichmüller curves will always intersect the deepest boundary strata
whose points correspond to totally degenerate curves. In [HN17] we compute as an example the
explicit variational formula for period matrices of totally degenerate curves, which was previ-
ously unknown. One can now study the totally degenerate theta constants and give a description
of the possible locus in the boundary where Teichmüller curves are allowed to intersect.

5.3. More general setting for the jump problem. The idea of solving the jump problem
is to glue the “corrected” differential over the seams near the nodes of the Riemann surface.
More generally we can apply this approach to smooth the sections of any locally free sheaf over
a nodal Riemann surface. In this way one can construct a degenerating family of pairs (Xs, θs),
where θs is a global section of some vector bundle Es on Xs. Interesting examples include
the Higgs bundles. Via the jump problem approach, I hope to write down similar variational
formulas for the degeneration of a Higgs field.

I also want to consider the moduli spaces of semi-stable vector bundles of fixed rank and
degree over a Riemann surface X, and study the degeneration of such moduli spaces when
X degenerates. In [Pa96], Pandharipande constructs such a compactification of the universal
moduli spaces of slope-semistable vector bundles using GIT. I hope to study the boundary of
this compactification in our analytic jump problem approach.

5.4. Global geometry of strata. There is little known about the algebro-gemetric properties
of the affine invariant submanifolds. We try to understand the cohomology of the (open) strata
by studying the complete subvarieties in them. A recent result by Chen [Ch17] shows that there
are no complete curves in strata of strictly meromorphic abelian differentials.

In the well-studied moduli spaces of curves, we have the theorem by Diaz [Di85] saying
that Mg does not contain complete (complex) subvarieties of dimension greater than g − 2.
This result was later reproved by Grushevsky-Krichever [GK09] and again by Krichever [Kr11],
whose approaches can hopefully be applied to the strata. Their proofs use the real-normalized
differentials, i.e., differentials whose absolute periods are real. They work on the rel foliation of
the real-normalized differential where the absolute periods of the differential are fixed. Since the
absolute periods are real, the imaginary parts of the relative periods gives local coordinates on
the leaves of the foliation. The relative periods are holomorphic, therefore their imaginary parts
are harmonic functions on the leaves. As a result, by restricting any complete subvarieties of
dimension larger than g− 2 to such leaves, one gets that imaginary parts of the relative periods
(as local coordinates) become constants on the restriction. This proves Diaz’s theorem.

I want to show a Diaz-type theorem for the strata of abelian differentials, namely, I am
trying to give a bound on the dimension of the complete subvarieties contained in the strata by
imitating the approach used in [GK09]. I start by studying the intersection of the leaves of the rel
foliation of a real-normalized differential and a stratum of abelian differentials. Understanding
the interplay of these two differentials is most certain to lead to some interesting results.
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