Second-Order Linear Differential Equations

A second-order linear differential equation has the form

$$
\begin{equation*}
P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=G(x) \tag{1}
\end{equation*}
$$

where P, Q, R, and G are continuous functions. We saw in Section 7.1 that equations of this type arise in the study of the motion of a spring. In Additional Topics: Applications of Second-Order Differential Equations we will further pursue this application as well as the application to electric circuits.

In this section we study the case where $G(x)=0$, for all x, in Equation 1. Such equations are called homogeneous linear equations. Thus, the form of a second-order linear homogeneous differential equation is

$$
\begin{equation*}
P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=0 \tag{2}
\end{equation*}
$$

If $G(x) \neq 0$ for some x, Equation 1 is nonhomogeneous and is discussed in Additional Topics: Nonhomogeneous Linear Equations.

Two basic facts enable us to solve homogeneous linear equations. The first of these says that if we know two solutions y_{1} and y_{2} of such an equation, then the linear combination $y=c_{1} y_{1}+c_{2} y_{2}$ is also a solution.

3 Theorem If $y_{1}(x)$ and $y_{2}(x)$ are both solutions of the linear homogeneous equation (2) and c_{1} and c_{2} are any constants, then the function

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

is also a solution of Equation 2.

Proof Since y_{1} and y_{2} are solutions of Equation 2, we have
and

$$
\begin{aligned}
& P(x) y_{1}^{\prime \prime}+Q(x) y_{1}^{\prime}+R(x) y_{1}=0 \\
& P(x) y_{2}^{\prime \prime}+Q(x) y_{2}^{\prime}+R(x) y_{2}=0
\end{aligned}
$$

Therefore, using the basic rules for differentiation, we have

$$
\begin{aligned}
P(x) y^{\prime \prime}+Q & (x) y^{\prime}+R(x) y \\
& =P(x)\left(c_{1} y_{1}+c_{2} y_{2}\right)^{\prime \prime}+Q(x)\left(c_{1} y_{1}+c_{2} y_{2}\right)^{\prime}+R(x)\left(c_{1} y_{1}+c_{2} y_{2}\right) \\
& =P(x)\left(c_{1} y_{1}^{\prime \prime}+c_{2} y_{2}^{\prime \prime}\right)+Q(x)\left(c_{1} y_{1}^{\prime}+c_{2} y_{2}^{\prime}\right)+R(x)\left(c_{1} y_{1}+c_{2} y_{2}\right) \\
& =c_{1}\left[P(x) y_{1}^{\prime \prime}+Q(x) y_{1}^{\prime}+R(x) y_{1}\right]+c_{2}\left[P(x) y_{2}^{\prime \prime}+Q(x) y_{2}^{\prime}+R(x) y_{2}\right] \\
& =c_{1}(0)+c_{2}(0)=0
\end{aligned}
$$

Thus, $y=c_{1} y_{1}+c_{2} y_{2}$ is a solution of Equation 2.
The other fact we need is given by the following theorem, which is proved in more advanced courses. It says that the general solution is a linear combination of two linearly independent solutions y_{1} and y_{2}. This means that neither y_{1} nor y_{2} is a constant multiple of the other. For instance, the functions $f(x)=x^{2}$ and $g(x)=5 x^{2}$ are linearly dependent, but $f(x)=e^{x}$ and $g(x)=x e^{x}$ are linearly independent.

4 Theorem If y_{1} and y_{2} are linearly independent solutions of Equation 2, and $P(x)$ is never 0 , then the general solution is given by

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

where c_{1} and c_{2} are arbitrary constants.

Theorem 4 is very useful because it says that if we know two particular linearly independent solutions, then we know every solution.

In general, it is not easy to discover particular solutions to a second-order linear equation. But it is always possible to do so if the coefficient functions P, Q, and R are constant functions, that is, if the differential equation has the form

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{5}
\end{equation*}
$$

where a, b, and c are constants and $a \neq 0$.
It's not hard to think of some likely candidates for particular solutions of Equation 5 if we state the equation verbally. We are looking for a function y such that a constant times its second derivative $y^{\prime \prime}$ plus another constant times y^{\prime} plus a third constant times y is equal to 0 . We know that the exponential function $y=e^{r x}$ (where r is a constant) has the property that its derivative is a constant multiple of itself: $y^{\prime}=r e^{r x}$. Furthermore, $y^{\prime \prime}=r^{2} e^{r x}$. If we substitute these expressions into Equation 5, we see that $y=e^{r x}$ is a solution if
or

$$
\begin{aligned}
a r^{2} e^{r x}+b r e^{r x}+c e^{r x} & =0 \\
\left(a r^{2}+b r+c\right) e^{r x} & =0
\end{aligned}
$$

But $e^{r x}$ is never 0 . Thus, $y=e^{r x}$ is a solution of Equation 5 if r is a root of the equation

$$
a r^{2}+b r+c=0
$$

Equation 6 is called the auxiliary equation (or characteristic equation) of the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$. Notice that it is an algebraic equation that is obtained from the differential equation by replacing $y^{\prime \prime}$ by r^{2}, y^{\prime} by r, and y by 1 .

Sometimes the roots r_{1} and r_{2} of the auxiliary equation can be found by factoring. In other cases they are found by using the quadratic formula:

$$
7 \quad r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

We distinguish three cases according to the sign of the discriminant $b^{2}-4 a c$.

CASE $\square b^{2}-4 a c>0$
In this case the roots r_{1} and r_{2} of the auxiliary equation are real and distinct, so $y_{1}=e^{r_{1} x}$ and $y_{2}=e^{r_{2} x}$ are two linearly independent solutions of Equation 5. (Note that $e^{r_{2} x}$ is not a constant multiple of $e^{r_{1} x}$.) Therefore, by Theorem 4, we have the following fact.

If the roots r_{1} and r_{2} of the auxiliary equation $a r^{2}+b r+c=0$ are real and unequal, then the general solution of $a y^{\prime \prime}+b y^{\prime}+c y=0$ is

$$
y=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}
$$

- - In Figure 1 the graphs of the basic solutions $f(x)=e^{2 x}$ and $g(x)=e^{-3 x}$ of the differential equation in Example 1 are shown in black and red, respectively. Some of the other solutions, linear combinations of f and g, are shown in blue.

FIGURE 1

EXAMPLE 1 Solve the equation $y^{\prime \prime}+y^{\prime}-6 y=0$.
SOLUTION The auxiliary equation is

$$
r^{2}+r-6=(r-2)(r+3)=0
$$

whose roots are $r=2,-3$. Therefore, by (8) the general solution of the given differential equation is

$$
y=c_{1} e^{2 x}+c_{2} e^{-3 x}
$$

We could verify that this is indeed a solution by differentiating and substituting into the differential equation.

EXAMPLE 2 Solve $3 \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-y=0$.
SOLUTION To solve the auxiliary equation $3 r^{2}+r-1=0$ we use the quadratic formula:

$$
r=\frac{-1 \pm \sqrt{13}}{6}
$$

Since the roots are real and distinct, the general solution is

$$
y=c_{1} e^{(-1+\sqrt{13}) x / 6}+c_{2} e^{(-1-\sqrt{13}) x / 6}
$$

CASE II $\square \boldsymbol{b}^{2}-\mathbf{4 a c}=\mathbf{0}$
In this case $r_{1}=r_{2}$; that is, the roots of the auxiliary equation are real and equal. Let's denote by r the common value of r_{1} and r_{2}. Then, from Equations 7, we have

$$
\begin{equation*}
r=-\frac{b}{2 a} \quad \text { so } \quad 2 a r+b=0 \tag{9}
\end{equation*}
$$

We know that $y_{1}=e^{r x}$ is one solution of Equation 5. We now verify that $y_{2}=x e^{r x}$ is also a solution:

$$
\begin{aligned}
a y_{2}^{\prime \prime}+b y_{2}^{\prime}+c y_{2} & =a\left(2 r e^{r x}+r^{2} x e^{r x}\right)+b\left(e^{r x}+r x e^{r x}\right)+c x e^{r x} \\
& =(2 a r+b) e^{r x}+\left(a r^{2}+b r+c\right) x e^{r x} \\
& =0\left(e^{r x}\right)+0\left(x e^{r x}\right)=0
\end{aligned}
$$

The first term is 0 by Equations 9; the second term is 0 because r is a root of the auxiliary equation. Since $y_{1}=e^{r x}$ and $y_{2}=x e^{r x}$ are linearly independent solutions, Theorem 4 provides us with the general solution.

10 If the auxiliary equation $a r^{2}+b r+c=0$ has only one real root r, then the general solution of $a y^{\prime \prime}+b y^{\prime}+c y=0$ is

$$
y=c_{1} e^{r x}+c_{2} x e^{r x}
$$

EXAMPLE 3 Solve the equation $4 y^{\prime \prime}+12 y^{\prime}+9 y=0$.
SOLUTION The auxiliary equation $4 r^{2}+12 r+9=0$ can be factored as

$$
(2 r+3)^{2}=0
$$

- - Figure 2 shows the basic solutions $f(x)=e^{-3 x / 2}$ and $g(x)=x e^{-3 x / 2}$ in Example 3 and some other members of the family of solutions. Notice that all of them approach 0 as $x \rightarrow \infty$.

FIGURE 2

- Figure 3 shows the graphs of the solutions in Example 4, $f(x)=e^{3 x} \cos 2 x$ and $g(x)=e^{3 x} \sin 2 x$, together with some linear combinations. All solutions approach 0 as $x \rightarrow-\infty$.

FIGURE 3
so the only root is $r=-\frac{3}{2}$. By (10) the general solution is

$$
y=c_{1} e^{-3 x / 2}+c_{2} x e^{-3 x / 2}
$$

CASE III $b^{2}-4 a c<0$
In this case the roots r_{1} and r_{2} of the auxiliary equation are complex numbers. (See Appendix I for information about complex numbers.) We can write

$$
r_{1}=\alpha+i \beta \quad r_{2}=\alpha-i \beta
$$

where α and β are real numbers. [In fact, $\alpha=-b /(2 a), \beta=\sqrt{4 a c-b^{2}} /(2 a)$.] Then, using Euler's equation

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

from Appendix I, we write the solution of the differential equation as

$$
\begin{aligned}
y & =C_{1} e^{r_{1} x}+C_{2} e^{r_{2} x}=C_{1} e^{(\alpha+i \beta) x}+C_{2} e^{(\alpha-i \beta) x} \\
& =C_{1} e^{\alpha x}(\cos \beta x+i \sin \beta x)+C_{2} e^{\alpha x}(\cos \beta x-i \sin \beta x) \\
& =e^{\alpha x}\left[\left(C_{1}+C_{2}\right) \cos \beta x+i\left(C_{1}-C_{2}\right) \sin \beta x\right] \\
& =e^{\alpha x}\left(c_{1} \cos \beta x+c_{2} \sin \beta x\right)
\end{aligned}
$$

where $c_{1}=C_{1}+C_{2}, c_{2}=i\left(C_{1}-C_{2}\right)$. This gives all solutions (real or complex) of the differential equation. The solutions are real when the constants c_{1} and c_{2} are real. We summarize the discussion as follows.

11 If the roots of the auxiliary equation $a r^{2}+b r+c=0$ are the complex numbers $r_{1}=\alpha+i \beta, r_{2}=\alpha-i \beta$, then the general solution of $a y^{\prime \prime}+b y^{\prime}+c y=0$ is

$$
y=e^{\alpha x}\left(c_{1} \cos \beta x+c_{2} \sin \beta x\right)
$$

EXAMPLE 4 Solve the equation $y^{\prime \prime}-6 y^{\prime}+13 y=0$.
SOLUTION The auxiliary equation is $r^{2}-6 r+13=0$. By the quadratic formula, the roots are

$$
r=\frac{6 \pm \sqrt{36-52}}{2}=\frac{6 \pm \sqrt{-16}}{2}=3 \pm 2 i
$$

By (11) the general solution of the differential equation is

$$
y=e^{3 x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)
$$

Initial-Value and Boundary-Value Problems

An initial-value problem for the second-order Equation 1 or 2 consists of finding a solution y of the differential equation that also satisfies initial conditions of the form

$$
y\left(x_{0}\right)=y_{0} \quad y^{\prime}\left(x_{0}\right)=y_{1}
$$

where y_{0} and y_{1} are given constants. If P, Q, R, and G are continuous on an interval and $P(x) \neq 0$ there, then a theorem found in more advanced books guarantees the existence and uniqueness of a solution to this initial-value problem. Examples 5 and 6 illustrate the technique for solving such a problem.

- - Figure 4 shows the graph of the solution of the initial-value problem in Example 5. Compare with Figure 1.

FIGURE 4

EXAMPLE 5 Solve the initial-value problem

$$
y^{\prime \prime}+y^{\prime}-6 y=0 \quad y(0)=1 \quad y^{\prime}(0)=0
$$

SOLUTION From Example 1 we know that the general solution of the differential equation is

$$
y(x)=c_{1} e^{2 x}+c_{2} e^{-3 x}
$$

Differentiating this solution, we get

$$
y^{\prime}(x)=2 c_{1} e^{2 x}-3 c_{2} e^{-3 x}
$$

To satisfy the initial conditions we require that

13

$$
\begin{align*}
& y(0)=c_{1}+c_{2}=1 \tag{12}\\
& y^{\prime}(0)=2 c_{1}-3 c_{2}=0
\end{align*}
$$

From (13) we have $c_{2}=\frac{2}{3} c_{1}$ and so (12) gives

$$
c_{1}+\frac{2}{3} c_{1}=1 \quad c_{1}=\frac{3}{5} \quad c_{2}=\frac{2}{5}
$$

Thus, the required solution of the initial-value problem is

$$
y=\frac{3}{5} e^{2 x}+\frac{2}{5} e^{-3 x}
$$

EXAMPLE 6 Solve the initial-value problem

$$
y^{\prime \prime}+y=0 \quad y(0)=2 \quad y^{\prime}(0)=3
$$

SOLUTION The auxiliary equation is $r^{2}+1=0$, or $r^{2}=-1$, whose roots are $\pm i$. Thus $\alpha=0, \beta=1$, and since $e^{0 x}=1$, the general solution is

Since

$$
\begin{aligned}
& y(x)=c_{1} \cos x+c_{2} \sin x \\
& y^{\prime}(x)=-c_{1} \sin x+c_{2} \cos x
\end{aligned}
$$

the initial conditions become

$$
y(0)=c_{1}=2 \quad y^{\prime}(0)=c_{2}=3
$$

Therefore, the solution of the initial-value problem is

$$
y(x)=2 \cos x+3 \sin x
$$

A boundary-value problem for Equation 1 consists of finding a solution y of the differential equation that also satisfies boundary conditions of the form

$$
y\left(x_{0}\right)=y_{0} \quad y\left(x_{1}\right)=y_{1}
$$

In contrast with the situation for initial-value problems, a boundary-value problem does not always have a solution.

EXAMPLE 7 Solve the boundary-value problem

$$
y^{\prime \prime}+2 y^{\prime}+y=0 \quad y(0)=1 \quad y(1)=3
$$

SOLUTION The auxiliary equation is

$$
r^{2}+2 r+1=0 \quad \text { or } \quad(r+1)^{2}=0
$$

Figure 6 shows the graph of the solution of the boundary-value problem in Example 7.

FIGURE 6
whose only root is $r=-1$. Therefore, the general solution is

$$
y(x)=c_{1} e^{-x}+c_{2} x e^{-x}
$$

The boundary conditions are satisfied if

$$
\begin{aligned}
& y(0)=c_{1}=1 \\
& y(1)=c_{1} e^{-1}+c_{2} e^{-1}=3
\end{aligned}
$$

The first condition gives $c_{1}=1$, so the second condition becomes

$$
e^{-1}+c_{2} e^{-1}=3
$$

Solving this equation for c_{2} by first multiplying through by e, we get

$$
1+c_{2}=3 e \quad \text { so } \quad c_{2}=3 e-1
$$

Thus, the solution of the boundary-value problem is

$$
y=e^{-x}+(3 e-1) x e^{-x}
$$

Summary: Solutions of $a y^{\prime \prime}+b y^{\prime}+c=0$

Roots of $a r^{2}+b r+c=0$	General solution
r_{1}, r_{2} real and distinct	$y=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}$
$r_{1}=r_{2}=r$	$y=c_{1} e^{r x}+c_{2} x e^{r x}$
r_{1}, r_{2} complex: $\alpha \pm i \beta$	$y=e^{\alpha x}\left(c_{1} \cos \beta x+c_{2} \sin \beta x\right)$

Exercises

A Click here for answers.

(S) Click here for solutions.

1-13 \quad Solve the differential equation.

1. $y^{\prime \prime}-6 y^{\prime}+8 y=0$
2. $y^{\prime \prime}-4 y^{\prime}+8 y=0$
3. $y^{\prime \prime}+8 y^{\prime}+41 y=0$
4. $2 y^{\prime \prime}-y^{\prime}-y=0$
5. $y^{\prime \prime}-2 y^{\prime}+y=0$
6. $3 y^{\prime \prime}=5 y^{\prime}$
7. $4 y^{\prime \prime}+y=0$
8. $16 y^{\prime \prime}+24 y^{\prime}+9 y=0$
9. $4 y^{\prime \prime}+y^{\prime}=0$
10. $9 y^{\prime \prime}+4 y=0$
11. $\frac{d^{2} y}{d t^{2}}-2 \frac{d y}{d t}-y=0$
12. $\frac{d^{2} y}{d t^{2}}-6 \frac{d y}{d t}+4 y=0$
13. $\frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}+y=0$

14-16 Graph the two basic solutions of the differential equation and several other solutions. What features do the solutions have in common?
14. $6 \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-2 y=0$
15. $\frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+16 y=0$
16. $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+5 y=0$

17-24 \quad Solve the initial-value problem.
17. $2 y^{\prime \prime}+5 y^{\prime}+3 y=0, \quad y(0)=3, \quad y^{\prime}(0)=-4$
18. $y^{\prime \prime}+3 y=0, \quad y(0)=1, \quad y^{\prime}(0)=3$
19. $4 y^{\prime \prime}-4 y^{\prime}+y=0, \quad y(0)=1, \quad y^{\prime}(0)=-1.5$
20. $2 y^{\prime \prime}+5 y^{\prime}-3 y=0, \quad y(0)=1, \quad y^{\prime}(0)=4$
21. $y^{\prime \prime}+16 y=0, \quad y(\pi / 4)=-3, \quad y^{\prime}(\pi / 4)=4$
22. $y^{\prime \prime}-2 y^{\prime}+5 y=0, \quad y(\pi)=0, \quad y^{\prime}(\pi)=2$
23. $y^{\prime \prime}+2 y^{\prime}+2 y=0, \quad y(0)=2, \quad y^{\prime}(0)=1$
24. $y^{\prime \prime}+12 y^{\prime}+36 y=0, \quad y(1)=0, \quad y^{\prime}(1)=1$

25-32 \quad Solve the boundary-value problem, if possible.
25. $4 y^{\prime \prime}+y=0, \quad y(0)=3, \quad y(\pi)=-4$
26. $y^{\prime \prime}+2 y^{\prime}=0, \quad y(0)=1, \quad y(1)=2$
27. $y^{\prime \prime}-3 y^{\prime}+2 y=0, \quad y(0)=1, \quad y(3)=0$
28. $y^{\prime \prime}+100 y=0, \quad y(0)=2, \quad y(\pi)=5$
29. $y^{\prime \prime}-6 y^{\prime}+25 y=0, \quad y(0)=1, \quad y(\pi)=2$
30. $y^{\prime \prime}-6 y^{\prime}+9 y=0, \quad y(0)=1, \quad y(1)=0$
31. $y^{\prime \prime}+4 y^{\prime}+13 y=0, \quad y(0)=2, \quad y(\pi / 2)=1$
32. $9 y^{\prime \prime}-18 y^{\prime}+10 y=0, \quad y(0)=0, \quad y(\pi)=1$
33. Let L be a nonzero real number.
(a) Show that the boundary-value problem $y^{\prime \prime}+\lambda y=0$, $y(0)=0, y(L)=0$ has only the trivial solution $y=0$ for the cases $\lambda=0$ and $\lambda<0$.
(b) For the case $\lambda>0$, find the values of λ for which this problem has a nontrivial solution and give the corresponding solution.
34. If a, b, and c are all positive constants and $y(x)$ is a solution of the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$, show that $\lim _{x \rightarrow \infty} y(x)=0$.

Answers

S Click here for solutions.

1. $y=c_{1} e^{4 x}+c_{2} e^{2 x} \quad$ 3. $y=e^{-4 x}\left(c_{1} \cos 5 x+c_{2} \sin 5 x\right)$
2. $y=c_{1} e^{x}+c_{2} x e^{x} \quad$ 7. $y=c_{1} \cos (x / 2)+c_{2} \sin (x / 2)$
3. $y=c_{1}+c_{2} e^{-x / 4} \quad$ 11. $y=c_{1} e^{(1+\sqrt{2}) t}+c_{2} e^{(1-\sqrt{2}) t}$
4. $y=e^{-t / 2}\left[c_{1} \cos (\sqrt{3} t / 2)+c_{2} \sin (\sqrt{3} t / 2)\right]$
5.

All solutions approach 0 as $x \rightarrow-\infty$ and approach $\pm \infty$ as $x \rightarrow \infty$.
17. $y=2 e^{-3 x / 2}+e^{-x} \quad$ 19. $y=e^{x / 2}-2 x e^{x / 2}$
21. $y=3 \cos 4 x-\sin 4 x \quad$ 23. $y=e^{-x}(2 \cos x+3 \sin x)$
25. $y=3 \cos \left(\frac{1}{2} x\right)-4 \sin \left(\frac{1}{2} x\right)$
27. $y=\frac{e^{x+3}}{e^{3}-1}+\frac{e^{2 x}}{1-e^{3}}$
29. No solution
31. $y=e^{-2 x}\left(2 \cos 3 x-e^{\pi} \sin 3 x\right)$
33. (b) $\lambda=n^{2} \pi^{2} / L^{2}, n$ a positive integer; $y=C \sin (n \pi x / L)$

Solutions: Second-Order Linear Differential Equations

1. The auxiliary equation is $r^{2}-6 r+8=0 \Rightarrow(r-4)(r-2)=0 \Rightarrow r=4, r=2$. Then by (8) the general solution is $y=c_{1} e^{4 x}+c_{2} e^{2 x}$.
2. The auxiliary equation is $r^{2}+8 r+41=0 \Rightarrow r=-4 \pm 5 i$. Then by (11) the general solution is $y=e^{-4 x}\left(c_{1} \cos 5 x+c_{2} \sin 5 x\right)$.
3. The auxiliary equation is $r^{2}-2 r+1=(r-1)^{2}=0 \Rightarrow r=1$. Then by (10), the general solution is $y=c_{1} e^{x}+c_{2} x e^{x}$.
4. The auxiliary equation is $4 r^{2}+1=0 \quad \Rightarrow \quad r= \pm \frac{1}{2} i$, so $y=c_{1} \cos \left(\frac{1}{2} x\right)+c_{2} \sin \left(\frac{1}{2} x\right)$.
5. The auxiliary equation is $4 r^{2}+r=r(4 r+1)=0 \quad \Rightarrow \quad r=0, r=-\frac{1}{4}$, so $y=c_{1}+c_{2} e^{-x / 4}$.
6. The auxiliary equation is $r^{2}-2 r-1=0 \Rightarrow r=1 \pm \sqrt{2}$, so $y=c_{1} e^{(1+\sqrt{2}) t}+c_{2} e^{(1-\sqrt{2}) t}$.
7. The auxiliary equation is $r^{2}+r+1=0 \Rightarrow r=-\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$, so $y=e^{-t / 2}\left[c_{1} \cos \left(\frac{\sqrt{3}}{2} t\right)+c_{2} \sin \left(\frac{\sqrt{3}}{2} t\right)\right]$.
8. $r^{2}-8 r+16=(r-4)^{2}=0$ so $y=c_{1} e^{4 x}+c_{2} x e^{4 x}$.

The graphs are all asymptotic to the x-axis as $x \rightarrow-\infty$, and as $x \rightarrow \infty$ the solutions tend to $\pm \infty$.

17. $2 r^{2}+5 r+3=(2 r+3)(r+1)=0$, so $r=-\frac{3}{2}, r=-1$ and the general solution is $y=c_{1} e^{-3 x / 2}+c_{2} e^{-x}$. Then $y(0)=3 \quad \Rightarrow \quad c_{1}+c_{2}=3$ and $y^{\prime}(0)=-4 \quad \Rightarrow \quad-\frac{3}{2} c_{1}-c_{2}=-4$, so $c_{1}=2$ and $c_{2}=1$. Thus the solution to the initial-value problem is $y=2 e^{-3 x / 2}+e^{-x}$.
19. $4 r^{2}-4 r+1=(2 r-1)^{2}=0 \Rightarrow r=\frac{1}{2}$ and the general solution is $y=c_{1} e^{x / 2}+c_{2} x e^{x / 2}$. Then $y(0)=1$ $\Rightarrow \quad c_{1}=1$ and $y^{\prime}(0)=-1.5 \Rightarrow \frac{1}{2} c_{1}+c_{2}=-1.5$, so $c_{2}=-2$ and the solution to the initial-value problem is $y=e^{x / 2}-2 x e^{x / 2}$.
21. $r^{2}+16=0 \Rightarrow r= \pm 4 i$ and the general solution is $y=e^{0 x}\left(c_{1} \cos 4 x+c_{2} \sin 4 x\right)=c_{1} \cos 4 x+c_{2} \sin 4 x$. Then $y\left(\frac{\pi}{4}\right)=-3 \quad \Rightarrow \quad-c_{1}=-3 \quad \Rightarrow \quad c_{1}=3$ and $y^{\prime}\left(\frac{\pi}{4}\right)=4 \quad \Rightarrow \quad-4 c_{2}=4 \quad \Rightarrow \quad c_{2}=-1$, so the solution to the initial-value problem is $y=3 \cos 4 x-\sin 4 x$.
23. $r^{2}+2 r+2=0 \Rightarrow r=-1 \pm i$ and the general solution is $y=e^{-x}\left(c_{1} \cos x+c_{2} \sin x\right)$. Then $2=y(0)=c_{1}$ and $1=y^{\prime}(0)=c_{2}-c_{1} \Rightarrow c_{2}=3$ and the solution to the initial-value problem is $y=e^{-x}(2 \cos x+3 \sin x)$.
25. $4 r^{2}+1=0 \Rightarrow r= \pm \frac{1}{2} i$ and the general solution is $y=c_{1} \cos \left(\frac{1}{2} x\right)+c_{2} \sin \left(\frac{1}{2} x\right)$. Then $3=y(0)=c_{1}$ and $-4=y(\pi)=c_{2}$, so the solution of the boundary-value problem is $y=3 \cos \left(\frac{1}{2} x\right)-4 \sin \left(\frac{1}{2} x\right)$.
27. $r^{2}-3 r+2=(r-2)(r-1)=0 \Rightarrow r=1, r=2$ and the general solution is $y=c_{1} e^{x}+c_{2} e^{2 x}$. Then $1=y(0)=c_{1}+c_{2}$ and $0=y(3)=c_{1} e^{3}+c_{2} e^{6}$ so $c_{2}=1 /\left(1-e^{3}\right)$ and $c_{1}=e^{3} /\left(e^{3}-1\right)$. The solution of the boundary-value problem is $y=\frac{e^{x+3}}{e^{3}-1}+\frac{e^{2 x}}{1-e^{3}}$.
29. $r^{2}-6 r+25=0 \Rightarrow r=3 \pm 4 i$ and the general solution is $y=e^{3 x}\left(c_{1} \cos 4 x+c_{2} \sin 4 x\right)$. But $1=y(0)=c_{1}$ and $2=y(\pi)=c_{1} e^{3 \pi} \quad \Rightarrow \quad c_{1}=2 / e^{3 \pi}$, so there is no solution.
31. $r^{2}+4 r+13=0 \Rightarrow r=-2 \pm 3 i$ and the general solution is $y=e^{-2 x}\left(c_{1} \cos 3 x+c_{2} \sin 3 x\right)$. But $2=y(0)=c_{1}$ and $1=y\left(\frac{\pi}{2}\right)=e^{-\pi}\left(-c_{2}\right)$, so the solution to the boundary-value problem is $y=e^{-2 x}\left(2 \cos 3 x-e^{\pi} \sin 3 x\right)$.
33. (a) Case $1(\lambda=0)$: $\quad y^{\prime \prime}+\lambda y=0 \quad \Rightarrow \quad y^{\prime \prime}=0$ which has an auxiliary equation $r^{2}=0 \quad \Rightarrow \quad r=0 \quad \Rightarrow$ $y=c_{1}+c_{2} x$ where $y(0)=0$ and $y(L)=0$. Thus, $0=y(0)=c_{1}$ and $0=y(L)=c_{2} L \quad \Rightarrow \quad c_{1}=c_{2}=0$. Thus, $y=0$.

Case $2(\lambda<0)$: $\quad y^{\prime \prime}+\lambda y=0$ has auxiliary equation $r^{2}=-\lambda \Rightarrow r= \pm \sqrt{-\lambda}$ (distinct and real since $\lambda<0) \Rightarrow y=c_{1} e^{\sqrt{-\lambda} x}+c_{2} e^{-\sqrt{-\lambda} x}$ where $y(0)=0$ and $y(L)=0$. Thus, $0=y(0)=c_{1}+c_{2}(*)$ and $0=y(L)=c_{1} e^{\sqrt{-\lambda} L}+c_{2} e^{-\sqrt{-\lambda} L}(\dagger)$.
Multiplying (*) by $e^{\sqrt{-\lambda} L}$ and subtracting (\dagger) gives $c_{2}\left(e^{\sqrt{-\lambda} L}-e^{-\sqrt{-\lambda} L}\right)=0 \Rightarrow c_{2}=0$ and thus $c_{1}=0$ from ($*$). Thus, $y=0$ for the cases $\lambda=0$ and $\lambda<0$.
(b) $y^{\prime \prime}+\lambda y=0$ has an auxiliary equation $r^{2}+\lambda=0 \Rightarrow r= \pm i \sqrt{\lambda} \Rightarrow y=c_{1} \cos \sqrt{\lambda} x+c_{2} \sin \sqrt{\lambda} x$ where $y(0)=0$ and $y(L)=0$. Thus, $0=y(0)=c_{1}$ and $0=y(L)=c_{2} \sin \sqrt{\lambda} L$ since $c_{1}=0$. Since we cannot have a trivial solution, $c_{2} \neq 0$ and thus $\sin \sqrt{\lambda} L=0 \Rightarrow \sqrt{\lambda} L=n \pi$ where n is an integer $\Rightarrow \quad \lambda=n^{2} \pi^{2} / L^{2}$ and $y=c_{2} \sin (n \pi x / L)$ where n is an integer.

