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Abstract. We use the jump problem technique developed in a
recent paper [GKN17] to compute the variational formula of any
stable differential and its periods to arbitrary precision in plumb-
ing coordinates. In particular, we give the explicit variational for-
mula for the degeneration of the period matrix, easily reproving
the results of Yamada [Yam80] for nodal curves with one node and
extending them to an arbitrary stable curve. Concrete examples
are included.

We also apply the same technique to give an alternative proof of
the sufficiency part of the theorem in [BCGGM16] on the closures
of strata of differentials with prescribed multiplicities of zeroes and
poles.

1. Introduction

We work over the field of complex numbers C. LetMg be the mod-
uli space of curves, and Mg be its Deligne-Mumford compactification.
Given a stable nodal curve C with n nodes, the standard plumbing
construction cuts out neighborhoods of size

√
|se| on the normaliza-

tion of C at the two pre-images qe and q−e of each node q|e| of C, and
identifies their boundaries (called seams, denoted by γ±e) via a gluing
map Ie sending ze to z−e := se/z

−1
e , where |se| � 1 is called the plumb-

ing parameter and ze and z−e are chosen local coordinates near qe and
q−e respectively. The irreducible components of the nodal curve C are
denoted Cv.

The plumbing construction thus constructs a family of curves C → ∆
with the central fiber identified with C, where ∆ is the small polydisc
neighborhood of 0 ∈ Cn with coordinates given by the plumbing param-
eters s := (s1, . . . , sn). Depending on circumstances s are also called
the plumbing coordinates, as they give versal deformation coordinates
onMg to the boundary stratum containing the point C. The Riemann
surface resulting from plumbing with parameters s is denoted Cs.

1.1. Motivations. We are interested in studying the degeneration of
the periods of an abelian differential in plumbing coordinates, which
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can be seen as a direct application of the study of the behavior of
degenerating families of abelian differentials in plumbing coordinates.
Our interest in the degeneration of the periods is motivated by two
sources: the degeneration of period matrices near the boundary of the
Schottky locus in Ag; and the degeneration of the period coordinates
(both absolute and relative periods) of strata in the Hodge bundle
(also known as the moduli spaces of abelian differentials with fixed
multiplicities at marked points). In this paper we will only study the
degeneration of period matrices. Application to period coordinates
near the boundary of the strata will be treated elsewhere.

1.2. Results and structure of the paper. In this paper we give a
complete answer to the question stated above. In order to state our
results, we introduce some more notation.

The Hodge bundle ΩMg is a rank g vector bundle over Mg. A
point in the Hodge bundle corresponds to a pair (C,Ω) where Ω is an
abelian differential on C. One can extend the Hodge bundle overMg.
The fiber of the extension ΩMg over a nodal curve C in the boundary
of Mg parametrizes stable differentials, i.e. meromorphic differentials
that have at worst simple poles at the nodes with opposite residues.

The goal in our paper is to compute the variational formula for any
stable differential and its period over any 1-cycle on C in plumbing
coordinates. The term “variational formula” in our paper means an ex-
pansion in terms of both se and ln |se|. Note that a variational formula
in this sense is not synonymous to a power series expansion in plumbing
coordinates s. We will use specifically the term “s-expansion” when we
mean the latter, where no logarithmic terms are involved. Moreover,
throughout the paper objects subscripted by “e” are indexed by the
set of edges of the dual graph of the stable curve C, and those by “v”
are indexed by the set of vertices of the dual graph.

The technique we use to construct the degenerating family of abelian
differentials Ωs along the plumbing family Cs is called (solving) the
jump problem, which will be properly defined in section 2. The main
idea is that given a stable differential Ω on C, we have the mis-matches
{Ω|γe − I∗e (Ω|γ−e)} (which we call the jumps of Ω) on the seams γ±e at
opposite sides of each node q|e|. The solution to the jump problem is a
“correction” differential η that matches the jumps of Ω with opposite
sign. By adding η to Ω on each irreducible component, one obtains new
differentials with zero jumps, which can thus be glued to get a global
holomorphic differential Ωs on Cs.

The jump problem is a special version of the classical Dirichlet prob-
lem. It was developed and used in the real-analytic setting in a recent
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paper by Grushevsky, Krichever and the second author [GKN17]. In
the classical approach, the Cauchy kernel on the plumbed surface is
used, while in [GKN17] the fixed Cauchy kernels on the irreducible
components of the nodal curve are used, which is crucial to obtain an
L2-bound of the solution to the jump problem in plumbing parameters.

Our construction of the solution to the jump problem largely follows
the method in that paper. Instead of the real normalization condition
used in [GKN17], we normalized the solution by requiring that it has
vanishing A-periods, where A is a set of generators of a chosen La-
grangian subgroup of H1(Cs,Z) containing the classes of the seams.
This normalization condition allows us to work in the holomorphic set-
ting (as opposed to the real-analytic setting in [GKN17]) where we can
use Cauchy’s integral formula. As a consequence, the construction of
the solution is simpler.

In section 3 of our paper, the solution η to the jump problem is
constructed explicitly as an iterated series (see (3.3) (3.9)). We show
that such a solution depends analytically on the plumbing parameters
and moreover, we bound the L2-norm of η by a power of the L∞-norm
of s. For convenience we denote hol(Ω) the regular part in the Laurent

expansion of the function Ω(ze)
dze

given in the local coordinate ze that was
used to define plumbing near the node qe.

Theorem 1.1. (=Theorem 3.3) Let (C,Ω) ∈ ∂ΩMg be a stable differ-
ential. For each v, let Ωv be the restriction of Ω on Cv. There exists
a unique solution {ηv = ηv,s} with vanishing A-periods to the jump
problem for Ω, such that for any |s| small enough and all |se| > 0,
{Ωv,s := Ωv + ηv} defines a holomorphic differential Ωs on Cs satis-
fying Ωv = lims→0 Ωs|Cv uniformly on compact sets of Cv \ ∪e∈Evqe.

Furthermore, we have ||ηv,s||L2 = O(
√
|s|).

The solution to the jump problem ηv is constructed explicitly in (3.3)
and (3.9). In order to highlight the series construction, we compute the

leading term of the s-expansion for η
(k)
v , which in particular gives the

linear term of the s-expansion for Ωs. Let lkv = (e1, . . . , ek) be a path
of length k starting at a given vertex v = v(e1) in the dual graph ΓC .
Let ωv(z, w) be the fundamental normalized bidifferential (see section
3.1 for details) on Cv and βe,e′ := hol(ωv)(qe, qe′). The s-expansion of

η
(k)
v is given as follows (Proposition 3.4):

η(k)
v (z) = (−1)k

∑
lkv

k∏
i=1

sei ·ωv(z, qe1)
k−1∏
j=1

β−ej ,ej+1
hol(Ω)(q−ek)+O(|s|k+1),
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where z ∈ Cs, and the sum is over the set of paths of length k in
the dual graph starting at vertex v. One can compare this formula
with [Wol15, Proposition 7], where a complete expansion is given in
Schiffer coordinates. We also want to point out that one can in principle

compute for any k the explicit s-expansion of η
(k)
v (and hence for Ωs)

via our method.
We are grateful to Scott Wolpert for the following remark: the con-

struction provides a local frame for the sheaf of abelian differentials
near a nodal curve. This implies that the push forward of the relative
dualizing sheaf is locally free of the expected rank. The locally-freeness
of the first and second powers was first shown in [Ma76] and then in
[HK13]. Our method can be further generalized to give a local frame
of k-differential for any positive k near a boundary point in the moduli
space, which will not be treated in this paper.

In section 4, we compute the leading terms in the variational formula
for the period of Ωs over any smooth cycle in Cs. Let the residue of
Ω at qe be denoted re, so that re = −r−e. Let α be any oriented
loop in C not contained completely in any irreducible component Cvi .
Let {q|e0|, . . . , q|eN−1|} be the ordered collection of nodes that α passes
through (with possible repetition), so that q−ei−1

and qei lie on the
same component Cvi , and let q|eN | = q|e0|. Let αs be a perturbation
of α such that its restrictions on each Cv minus the caps at each node
glue correctly to give a loop on Cs.

Theorem 1.2. (=Theorem 4.1) The variational formula of the period
of Ωs over αs is given by:

ˆ
αs

Ωs =
N∑
i=1

(rei ln |sei |+ ci + li) +O(|s|2),

where ci and li are the constant and linear terms in s respectively,
explicitly given as

ci = lim
s→0

(ˆ z−1
ei

(
√
|sei |)

z−1
−ei−1

(
√
|sei−1 |)

Ωvi −
1

2
(rei−1

ln |sei−1
|+ rei ln |sei |)

)
,

li := −
∑
e∈Evi

se hol(Ω)(q−e) · σe,
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where Evi denotes the set of nodes on the component Cvi, and

σe :=



lims→0

(
z−1
ei

(sei )´
q−ei−1

ωv(ei)(zei , qei) + 1
sei

)
if e = ei;

lims→0

 qei´
z−1
−ei−1

(sei )

ωv(ei)(z−ei−1
, q−ei−1

)− 1
sei

 if e = −ei−1;

´ qei
q−ei−1

ωv(ei)(z, qe) otherwise.

This theorem in particular shows that
´
αs

Ωs −
∑N

i=1 rei ln |sei | is

a holomorphic function in s. Using the theorem we can compute
the variational formula for the degeneration of the period matrices
near an arbitrary stable curve. We choose a suitable symplectic basis
{Ak,s, Bk,s}gk=1 of H1(Cs,Z) such that the first m A-cycle classes gen-
erates the span of the homology classes of the seams. We take a nor-
malized basis {v1, . . . , vg} of H1(C,KC), such that after applying the
jump problem construction, the resulting set of differentials {vk,s}gk=1

is a normalized basis of H1(Cs, KCs) (see section 2 and 4 for a proper
definition). By taking Ω = vk and αs = Bh,s, the following corollary
gives the leading terms in the variational formula of the period matrix.

Corollary 1.3. (=Corollary 4.6) For any e and k, denote N|e|,k :=
γ|e|×Bk,s the intersection product. For any fixed h, k, the expansion of
τh,k(s) =

´
Bh,s

vk,s is given by

τh,k(s) =
∑
e∈EC

N|e|,h ·N|e|,k
2

· ln |se|

+ lim
s→0

N∑
i=1

(ˆ z−1
ei

(
√
|sei |)

z−1
−ei−1

(
√
|sei−1 |)

vk −N|ei|,hN|ei|,k ln |sei |

)
−
∑
e∈EC

se (hol(vk)(qe) hol(vh)(q−e)) +O(|s|2),

where EC is the set of oriented edges of the dual graph of C, {q|ei|}N−1
i=0

is the set of nodes Bh passes through. Furthermore, under our choice
of symplectic basis, N|e|,h ·N|e|,k is equal to 1 if h = k and the node q|e|
lies on Bh and equals 0 otherwise.

In the paper [Tan91] Taniguchi computed the logarithmic term∑
e∈EC

N|e|,hN|e|,k
2

ln |se|
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in the variational formula of τh,k(s). In addition to his result, we get
the constant and the linear term as above, and in principle one can
also expand the error term to any order. The variational formula of
the period matrix is useful in various places. For instance it is used
by the first author in [Hu] to compute the degeneration of the theta
constants near the boundary of A3, the (compactified) moduli space
of p.p.a.v of dimension three, and furthermore via a modular form
method to compute the boundary behavior of the strata H(4) of the
Hodge bundle where the abelian differentials have a quadruple zero.

When restricted to the case where C has only one node, Theorem
1.1 and Corollary 1.3 imply the results in [Yam80]. The computation
reproving [Yam80] is done in section 5. In order to demonstrate the
greater applicability of our method compared to [Yam80], in section 5
we study two other examples which, to the knowledge of the authors,
have not been treated in the literature previously. The first one is the
so-called banana curve, i.e. curves with two irreducible components
meeting at two nodes. The second example is the totally degenerate
curve, namely a P1 with 2g marked points glued in pairs. The last
example appears to be important in the study of Teichmüller curves.

All of the above are only applicable to the case where Ω is a stable
differential. In section 6 we apply the jump problem technique to give
a new method to smoothen a differential with higher order zeroes and
poles at the nodes. The existing terminology of such a smoothing pro-
cedure is “higher order plumbing”, as opposed to standard plumbing.
The higher order plumbing is a crucial ingredient used by Bainbridge,
Chen, Gendron, Grushevsky and Möller in the paper [BCGGM16] to
construct the incidence variety compactification (IVC) of strata of dif-
ferentials with prescribed zeroes and poles. In that paper, they prove
that the necessary and sufficient conditions for a stable differentials
(C,Ω) to lie in the boundary of the IVC is the existence of a twisted
differential Ξ and a level function l on the vertices of the dual graph
of C, with certain compatibility conditions. The obviously harder di-
rection is the sufficiency of the conditions, which essentially requires
a construction of a degenerating family of abelian differentials in the
strata to the limit differential (C,Ω) with the compatible data (Ξ, l).
In [BCGGM16], the authors give two such constructions by using a
plumbing argument and a flat geometry argument respectively. Both
arguments only give rise to one-parameter degenerating families.

In section 6, we briefly revisit their main results, and construct via
the jump problem approach a degenerating family that is different from
the two mentioned above (Theorem 6.4). The number of parameters
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in our degenerating family is equal to the number of levels in the level
graph ΓC minus 1. In particular, we reprove the sufficiency of the
conditions for a stable differential to lie in the boundary of the IVC.

1.3. Prior work. The history of studying the degeneration of period
matrices using plumbing coordinates traces back to Fay [Fay73] and
Yamada [Yam80]. They only study the case n = 1, i.e. when C has
only one node. In this case the authors give complete power series
expansion in s (the plumbing parameter at the only node) of abelian
differentials and describe the degeneration of period matrices by a vari-
ational formula in terms of s and ln s.

For the case where the stable curve C has multiple nodes, Taniguchi
[Tan91] discusses the degeneration of the period matrix and computes
the logarithmic term in the variational formula. However, the complete
variational formula of neither the abelian differentials nor the period
matrix is derived in his papers. A recent paper of Wolpert [Wol15]
gives a complete expansion of abelian differentials and the second order
expansion for the period matrix in terms of Schiffer deformations which
are deformation of smooth Riemann surfaces. In [LZR13], Liu, Zhao,
and Rao study holomorphic one-forms and the period matrix under
small deformations of a smooth Riemann surfaces to give a complete
variational formula using the Kuranishi coordinates on the Teichmüller
space.

2. Smoothing Riemann Surfaces

Let C be a stable nodal curve over the complex numbers. In this
section we recall the plumbing construction and fix the notation.

Definition 2.1. (Dual graph) The dual graph ΓC of a stable curve C
is a graph where each unoriented edge corresponds to a node of C,
and each vertex v corresponds to the normalization of an irreducible
component Cv of C. The edge connecting vertices corresponds to the
node between components.

For future convenience we write EC for the set of oriented edges e of
ΓC . We will use −e to denote the same edge as e but with the opposite
orientation, and |e| = |−e| the corresponding unoriented edge. Namely,
q±e are the pre-images of the node q|e| in the normalization of C. We
write v(e) to denote the source of the oriented edge e, and write Ev
for the set of edges e such that v = v(e), i.e. edges pointing out of the
vertex v. We denote |E|C = {|e|}e∈EC

the set of unoriented edges. The
cardinality of |E|C is half of the cardinality of EC .
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2.1. Plumbing construction. We now recall the local smoothing
procedure of a nodal curve C via plumbing. There are many equiv-
alent versions of the local plumbing procedure, we follow the one used
in [Yam80], [Wol13] and [GKN17].

Definition 2.2. (Standard plumbing) Let qe, q−e be the two preimages
of the node q|e| in the normalization of C. Let z±e be fixed chosen local
coordinates near q±e. Take a sufficiently small se = s−e ∈ C, we denote
U±e = U se

±e := {|z±e| <
√
|se|} ⊂ C, and denote γ±e := ∂U±e, which we

call the seams. We orient each seam γe counter-clockwise with respect
to Ue. The standard plumbing Cse of C is

Cse := [C\Ue t U−e]/(γe ∼ γ−e),

where γe ∼ γ−e is identified via the diffeomorphism Ie : γe → γ−e send-
ing ze to z−e = se/ze. We call the identified seam γ|e|. The holomorphic

structure of Cse is inherited from C\U e t U−e.
Notation 2.3. (1) Since se = s−e, we can use the notation s|e|

and denote s := {s|e|}|E|C . In later parts of the paper we will
continue to use se (instead of s|e|) for simplicity.

(2) We write Cs for the global smoothing of C by plumbing every
node q|e| with plumbing parameter se, so that C = C0. Let

Ĉv := Cv\ te∈Ev Ue, then Ĉv has boundaries γ := {γe}e∈Ev .

We use C̃v to denote the interior of Ĉv, and Ĉs to denote the

disjoint union of Ĉv for all v. We have Cs = Ĉs/{γe ∼ γ−e}|E|C .
(3) Throughout this paper, in a specified component Cv, the sub-

scripted ze is used to denote the chosen local coordinate near
the node qe for every e ∈ Ev for the standard plumbing. The
non-subscripted notation z is used to denote an arbitary local

coordinate of any point in C̃v.
(4) For future convenience, we denote |s| := max|e|∈|E|C |se|.

Remark 2.4. Let u = (u1, . . . , uk) be some coordinates along the
boundary stratum ofMg that C lies in. One can think of the boundary
stratum as a Cartesian product of moduli of curves with marked points,
and u is the combination of some coordinates chosen on each moduli
spaces. It is a standard result in Teichmüller theory (see [IT], and
[HK13]) that the set of plumbing parameters s together with u give
local coordinates on Mg near C. We denote Cu,s a nearby curve of
C, then C = Cu0,0 for some u0. Our results depend smoothly on
u throughout the paper, and all the bounds we derive in this paper
hold for u varying in a small neighborhood of u0, therefore we fix the
coordinate u0 for C and consistently write Cs = Cu0,s.
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2.2. Conditions on residues. Our goal is to express the variational
formulas for abelian differentials with at worst simple poles on C in
plumbing coordinates. Take a stable differential Ω on the stable curve C
in the boundary of the Deligne-Mumford compactificationMg. Denote
Ωv to be the restriction of Ω to the irreducible component Cv. We
require Ωv to be a meromorphic differential whose only singularities
are simple poles at the nodes of Cv. We denote the residue of Ωv at
qe to be re (possibly zero). We have re = −r−e for any e ∈ EC by the
definition of the extended Hodge bundle ΩMg (see for example, [HM]).

2.3. Jump problem. Given a stable differential Ω on the boundary
point C = C0, we want to construct a holomorphic differential Ωs on
the nearby curve Cs by an analytic procedure called solving the jump
problem.

Definition 2.5. (Jump problem) The initial data of the jump problem
is a collection φ of complex-valued continuous 1-forms {φe} supported

on the seams γ of Ĉs, satisfying the conditions

(2.1) φe = −I∗e (φ−e),

ˆ
γe

φe = 0, ∀e ∈ EC .

We call the set {φe}e∈EC
jumps. A solution to the jump problem is a

holomorphic differential ηs on Ĉs such that it is holomorphic on C̃s and
continuous on the boundaries γ, satisfying the condition

ηs|γe − I∗e (ηs|γ−e) = −φe ∀e ∈ EC .

Note that by letting {φe}EC
be the mis-matches {Ωv(e)|γe−I∗e (Ωv(−e)|γ−e)}EC

of Ω, one can check that they satisfy (2.1). Therefore (Ω +ηs)|Cv(e)
and

(Ω+ηs)|Cv(−e)
have no jump along γe at every node e, where ηs is the so-

lution to the jump problem with jumps the mis-matches of Ω. We can
thus glue them along each seam to obtain a required global differential
Ωs on Cs.

Notation 2.6. For simplicity, we drop the subscript s in ηs through-
out the paper. But it is important to bear in mind that the solution
depends on s as the size of the seams varies with s.

2.4. A-normalization. Note that the solution to the jump problem
is never unique: adding any differential on Cs gives another solution.
We need to impose a normalizing condition to ensure the uniqueness
of the solution.

On each irreducible component Cv of the nodal curve C we choose
and fix a Lagrangian subspace of H1(Cv,Z), and we also choose and
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fix a basis of the subspace. In definition 2.2, the plumbed surface Ĉs
is seen to be a subset of C. Since the seams (as boundaries of Ĉs)
are contractible on each Cv (without boundaries), we know that the
classes of the seams {[γ|e|]}|E|C together with the union of the basis of
the Lagrangian subspaces on the irreducible components span a La-
grangian subspace of H1(Cs,Z). We can fix this Lagrangian subspace
of H1(Cs,Z) along the plumbing family {Cs}. If some γ|e| is homol-
ogous to zero on Cs, as se approaches 0 the Lagrangian subspace of
H1(Cs,Z) is invariant; if the class of γ|e| is non-zero, then the rank of
the Lagrangian subspace drops by 1 as the corresponding element in
the basis goes to zero.

We denote this choice of basis as {A1,s, . . . , Ag,s} where the first
m cycles A1,s, . . . , Am,s generate the subspace spanned by the seams
{[γ|e|]}|E|C . This choice of indexing will be used later in the computa-
tion of the period matrices in Section 4.2.

Definition 2.7. A solution to the jump problem is A-normalized if it
has vanishing periods over A1,s, . . . , Ag,s.

Note that this definition only depends on the choice of Lagrangian
subspace of H1(Cs,Z). In particular by our choice of Lagrangian sub-
space, an A-normalized solution η must have vanishing periods over
the seams:

´
γ|e|

η = 0.

It is a standard fact (see for example [GH]) that any holomorphic A-
normalized differential is identically zero on a compact Riemann surface

without boundaries. Given two A-normalized solutions η and η′ on Ĉs
which are both holomorphic by definition, the differential η − η′ has
zero jumps on the seams and thus defines a global holomorphic A-
normalized differential on Cs, which is therefore identically zero. This
shows the uniqueness of an A-normalized solution.

3. Variational formulas for stable differentials

In this section we construct the degenerating family Ωs in a plumbing
family Cs, and give the variational formula for Ωs in terms of s. As
introduced in section 1.2, we plan to construct the solution to the
jump problem that matches the jumps of Ω0 = Ω. In the classical
construction, such differentials are obtained by integrating the jumps
against the Cauchy kernel (see the following section) on the whole Cs.
In this approach the Cauchy kernel depends on s, and this dependence
is implicit and hard to determine.

Alternatively, following [GKN17], we fix the Cauchy kernels on each
irreducible components of the normalization of the limit stable curve C.
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On each component Cv we integrate the jumps {Ωv(e)|γe−I∗e (Ωv(−e)|γ−e)}e∈Ev

against the Cauchy kernel. In this way we obtain a differential in the
classical sense on each component Cv which has jumps across the seams.

We then restrict it to Ĉv, the component minus the “caps”. In this way
the original jumps are compensated by the newly-constructed differen-
tials, but these differentials in turn produce new jumps. However, since
the L∞-norms of the newly-constructed differentials along the seams
γ|e| in local coordinates ze are controlled in an explicit way by s, the
new jumps are also controlled by s. By iterating the process one obtain
a sequence of differentials, each term controlled by a higher power of s.
This sequence converges to the desired solution to the jump problem.

3.1. The Cauchy kernels. The construction of the A-normalized so-
lution to the jump problem is parallel to the construction of the almost
real-normalized solution in [GKN17], which uses a different normaliz-
ing condition, and the solution differential obtained there allows one to
control the reality of periods.

Given a smooth Riemann surface C ′, the Cauchy kernel is the unique
object on C ′ × C ′, satisfying the following properties:

(1) It is a meromorphic differential of the second kind in p whose
only simple poles are at p = q and p = q0 with residue ± 1

2πi
;

(2) It is an A-normalized differential in p:
´
p∈Ai

KC′(p, q) = 0, for

i = 1, . . . , g and ∀q ∈ C ′.
The Cauchy kernel can be viewed as a multi-valued meromorphic

function in q whose only simple pole is at p = q. Let {Ai, Bi} be a
symplectic basis of H1(C ′,Z), and let {vi} to be the basis of holomor-
phic 1-form dual to the A-cycles. The multi-valuedness is precisely as
follows (where q+γ denotes the value of the kernel at q upon extension
around the loop γ):

K(p, q + Ai) = K(p, q); K(p, q +Bi) = K(p, q) + vi(p).

Note that the Cauchy kernel is a section of a line bundle on C ′ ×C ′
satisfying the first two normalization conditions above, and therefore
it can be written in terms of theta functions and the Abel-Jacobi map
(for a reference of the theta function see [Gun76]). We also remark that
KC′ depends on the choice of the Lagrangian subspace spanned by the
A cycles. For completeness below we include the explicit expression for
the Cauchy kernel in terms of theta functions:

KC′(p, q) :=
1

2πi

∂

∂p
ln
θ(A(p)− A(q)− Z)

θ(A(p)− Z)
,
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where θ denotes the theta function on the Jacobian of C ′, Z denotes
a general point of the Jacobian, and A denotes the Abel-Jacobi map
with some base point q0 ∈ Z. The expression does not depend on the
choice of Z.

We call ωC′(p, q) := 2πidqKC′(p, q) the fundamental normalized bidif-
ferential of the second kind on C ′ (also known as the Bergman kernel).
Note that the term “normalized” here means A-normalization. Namely,ˆ

p∈Ai

ωC′(p, q) = 0, i = 1, . . . , g.

The fundamental normalized bidifferential has its only pole of second
order at p = q. It is uniquely determined by its normalization along
A-cycles, symmetry in the entries, and the bi-residue coefficient along
p = q. See notes [Ber06, Ch. 6] for a review of the Cauchy kernel and
fundamental bidifferential.

When C is a nodal curve with irreducible components Cv, we denote
by Kv (resp. ωv) the Cauchy kernel (resp. bidifferential) on each Cv.
Recall that ze (or we, when we need to distinguish between two distinct
points in the same neighborhood) denotes the local coordinates in some
neighborhood Ve of qe that contains U e. We define a local holomorphic
differential Kv ∈ Ω1,0(te∈EvVe × te∈EvVe), by taking the regular part
of Kv:

Kv(ze, we′) :=

{
Kv(ze, we′) if e 6= e′,

Kv(ze, we)− dze
2πi(ze−we)

if e = e′.

Define ωv(ze, we′) = 2πidwe′
Kv(ze, we′), then similarly we have

ωv(ze, we′) =

{
ωv(ze, we′) if e 6= e′,

ωv(ze, we)− dzedwe

(ze−we)2
if e = e′.

For future convenience we fix the notation for the coefficients in the
expansion of ωv(ze, we′):

(3.1) ωv(ze, we′) =: dwe′dze

(
βve,e′ +

∑
i,j≥0,i+j>0

βvi,jz
i
ew

j
e′

)
.

Clearly we have βve,e′ = ωv(qe, qe′). When the context is clear, we drop
the superscript v and write simply βe,e′ instead.

3.2. Approach to solving the jump problem. In this section we
approach the jump problem directly in order to clarify the appearance
of a series expression for local differentials (3.3) below.
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We first look at the simplest example: g = 0. On P1 the Cauchy
kernel is simply K(z, w) = dz

w−z . Let γ be a Jordan curve bounding

a region R on P1. Cauchy’s integral formula implies that integrating
K(z, w) against a differential f(w)dw holomorphic inside the region R
along γ (negatively oriented with respect to R) vanishes when z is in
the exterior of R; it is equal to f(z)dz when z ∈ R. In other words
integrating f(w)dw against the Cauchy kernel defines a differential on
P1 \ γ whose jump along γ is precise f(z)dz.

When replicating this idea on Riemann surfaces of higher genus,
integrating a differential which is holomorphic inside a contractible
loop γ against the Cauchy kernel produces a holomorphic differential on
that Riemann surface whose jump across γ is given by the differential.
Below z+ is an point outside γ and z− is inside γ:

lim
z+→z′∈γ

ˆ
γ

K(z, w)f(w)dw − lim
z−→z′∈γ

ˆ
γ

K(z, w)f(w)dw = f(z)dz.

This follows directly from Cauchy’s integral formula. In [GKN17], or
in general when integrating against a jump which is not meromorphic,
obtaining a result such as above would require the Sokhotski-Plemelj
formula (for reference see [Ro88]).

We would like to explicitly analyze the dependence of the solution
to the jump problem on the plumbing parameters. Solving the jump
problem on Cs by integrating against the Cauchy kernel on Cs, as
described above is classical [Ro88], but it does not allow one to study
the dependence on plumbing parameters. Therefore the approach we
take, which was introduced in [GKN17], is integration against fixed
Cauchy kernels defined individually on each irreducible component of
the nodal curve, which are thus independent of s. The result will give
an explicit expansion of the solution in s, and constructing this solution
is more involved.

The procedure of the construction of the solution is clarified below.
Step 1. We denote the holomorphic part of the differential Ωv(e)(ze)

as ξ
(0)
e (ze) := Ωv(ze)− redze

ze
. It follows from the residue condition that

the singular parts of the differentials on the opposite sides of the node
cancel. Thus the jumps can be written as follows:

{Ωv(e)|γe − I∗e (Ωv(−e)|γ−e)}e∈Ev = {ξ(0)
e |γe − I∗e (ξ

(0)
−e |γ−e)}e∈Ev .



14 XUNTAO HU AND CHAYA NORTON

Step 2. We integrate the jumps against the Cauchy kernel. This
integration defines a differential on the open Riemann surface C̃v,

η(1)
v (z) :=

∑
e∈Ev

ˆ
ze∈γe

Kv(z, ze)(ξ
(0)
e |γe − I∗e ξ

(0)
−e |γ−e)(ze)

=
∑
e∈Ev

ˆ
ze∈γe

Kv(z, ze)I
∗
e ξ

(0)
−e |γ−e(ze)

where the equality follows from Cauchy’s integral formula. We also

extend η
(1)
v (z) continuously to the boundary of the plumbing neighbor-

hood.
We have an important remark here: The differential η

(1)
v (z) can be

seen as our first attempt at solving the jump problem, but it does not
give the solution of the desired jump problem. There is a new jump

between Ωv(e) + η
(1)
v(e) and Ωv(−e) + η

(1)
v(−e) on each node. The “error”

comes from the holomorphic part of the Cauchy kernel.
Step 3. We look at this “error” explicitly. Locally near the seam

γe0 , the differential η
(1)
v (ze0) for

√
|se0| < |ze0 | < 1 has the following

expression:∑
e∈Ev

ˆ
ze∈γe

Kv(ze0 , ze)I
∗
e ξ

(0)
−e (ze) =

∑
e∈Ev

ˆ
ze∈γe

Kv(ze0 , ze)I
∗
e ξ

(0)
−e (ze)+

1

2πi

ˆ
we0∈γe0

dze0
ze0 − we0

I∗e0ξ
(0)
−e0(we0).

Where we recall that Kv is the holomorphic part of Kv, and the last
part involves the integral of the singular part of the Cauchy kernel. The
last integral can be evaluated by Cauchy’s integral formula by noting
that |sez−1

e | <
√
se where we point out that I∗ is orientation reversing,

(3.2)

1

2πi
dze

ˆ
we∈γe

I∗e ξ
(0)
−e (we)

ze − we
= − 1

2πi

dze
ze

ˆ
w−e∈γ−e

w−eξ
(0)
−e (w−e)

w−e − sez−1
e

= −se
dze
z2
e

ξ̃
(0)
−e (

se
ze

) = I∗ξ
(0)
−e (ze) .

Therefore we have the following:

{η(1)
v(e)|γe − I

∗
e η

(1)
v(−e)|γ−e}e∈Ev =− {Ωv(e)|γe − I∗eΩv(−e)|γ−e}e∈Ev

+
( ∑
e′∈Ev

ˆ
ze′∈γe′

Kv(e)(ze, ze′)I
∗
e′ξ

(0)
−e′(ze′)

− I∗
∑

e′∈Ev(−e)

ˆ
ze′∈γe′

Kv(−e)(z−e, ze′)I
∗
e′ξ

(0)
−e′(ze′)

)
e∈Ev

.
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Thus we see that η
(1)
v (z) has the desired jump plus the jump of (local)

holomorphic differentials
∑

e′∈Ev

´
ze′∈γe′

Kv(ze, ze′)I
∗
e′ξ

(0)
−e′(ze′), which is

exactly the “error”.
Step 4. We give an estimate on the size of the “error”. We show

in Lemma 3.2 below that the L∞-norm of the “error” is controlled by
the L∞-norm of the plumbing parameters |s|. We therefore apply the
jump problem again to further reduce the gap. Finally, our approach to
solving the jump problem is by integrating against a series constructed
from the recursively appearing jump problems. We prove (in Lemma
3.2) that the “errors” produced in the k-th step of the recursion is con-
trolled by the k-th power of |s|, and we use this to show the convergence
of the desired solution of the jump problem.

In the following section we first define the “errors” ξ
(k)
e (ze) in each

step, and then we prove Lemma 3.2 which bounds each by a power of
the plumbing parameters, thus the series defined by adding the “errors”
converges. And at last we prove that the solution to the jump problem,
denoted ηv, is the result of integrating this series against the Cauchy
kernel on each irreducible component.

3.3. Construction of the A-normalized solution to the jump
problem. We construct the A-normalized solution to the jump prob-
lem as suggested by the computation above, namely we define local
holomorphic differentials, which can be understood as the recursively
appearing jumps, and show the series converges. The resulting local
differentials are such that when integrated against the Cauchy kernel
on each irreducible component of the nodal curve, the jump is given
by the first term in the series.

Let Ω be a stable differential on the stable curve C. We can define re-
cursively the following collection of holomorphic differentials described
locally in the neighborhood of each node :

k = 0 : ξ(0)
e (ze) := Ωv(ze)−

redze
ze

;

k > 0 : ξ(k)
e (ze) :=

∑
e′∈Ev

ˆ
we′∈γe′

Kv(ze, we′) · I∗e′ξ
(k−1)
−e′ (we′).

(3.3)

Note ξ
(k)
e for k > 0 depend on s as γe and I∗ depend on s. We

suppress this in the notation.
Let ΓC be the dual graph of C. Let lk := (e1 . . . , ek) be an oriented

path of length k in the dual graph, starting from the vertex v = v(e1).
We denote Lkv the collection of all such paths starting from the vertex
v. We remark that given the Cauchy kernels on each component, the
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differential ξ
(k)
e1 (ze1) is determined by the collection of local differentials

{ξ(0)
−ek(w−ek)}Lk

v
where ek is the ending edge of lk ∈ Lkv .

We define ξe(ze) :=
∑∞

k=0 ξ
(k)
e (ze). Since Kv(ze, we′) is holomorphic

in the first variable, we have
´
γe
ξ

(k)
e = 0 for any e and k, therefore

(3.4)

ˆ
γe

ξe = 0, ∀e ∈ EC .

The convergence of this series is ensured by the following lemma, whose
proof follows very much along the lines of [GKN17]. We include the
proof here for completeness. The essential ingredient of the proof is
the fact that our Cauchy kernels and the bidifferentials are defined on
the irreducible components, thus they are independent of the plumbing
parameters s.

Notation 3.1. (1) Throughout the paper we use the tilde notation
to denote the function corresponding to a given differential in a

given local coordinate chart, for instance K(z, w) =: K̃(z, w)dz,

ω(z, w) =: ω̃(z, w)dzdw, and also ξ
(k)
e (ze) := ξ̃

(k)
e (ze)dze.

(2) To simplify notation, we denote

(3.5) ξ̃e := ξ̃(0)
e (qe)

at every node qe.
(3) When the function ω̃v(z, w) of the bidifferential ωv(z, w) is eval-

uated in the second variable at any node qe, by an abuse of

notation, we write ωv(z, qe) = ω̃v(z, qe)dz for z ∈ C̃v.
(4) Recall that |s| := maxe∈EC

|se|. For future convenience, for
any collection of holomorphic functions on the unit disks neigh-
borhood at each node f := {fe ∈ O(Ve)}e∈EC

, we define the
following L∞-norms:

|fe|s := sup
ze∈γe

|fe(ze)|; |f |s := max
e∈EC

|fe|s.

Moreover by the Schwarz lemma on Ue = {|ze| <
√
|se|} we have

that |f |s ≤ |f |1
√
|s|ord f

, where ord f := mine∈EC
ordqe fe.

Lemma 3.2. For sufficiently small s, there exists a constant M1 inde-
pendent of s, such that the following estimate holds:

(3.6) |ξ̃(k)|s ≤ (|s|M1)k|ξ̃(0)|s.

In particular, the local differential ξe(ze) is a well-defined holomorphic
differential at each node e ∈ EC.
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Proof. For all v and all e, e′ ∈ Ev, the Cauchy kernel K̃v(ze, we′) is
analytic in both variables and independent of s. Thus there exists a
uniform constant M2 (independent of s) such that for any ze ∈ Ve,

|K̃v(ze, we′)− K̃v(ze, 0)| < M2|we′ |.

This in turn implies

(3.7) max
we′∈γe′

∣∣∣∣∣K̃(ze, we′)− K̃(ze, 0)

w2
e′

∣∣∣∣∣ < M2√
|se′ |

.

By (3.4), we have∣∣∣∣∣
ˆ
we′∈γe′

K̃v(ze, we′)I
∗
e′ξ

(k−1)
−e′ (we′)

∣∣∣∣∣ =

∣∣∣∣∣
ˆ
we′∈γe′

[
K̃v(ze, we′)− K̃v(ze, 0)

]
I∗e′ξ

(k−1)
−e′ (we′)

∣∣∣∣∣
= |se′ |

ˆ
we′∈γe′

∣∣∣∣∣K̃(ze, we′)− K̃(ze, 0)

w2
e′

∣∣∣∣∣ ∣∣∣I∗e′ ξ̃(k−1)
−e′ (we′)

∣∣∣ dwe′ < |se′ |M2 · 2π|ξ̃(k−1)
−e′ |s

The second equality is the result of pulling back dw−e′ . Note that
the last inequality is due to the fact that for we′ ∈ γe′ , we have

|I∗e′ ξ̃
(k−1)
−e′ (we′)| = |ξ̃(k−1)

−e′ (
se′
we′

)| ≤ |ξ̃(k−1)
−e′ |s, therefore the integration over

γe′ gives a
√
|se′| that cancels the one in (3.7). By definition of ξ̃

(k)
e ,

there exists a constant M1 independent of s and k such that,

|ξ̃(k)
e |s ≤ |s|M1 max

e′∈Ev(e)

|ξ̃(k−1)
−e′ |s < |s|M1|ξ̃

(k−1)|s.

Note that the RHS is independent of e and v, we can thus pass to the

maximum over e ∈ EC of the LHS and obtain |ξ̃(k)|s < |s|M1|ξ̃
(k−1)|s.

By induction, we have the desired estimate (3.6).

When |s| < 2M−1
1 , the geometric series |ξ̃|s :=

∑∞
k=0 |ξ̃

(k)|s converges

to a limit bounded by
(

1 + |s|M1

1−|s|M1

)
|ξ̃(0)|s < 2|ξ̃(0)|s < 2

√
|s|ord ξ̃

(0)

|ξ̃(0)|1.

We therefore conclude that the local differential ξe(ze) is analytic in
s. �

We now construct the solution to the jump problem with initial data

{Ωv(e)|γe − I∗e (Ωv(−e)|γ−e)}. We define the following differential on Ĉv:

(3.8) ηv(z) =
∑
e∈Ev

ˆ
ze∈γe

Kv(z, ze)I
∗
e ξ−e(ze).

where z ∈ C̃v. By extending continuously to the seams, the differential

ηv is defined on Ĉv.
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Recall ξe(ze) :=
∑∞

k=0 ξ
(k)
e (ze). For future use we denote,

(3.9) η(k)
v (z) :=

∑
e∈Ev

ˆ
ze∈γe

Kv(z, ze) · I∗e ξ
(k−1)
−e (ze).

In this notation we have ηv :=
∑∞

k=1 η
(k)
v .

We claim the differentials ηv(z) are single-valued. This follows from
noticing the multi-valuedness of K(z, ze) along Bi depends exclusively
on z, and thus any multi-valuedness is canceled after integration against
I∗e ξ−e by (3.4).ˆ
ze∈γe

Kv(z+Bi, ze))·I∗e ξ−e(ze)−
ˆ
ze∈γe

Kv(z, ze))·I∗e ξ−e(ze) = vi(z)

ˆ
ze∈γe

I∗e ξ−e(ze) = 0

Although the Cauchy kernelKv has a simple pole with residue (2πi)−1

at the base point q0, it follows from (3.4) that ηv(z) is holomorphic at q0

and hence defines a holomorphic differential on C̃v. Let γq0 be a small
loop around the point q0. Here we verify integrating ηv along γq0 is
zero. The paths γq0 does not intersect any γe, and we could exchange
the order of integration in z and ze. The integral of Kv(z, ze) along
z ∈ γq0 is (2πi)−1 for any q. Thus by (3.4) integrating the result times
I∗e ξ−e(ze) along γe is zero.

We recall that the L2-norm of a holomorphic differential ω on a
smooth Riemann surface C ′ is given by ||ω||L2 := i

2

´
C′
ω∧ω. Note that

both ξe(ze) and ηv(z) implicitly depend on s. The following theorem
establishes an L2 bound on ηv, and shows that it is the desired solution
to the jump problem.

Theorem 3.3. Let C be a stable nodal curve with irreducible compo-
nents Cv, Ω a stable differential on C. Let Ωv be the restriction of Ω
on Cv. For |s| small enough, {ηv} is the unique A-normalized solution
to the jump problem with jump data Ωv(e)|γe − I∗e (Ωv(−e)|γ−e). More-
over, there exists a constant M independent of v and s, such that the
following L2-bound of the solution holds:

(3.10) ||ηv||L2 <
√
|s|

1+ord ξ̃
(0)

M |ξ̃(0)|1.
Therefore {Ωv,s := Ωv + ηv} defines a holomorphic differential when all
|se| > 0, denoted Ωs on Cs, satisfying Ωv = lims→0 Ωs|Cv uniformly on
compact sets of Cv \ ∪e∈Evqe.

Proof. Step 1. We first show that the solutions ηv are A-normalized.
Recall that our choice of the maximal Lagrangian subspace ofH1(Cs,Z)
contains the subspace generated by the classes of the seams γ|e|. By
the fact that {Kv(z, ze)}v,e are A-normalized in the first variable, the
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integral
´
z∈Ai,s

η
(k)
v (z) is zero if the class [Ai,s] does not belong to the

span of the seams {[γ|e|]}.
In order to compute the integrals of η

(k)
v along the seams, we compute

the local expression for η
(k)
v in the neighborhood {|√se| < |ze| < 1}.

Note that the Cauchy kernel Kv(ze, we′) is holomorphic if e 6= e′, and
it has a singular part dz

2πi(ze−we)
when both variables are in the neigh-

borhood of the same nodes. Therefore we have

η(k)
v (ze) =

dze
2πi

ˆ
we∈γe

1

ze − we
I∗e ξ

(k−1)
−e (we) +

∑
e′∈Ev

ˆ
we′∈γe′

Kv(ze, we′)I
∗
e′ξ−e′(we′).

=
dze
2πi

ˆ
we∈γe

1

ze − we
I∗e ξ

(k−1)
−e (we) + ξ(k)

e (ze)

=
(
I∗e ξ

(k−1)
−e + ξ(k)

e

)
(ze),

(3.11)

the equality follows from Cauchy’s integral formula, see (3.2) for details.

Note that η
(k)
v admits continuous extension to the boundary γe. By this

expression and property (3.4), we conclude that
´
z∈γe η

(k)
v (z) = 0 and

hence the solution ηv is A-normalized.
Step 2. We show that the differentials {Ωv,s} have zero jumps among

the seams γ = {γe}e∈EC
. It is sufficient to prove

(3.12)
(
Ωv(e) − I∗eΩv(−e)

)
|γe(ze) = −

∞∑
k=1

(
η

(k)
v(e) − I

∗
e η

(k)
v(−e)

)
|γe(ze).

First we note that by the opposite residue condition (re = −r−e)
the singular parts of Ωv(e) and I∗eΩv(−e) cancels, therefore we have(
Ωv(e) − I∗eΩv(−e)

)
|γe(ze) =

(
ξ

(0)
e − I∗e ξ

(0)
−e |γe

)
(ze).

For k ≥ 1, by (3.11) the jumps along the identified seams for each

terms η
(k)
v can be analyzed.(

η(k)
v − I∗e η

(k)
v(−e)

)
(ze) =

(
I∗e ξ

(k−1)
−e + ξ(k)

e − ξ(k−1)
e − I∗e ξ

(k)
−e

)
(ze)

=
(
ξ(k)
e − I∗e ξ

(k)
−e

)
(ze)−

(
ξ(k−1)
e − I∗e ξ

(k−1)
−e

)
(ze).

Therefore
∑∞

k=1

(
η

(k)
v(e) − I∗e η

(k)
v(−e)

)
|γe(ze) = −

(
ξ

(0)
e − I∗e ξ

(0)
−e |γe

)
(ze),

and we have shown (3.12).
Step 3. We want to prove the L2-bound (3.10) for the solution. We

take the L∞ norm of η̃
(k)
v (ze) := η

(k)
v (ze)/dze on the seams. By (3.11)
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we have

(3.13) |η̃(k)
v |s := max

|ze|=|
√
se|
|η̃(k)
v (ze)| ≤ |I∗e ξ̃

(k−1)
−e (ze)|s + |ξ̃(k)

e |s.

By Lemma 3.2, we know that for any k ≥ 1, there exists a constant

M ′ such that |η̃(k)
v |s < (M ′|s|)k−1|ξ̃(0)|s. By the summing the series, we

have |η̃v|s < M ′′|ξ̃(0)|s for some constant M ′′.
Take any base point z0 ∈ Cv, define πv(z) :=

´ z
z0
ηv. Then since

dπv = ηv, by Stokes theorem, we have

||ηv||2L2 =
i

2

ˆ
Ĉv

ηv ∧ηv =
∑
e∈Ev

ˆ
γe

πvηv < M ′′|ξ̃(0)|s
∑
e∈Ev

ˆ
zeγe

|πv(ze)|dze.

Since ηv is bounded on γe, by taking z0 ∈ γe the length of arc from z0

to ze ∈ γe is at most 2π
√
|s|. Therefore we can bound |πv|s = |πv|s by

2π
√
|s||η̃v|s = 2πM ′′

√
|s||ξ̃(0)|s. At last we have

||ηv||2L2 < |s| · (2πM ′′|ξ̃(0)|s)2 ·#Ev.

Thus by lettingM := 2πM ′′√maxv #Ev, since |ξ̃(0)|s ≤ |ξ̃
(0)|1

√
|s|ord ξ̃

(0)

we have the required L2-bound (3.10) for ||ηv||L2 .
Note that for holomorphic differentials, convergence in L2 sense im-

plies uniform convergence on compact sets. Therefore we conclude that
Ωv = lims→0 Ωs|Cv uniformly on compact sets of Cv \ ∪e∈Evqe.

Lastly, the holomorphicity of Ωv,s for s > 0 follows from the holo-
morphicity of Ωv away from the nodes and the holomorphicity of ηv on
C̃v. Recall the Cauchy kernel is holomorphic in C̃v except at q0, and
we’ve verified that ηv does not have a pole at q0. �

In fact, by construction (3.9) we can compute the s-expansion of each

summand η
(k)
v explicitly, and thus the s-expansion of the differential Ωs.

For future applications and comparisons to earlier works, we compute
the first term in the s-expansion for each summand.

Proposition 3.4. Let lk = (e1, . . . , ek) ∈ Lkv be a path of length k in

ΓC starting from a given vertex v = v(e1). Denote s(lk) =
∏k

i=1 sei,

and β(lk) =
∏k−1

j=1 β−ej ,ej+1
. Then the expansion of η

(k)
v is given by

(3.14) η(k)
v (z) = (−1)k

∑
lk∈Lk

v

s(lk) · ωv(z, qe1)β(lk)ξ̃−ek +O(|s|k+1),

where z ∈ Ĉv, βe,e′ is defined in (3.1), and ξ̃e is defined in (3.5).
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Proof. Fix a vertex v in ΓC . First for a fixed e ∈ Ev, we show the

following expansion for ξ
(k)
e for k > 0:

(3.15) ξ(k)
e (ze) = (−1)k

∑
lk∈Lk

v

s(lk) · ωv(ze, qe1)β(lk)ξ̃−ek +O(|s|k+1).

This is derived by induction. For k = 1, we have L1
v = Ev, and

l1 = (e1) where e1 ∈ Ev. We compute

ξ(1)
e (ze) =

∑
e1∈Ev

ˆ
we1∈γe1

Kv(ze, we1)I
∗
e1
ξ

(0)
−e1(we1)

= −
∑
e1∈Ev

ˆ
we1∈γe1

Kv(ze, we1)
se1
w2
e1

· ξ̃−e1dwe1 +O(s2
e1

)

= −
∑
e1∈Ev

se1ωv(ze, qe1)ξ̃−e1 +O(|s|2),

(3.16)

where the last equality follows from Cauchy’s integral formula.
For the general case, by applying the inductive assumption (3.15) to

I∗e1ξ
(k−1)
−e1 , we have

I∗e1ξ
(k−1)
−e1 = (−1)k−1I∗e1

(
ωv(−e1)(w−e1 , qe2)

)
·

∑
lk−1∈Lk−1

v(−e1)

s(lk−1)β(lk−1)ξ̃−ek+O(|s|k).

Therefore it suffices to prove that for any e1 ∈ Ev we have:
(3.17)ˆ
we1∈γe1

Kv(ze, we1)I
∗
e1

(
ωv(−e1)(w−e1 , qe2)

)
= −se1ωv(ze, qe1)β−e1,e2+O(|s|2).

This is due to I∗e1
(
ωv(−e1)(w−e1 , qe2)

)
= I∗e1 ((β−e1,e2 + o(w−e1))dw−e1) =

− se1β−e1,e2dwe1

w2
e1

+ O(|s|2) and Cauchy’s integral formula. We conclude

the induction for (3.15).

The expansion (3.14) for η
(k)
v (z) is obtained by integrating ξ

(k−1)
e1 (ze1)

against Kv(z, ze1), and the computation is exactly the same as (3.17):ˆ
we1∈γe1

Kv(z, we1)I
∗
e1

(
ωv(−e1)(w−e1 , qe2)

)
= −se1ωv(z, qe1)β−e1,e2+O(|s|2),

where z ∈ Ĉv. The proof is thus completed.
�

Remark 3.5. It is important to point out that the expansion (3.14)
is not the s-expansion of the solution ηv, while the latter is also com-
putable by expanding the error term in (3.16) using the higher order
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coefficients βvij of ωv. The explicit formula for the case where ΓC con-
tains only one edge is given by [Yam80], and will be recomputed (up
to the second order) in section 5.

However, as we highlighted by the proposition, it is often more useful

and practical to consider ηv as the series
∑∞

k=1 η
(k)
v , given the bound

(3.13) and the recursive construction (3.9). In most cases it is already
useful to know the first non-constant term of Ωv,s, which the proposition
suffices to give:

η(1)
v (z) = −

∑
e∈Ev

seωv(z, qe)ξ̃−e +O(s2
e).

4. Period Matrices in Plumbing Coordinates

4.1. General Periods. Using the construction (3.8) and expansion
(3.14) of the stable differential Ω, we can compute the variational for-
mula of its periods.

Notation 4.1. For a stable curve C and its dual graph ΓC , define the
map p : H1(C,Z)→ H1(ΓC ,Z) as follows: for the class of a homological
(oriented) 1-cycle [γ] on C, p([γ]) is the class of the oriented loop in the
dual graph that contains the vertices corresponding to the components
that γ passes, and the edges corresponding to the nodes contained in
γ. The orientation of p([γ]) is inherited from the orientation of γ. It
is easy to see that the map is surjective, but not injective unless all
components have genus zero. Moreover, if γ is completely contained in
some component Cv, then p([γ]) = 0.

Let α be any closed oriented path on the stable curve C, such that
p([α]) 6= 0 (the zero case is trivial in our discussion below). For any
small enough s, there exists a small perturbation αs of α such that the

restriction of αs on Ĉs glues to be a path on Cs. This can be seen by
requiring 1) αs ∩ γe = I−1

e (αs ∩ γ−e) for any seam γe that α passes; 2)
αs does not totally contain any seam γe. By an abuse of notation, the
path on Cs after the gluing is also denoted by αs.

The following theorem computes the leading terms in the variational
formula of

´
αs

Ωs. To this end, recall that Ue = {|ze| <
√
|se|} and

denote We = {|ze| < |se|} and Ve = {|ze| < 1}.

Theorem 4.2. For any stable differential Ω on C with residue re at
the node qe, let α be any closed oriented path on C such that p([α]) 6= 0
and {e0, . . . , eN−1} be the collection of oriented edges that p([α]) passes
through (with possible repetition), such that v(−ei−1) = v(ei), and let
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eN = e0. Then we have

(4.1)

ˆ
αs

Ωs =
N∑
i=1

(rei ln |sei |+ ci + li) +O(|s|2),

where ci and li are the constant and linear terms in s respectively,
explicitly given as

(4.2) ci = lim
|s|→0

(ˆ z−1
ei

(
√
|sei |)

z−1
−ei−1

(
√
|sei−1 |)

Ωv −
1

2
(rei−1

ln |sei−1
|+ rei ln |sei |)

)
,

(4.3) li := −
∑

e∈Ev(ei)

seξ̃−e · σe,

where ξ̃e is defined in (3.5), and
(4.4)

σe :=



lim|s|→0

(
z−1
ei

(sei )´
q−ei−1

ωv(ei)(zei , qei) + 1
sei

)
if e = ei;

lim|s|→0

 qei´
z−1
−ei−1

(sei )

ωv(ei)(z−ei−1
, q−ei−1

)− 1
sei

 if e = −ei−1;

´ qei
q−ei−1

ωv(ei)(z, qe) otherwise.

Remark 4.3. Prior to the proof of the theorem we have two remarks.
Firstly, the period integral in (4.1) depends not only on p[α], but also

on the class of the actual path α. The integration over α ∩ Ĉv gives
precisely the constant term (4.2). Secondly, note that the limits of the
integrals in (4.4) are singular because the integrants have a double pole
on the nodes. However the singular parts are canceled by ± 1

sei
, so the

limits are indeed well-defined. Computations leading to both remarks
are contain in the proofs of the following lemma and the theorem.

To prove the theorem, it suffices to compute the integral on each
component Cv(ei), i = 1 . . . N that α passes through. To simplify no-
tation, throughout the proof below we consider α only passing each
component once, while the proof also holds for the general case. Let us
denote the intersection of αs with ∂Uei , ∂Vei , ∂U−ei−1

, ∂V−ei−1
respec-

tively by uei , vei , u−ei−1
and v−ei−1

. Then αs|Cv(ei)
breaks into three

pieces bounded by the four points:

(1) αs|V−ei−1\U−ei−1
connecting u−ei−1

and v−ei−1
;

(2) αs|Ĉv(ei)
\Vei∪V−ei−1

connecting vei and v−ei−1
;

(3) αs|Vei\Uei
connecting vei and uei ;
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For convenience, by a composition of a rotation we can assume that
uei = z−1

ei
(
√
sei), vei = z−1

ei
(1) and similarly u−ei−1

= z−1
−ei−1

(
√
s−ei−1

),

v−ei−1
= z−1

−ei−1
(1). Therefore in the lemma and the proofs below,

integrations in the local chart zei from uei to vei will be written as
from

√
sei to 1, for any i = 0, . . . , N − 1. We also remark that this

assumption does not change the statement of the theorem.
The following lemma simplifies the computation:

Lemma 4.4. Given an edge e, let Ωv,s and ξ
(k)
e be defined as before.

We have the following equality:

ˆ √se
1

Ωv(e),s(ze) +

ˆ 1

√
se

Ωv(−e),s(z−e) =re ln |se|+
∞∑
k=0

ˆ se

1

ξ(k)
e (ze)

+
∞∑
k=0

ˆ 1

se

ξ
(k)
−e (z−e)

(4.5)

Proof of Lemma 4.4. We recall that Ωv,s = Ωv(ei) +
∑

k η
(k)
v , and as we

are concerned with the regular part of the period, locally in the annuli

Ve \We, we have the following expression Ωv,s(ze) = re
dze
ze

+ ξ
(0)
e (ze) +∑∞

k=1 η
(k)
v . The logarithmic term in (4.5) is given by

ˆ √se
1

re
dze
ze

=
1

2
re ln |se|

and re = −r−e. What is left to show is
(4.6)ˆ √se

1

ξ(0)
e +

ˆ 1

√
se

ξ
(0)
−e+

∞∑
k=1

ˆ √se
1

η(k)
v +

∞∑
k=1

ˆ 1

√
se

η
(k)
v(−e) =

∞∑
k=0

ˆ se

1

ξ(k)
e +

∞∑
k=0

ˆ 1

se

ξ
(k)
−e

Note that for each k ≥ 0, we have
´ se√

se
ξ

(k)
e (ze) =

´ 1√
se
I∗e ξ

(k)
e (z−e) and´ √se

se
ξ

(k)
−e (z−e) =

´ √se
1

I∗e ξ
(k)
−e (ze). This gives for k ≥ 0:

ˆ √se
1

ξ(k)
e (ze) +

ˆ 1

√
se

ξ
(k)
−e (z−e) =

ˆ se

1

ξ(k)
e (ze) +

ˆ 1

se

ξ
(k)
−e (z−e)

−
ˆ 1

√
se

I∗e ξ
(k)
e (z−e)−

ˆ √se
1

I∗e ξ
(k)
−e (ze).

(4.7)
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Grouping the last two terms above with the (k+1) entries in
∑∞

k=1

´ √se
1

η
(k)
v +∑∞

k=1

´ 1√
se
η

(k)
v(−e), and applying (3.11), we obtain:

ˆ √se
1

(η
(k+1)
v(e) − I

∗
e ξ

(k)
−e )(ze) +

ˆ 1

√
se

(η
(k+1)
v(−e) − I

∗
e ξ

(k)
e )(z−e)

=

ˆ √se
1

ξ(k+1)
e (ze) +

ˆ 1

√
se

ξ
(k+1)
−e (z−e)

(4.8)

Summing up both (4.7) and (4.8) over all k ≥ 0 and adding the two
equalities together, we immediately obtain (4.6). The lemma follows.

�

Proof of Theorem 4.2. Our goal is to compute the leading terms of the
variational formula of

∑N−1
i=0

´
αv(ei)

Ωv(ei),s. To this end, we rearrange

the terms and compute the following integrals:

(4.9)

ˆ z−1
ei

(1)

z−1
−ei−1

(1)

Ωv(ei),s +

ˆ √sei
1

Ωv(ei),s(zei) +

ˆ 1

√
sei

Ωv(−ei),s(z−ei)

It needs to be pointed out that the first two entries above are integrals
inside Cv, while the last entry is in Cv(−ei). To simplify notation, in
the rest of the proof we denote v := v(ei).

Using the lemma, the last two entries of (4.9) are equal to rei ln |sei |+∑∞
k=0

´ sei
1

ξ
(k)
ei (zei) +

∑∞
k=0

´ 1

sei
ξ

(k)
−ei(z−ei). By definition of Ωv,s, the first

integral in (4.9) is equal to
´ z−1

ei
(1)

z−1
−ei−1

(1)

(
Ωv +

∑
k≥1 η

(k)
v

)
.

Note that by (3.14) and (3.15), for k ≥ 1 the integrals of ξ
(k)
±ei and

η
(k)
v only give terms of order ≥ k. Also observe that

´ vei
v−ei−1

Ωv is a

constant independent of s. Thus to compute the remaining part of the

constant term we only have to compute the integrals of
´ sei

1
ξ

(0)
ei (zei) +´ 1

sei
ξ

(0)
−ei(z−ei).

Since ξ
(0)
±ei(z±ei) is holomorphic in V±ei , we have

ˆ sei

1

ξ(0)
ei

(zei) +

ˆ 1

sei

ξ
(0)
−ei(z−ei) =

ˆ 0

1

ξ(0)
ei

(zei) +

ˆ 1

0

ξ
(0)
−ei(z−ei)

+ sei ·
(
ξ̃ei − ξ̃−ei

)
+O(|s|2).

(4.10)

Summing up the constant terms on the RHS over i, we have computed
the constant term (4.2).



26 XUNTAO HU AND CHAYA NORTON

Now we compute the linear term. Note that ξ
(k)
v are holomorphic in

s. Again by (3.15), we only need to compute the integrals of ξ
(1)
v(±ei),

whose expansion is already given by (3.16). Therefore we have:ˆ sei

1

ξ(1)
ei

(zei) =−
∑
e∈Ev

seξ̃−e

ˆ sei

1

ω̃v(zei , qe)dzei +O(|s|2)

=−
∑
e∈Ev

seξ̃−e

ˆ sei

1

ω̃v(zei , qe)dzei + sei ξ̃−ei

ˆ sei

1

dzei
z2
ei

+O(|s|2)

=sei ξ̃−ei −
∑

e∈Ev ,e6=ei

seξ̃−e

ˆ 0

1

ω̃v(zei , qe)dzei

− sei ξ̃−ei lim
sei→0

(

ˆ sei

1

ω̃v(zei , qei)dzei +
1

sei
) +O(|s|2).

The existence of the limit above can be seen by integrating the 1/z2
ei

term in the expansion of ω̃v(zei , qei).

The linear term in
´ 1

sei
ξ

(1)
−ei(z−ei) is computed similarly:

ˆ 1

sei

ξ
(1)
−ei(z−ei) =− sei ξ̃ei −

∑
e∈Ev(−ei)

,e 6=−ei

seξ̃−e

ˆ 1

0

ω̃v(z−ei , qe)dz−ei

− sei ξ̃ei lim
sei→0

(

ˆ 1

sei

ω̃v(z−ei , q−ei)dz−ei −
1

sei
) +O(|s|2).

Note that the linear terms in (4.10) have been cancelled by the linear
terms produced by the singular part of ωv. Moreover,ˆ vei

v−ei−1

η(1)
v (z) = −

∑
e∈Ev

se · ξ̃−e ·
ˆ z−1

ei
(1)

z−1
−ei−1

(1)

ωv(z, qe) +O(|s|2).

Summing up all the linear terms above, then summing up over i, we
have the desired linear term. �

Remark 4.5. Note that in the proof of the theorem, the function
h(s) :=

´
αs

Ωs −
∑N

i=1 rei ln |sei| is computed as

N∑
i=1

(
∞∑
k=0

ˆ sei

1

ξ(k)
ei

(zei) +
∞∑
k=0

ˆ 1

sei

ξ
(k)
−ei(z−ei) +

ˆ z−1
ei

(1)

z−1
−ei−1

(1)

Ωv(ei),s

)
.

The analyticity of h(s) in s follows from the analyticity of each inte-
grand above. The analyticity of h(s) will be used in our improvement
of the result of [Tan91] below. In [GKN17, Lem. 5.5], without com-
puting any terms in h(s), an estimate of |h(s)| is derived in the real
normalized setup.
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Moreover, from the proof one can see that besides the complexity of
the computation, there is no obstacle in computing every higher order
terms in the expansion of the periods of Ωs.

4.2. Period Matrices. Recall that in (Section 2.4) we have chosen a
basis {Ai,s}gi=1 for a Lagrangian subspace of H1(Cs,Z) along the plumb-
ing family. We required that the first m A-cycles generate the span of
the classes of the seams. In order to study degenerations of the pe-
riod matrix, we now choose B1,s, . . . , Bg,s completing the A-cycles to
a symplectic basis of H1(Cs,Z). The cycles B1,s, . . . , Bg,s are chosen
such that they vary continuously in the family.

One can easily see that for 1 ≤ k ≤ m, p([Bk,0]) 6= 0, while for
m + 1 ≤ k ≤ g, the map p annihilates the classes of Bk,0. From now
on we write Ak := Ak,0, Bk := Bk,0. Note that for 1 ≤ k ≤ m, one can
also see Bk,s as constructed from Bk by applying a small perturbation
as introduced in the previous section.

By the Riemann bilinear relations, we define the following basis of
abelian differential {vk}gk=1 in H0(C,KC) where C = C0 is a stable
curve:

(1) For m + 1 ≤ k ≤ g, Bk is contained in C̃v for some v, thus
Ak is contained in the same component. Define vk(z) to be the
abelian differential dual to Ak in H0(Cv, KCv).

(2) For 1 ≤ k ≤ m, p([Bk]) 6= 0, assume p([Bk]) passes the edges

e0, . . . eN−1. Define vk :=
∑N−1

i=0 ωqei−q−ei−1
, where ωqei−q−ei−1

denotes
the A-normalized meromorphic differential of the third kind
supported on Cv(ei) that has only simple poles at q−ei−1

and qei
with residues −1 and 1 correspondingly.

By applying the jump problem construction, we have a collection
of abelian differentials {vk,s}gk=1 for the curve Cs, which is seen to
be a normalized basis of H0(Cs, KCs): For every k and |e|, we have´
γ|e|

vk,s =
´
γ|e|

(vk + ηk,s) on Cs. Since the solution ηk,s to the jump

problem with initial jumps of vk is A-normalized, this is equal to the
integral

´
γe
vk on Cv(e). Therefore by the residue theorem, we have´

Aj,s
vk,s = 2πi · δjk. This shows that {vk,s}gk=1 is a normalized ba-

sis of H0(Cs, KCs). The period matrix of Cs is hence defined to be
{τh,k(s)}g×g where τh,k(s) :=

´
Bh,s

vk,s.

We can apply Theorem 4.2 to compute the leading terms in the
variational formula of τh,k(s).

Corollary 4.6. For every |e| and k, denote N|e|,k := γ|e| · Bk,s the
intersection product. For any fixed h, k, the expansion of τh,k(s) is
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given by

τh,k(s) =
∑
|e|∈|E|C

(N|e|,h ·N|e|,k) · ln |se|

+ lim
|s|→0

N∑
i=1

(ˆ z−1
ei

(
√
|sei |)

z−1
−ei−1

(
√
|sei−1 |)

vk −N|ei|,hN|ei|,k ln |sei |

)
−
∑
e∈EC

se (hol(ṽk)(qe) hol(ṽh)(q−e)) +O(|s|2),

(4.11)

where {ei}N−1
i=0 is the set of oriented edges p([Bh]) passes through, and

hol(ṽk) denotes the regular part of the Laurent expansion of the function
of vk near the nodes of the components where vk is not identically zero.
Furthermore, under our choice of the symplectic basis, N|e|,h · N|e|,k is
equal to 1 if h = k and the node q|e| lies on Bh and equals 0 otherwise.

Remark 4.7. (1) For the purpose of defining the intersection product,
we assign an random orientation to γ|e|. We further remark that there
is no canonical way to orient γ|e|, and the assigned orientation does not
affect the statement and the proof.

(2) The main result in [Tan91] is that h(s) := τh,k(s)−
∑
|e|∈|E|C (N|e|,h·

N|e|,k) · ln |se| is holomorphic in s. We can see that only the logarith-
mic term was computed. By remark 4.5, our corollary in particular
reproves his result, and we express more terms in the expansion.

(3) We want to point out that Taniguchi does not require the classes
of γ|e| to be part of the symplectic basis, therefore N|e|,h ·N|e|,k may be
any integer. Since the A,B-cycles generate H1(Cs,Z), the general case
follows by linearity.

Proof. We first compute the logarithmic term. Note that the intersec-
tion product is independent of s. When e does not lies on p([Bh,s]),
we have N|e|,h = 0, otherwise N|e|,h = ±1 and the sign depends on the
orientation of [γ|e|] compared to that of the corresponding generator
[Ai] of the symplectic basis. We now only need to prove that vk has
residue N|e|,h ·N|e|,k at qe, which is seen as follows: if e ∈ p([Bk]), then
by construction of vk, it has residue ±1 = N|e|,k at q|e| depending again
on whether [γ|e|] = [Ai] or −[Ai]; if |e| does not lie on p([Bk]), both the
intersection number and the residue are 0. Note that the signs of N|e|,h
and N|e|,k are always the same, therefore N|e|,h ·N|e|,k = δi,h · δi,k.

Secondly, we compute the linear term. Note as can be verified from
the normalization conditions of the fundamental bidifferential, vh(z) =´
Bh
ω(w, z) for m+ 1 ≤ h ≤ g, and vh(z) =

∑N
i=1

´ qei
q−ei−1

ωv(ei)(w, z) for

1 ≤ h ≤ m, where {ei}N−1
i=0 is the set of edges p([Bh]) passes through.
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To compute the linear term for τh,k(s) =
´
Bh,s

vk,s, we observe that by

definition of σe in (4.4), we have

σe = hol(ṽh)(qe).

Since Ω := vk, we have ξ̃e = hol(Ω̃)(qe) = hol(ṽk)(qe). Note that vh
is only supported on ∪v∈p([Bh])Cv, the sum in (4.11) is taken over all
edges.

Lastly, the constant term follows directly from Theorem 4.2.
�

5. Examples

In this section we will compute four explicit examples of the varia-
tional formula for abelian differentials and for the period matrix of a
stable curve C. Throughout this section the stable curve has geometric
genus g, Ω is a stable differential on C. We choose the symplectic basis
of holomorphic 1-cycles and its dual basis of 1-forms as in the previous
sections. The notation will vary among the examples according to the
structure of C.

5.1. One node. We first deal with the case where the curve C has only
one node q. In [Yam80], Yamada computed the variational formula of
both abelian differentials and the period matrices to any order of the
plumbing parameter s. We will reprove his result up to the second
order, while the full expansion can also be found using our method.

5.1.1. One node: compact type. When C is of compact type, it has two
components C1 and C2 that meet at a single separating node q, whose
pre-images are denoted by q1 ∈ C1 and q2 ∈ C2. Let zi be the local
coordinates near qi. Denote the restriction of Ω to Ci by Ωi (i = 1, 2).
The subscripts of the Cauchy kernel and its derivative are changed
correspondingly.

Since the curve is of compact type, the differentials Ωi have no residue

at qi, therefore they are holomorphic and we have ξ
(0)
i (zi) = Ωi(zi).

We denote ξ̃i := ξ̃
(0)
i (qi), and Ωs is defined on Cs by formulas (3.3)

(3.9). Explicitly, by Proposition 3.4, the expansion of the restriction
Ωi,s (i = 1, 2) is given by

(5.1) Ωi,s(z) = Ωi(z) +
(
−s · ωi(z, qi)ξ̃i′ + s2 · ωi(z, qi)βi′ ξ̃i

)
+O(s3)

where by convention, i′ = 2 if i = 1 and vice versa, and βi denotes the
leading coefficient in the expansion of ωi as in (3.1).
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Let gi be the genus of Ci, with g1 + g2 = g. We take a normalized
basis of abelian differentials {vk}gk=1 of C such that {v1, . . . , vg1} are
supported on C1, and {vg1+1, . . . , vg} on C2.

For 1 ≤ k ≤ g1, letting Ω1 = vk,Ω2 = 0 in (5.1), we obtain

vk,s(z) =

{
vk(z) + s2 · ω1(z, q1)β2vk(q1) +O(s3) z ∈ C̃1,

−s · ω2(z, q2)vk(q1) +O(s3) z ∈ C̃2.

For g1 + 1 ≤ k ≤ g, the formula is symmetric. We have then reproven
[Yam80, Cor. 1].

5.1.2. One node: non-compact type. In this case C is irreducible, with
a single node q. We denote q1, q2 the pre-images of q in the normal-

ization C̃, and z1, z2 the corresponding local coordinates. Let Ω be a
meromorphic differential on the normalization of C which has simple
poles of residues ri at qi (i = 1, 2). By the residue theorem r1 = −r2.

We now have ξ
(0)
i (zi) = Ω(zi) − ridzi

zi
. Denote ξ̃i = ξ̃

(0)
i (qi). By

Proposition 3.4, we have

(5.2) Ωs(z) = Ω(z)− s ·
(
ω(z, q1)ξ̃2 + ω(z, q2)ξ̃1

)
+O(s2).

For a symplectic basis {Ak,s, Bk,s}gk=1, we choose A1,s to be the seam,
whereas B1,s is taken to intersect A1,s once, oriented from the neigh-
borhood of q1 to the neighborhood of q2. As in section 4.2, we take

v1 = ωq2−q1 , and {vk}gk=2 to be the normalized basis of H1(C̃,C).
By letting Ω = vk for 2 ≤ k ≤ g, we have ri = 0, and the equation

(5.2) gives [Yam80, Cor. 4]. For the case Ω = v1, we have r2 = −r1 = 1,
then (5.2) gives [Yam80, Cor. 5]. Moreover, we can compute the period
matrix of Cs, reproving [Yam80, Cor. 6]. By Corollary 4.6 we have

τ1,1(s) =

ˆ
B1,s

ωq2−q1,s = ln |s|+ c1,1 + s · l1,1 +O(s2),

where c1,1 = lim|s|→0

(´ z−1
2 (
√
|s|)

z−1
1 (
√
|s|)

ωq2−q1 − ln |s|
)

, and l1,1 = −2σ1σ2.

We also have

τk,1(s) = τ1,k(s) =

ˆ
B1,s

vk,s = c1,k + s · l1,k +O(s2)

for 2 ≤ k ≤ g. Since vk(x) is holomorphic, we have ξ
(0)
i (zi) = vk(zi)

and hence ξ̃i = vk(pi). The constant term c1,k is equal to
´ q2
q1
vk, and

the linear term l1,k is seen to be −vk(q1)σ2 − vk(q2)σ1 by (4.11).
Finally for 2 ≤ k, h ≤ g we have

τk,h(s) = τk,h + s · lhk,
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where τh,k is the period matrix of the normalization of C, and lh,k =
−vk(q1)vh(q2)− vh(q1)vk(q2).

5.2. Banana Curves. The second example we consider is the stable
genus g curve C that has two irreducible components meeting in two
distinct nodes (so-called “banana curve”). This computation has not
been done in the literature before.

Let the two components of C be Ca, Cb with genera ga and gb where
ga + gb = g− 1. The edges corresponding to the two nodes are denoted
by e1 and e2. The preimages of the nodes and the local coordinates are
denoted as q±ei and z±ei (i = 1, 2), where “+” corresponds to the Ca
side, and “−” the Cb side.

Note that in the case where C has only two components (with any
number of nodes connecting them), the path lk can only go back and

forth. Therefore ξ
(k)
ei (resp. ξ

(k)
−ei) (i = 1, 2) and η

(k)
a (resp. η

(k)
b ) are

determined by Ωa if k is even (resp. odd), and Ωb if k is odd (resp.
even), as we can see from the terms in expansion (5.1). Also note

that in expansion (3.14) of η
(k)
a and η

(k)
b , there is no residue of Ω in-

volved. Therefore the we can simplify our computation by assuming
that Ωb = 0 and the residues of Ωa at both nodes are zero. Under these
assumptions, we have ξ

(0)
ei (zei) = Ωa(zei) (i = 1, 2). Furthermore, for

any integer k ≥ 0, we have

ξ
(2k)
−ei = ξ(2k+1)

ei
= 0 (i = 1, 2),

thus by construction (3.9), we have

η(2k+1)
a (z) = 0 z ∈ Ĉa;

η
(2k)
b (z) = 0 z ∈ Ĉb.

By Proposition 3.4, we have for z ∈ Ĉb:

η
(1)
b (z) = −s1ωb(z, q−e1)ξ̃e1 − s2ωb(z, q−e2)ξ̃e2 +O(|s|2),

and for z ∈ Ĉa:
η(2)
a (z) = s2

1ωa(z, qe1)β
b
1,1ξ̃e1 + s2

2ωa(z, qe2)β
b
2,2ξ̃e2

+ s1s2

(
ωa(z, qe1)β

b
1,2ξ̃e2 + ωa(z, qe2)β

b
2,1ξ̃e1

)
+O(|s|3),

where βbjk := βb−ej ,−ek is the constant term in the expansion of ωb(z−ej , z−ek)

as in (3.1).
Note that we can also assume Ωa = 0, and that the residues of Ωb at

both nodes are zero. The general case follows by adding the differentials
in these two cases together.
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We now compute the degeneration of period matrix for the ba-
nana curve. For the symplectic basis of H1(Cs,Z), we let A1 :=
γe2 , and B1 is taken to intersect each seam once, with the orien-
tation from qe1 to qe2 , then from q−e2 to q−e1 . Thus we let v1 :=
ωqe2−qe1 + ωq−e1−q−e2

where ωqe2−qe1 is supported on Ca, and ωq−e1−q−e2

on Cb. Take {Ak, Bk}ga+1
k=2 and {Aj, Bj}gj=ga+2 to be the symplectic

bases of H1(Ca,Z) and H1(Cb,Z) respectively. The normalized basis
of holomorphic differentials {vk}gk=2 on the two components are taken
correspondingly, and we require that vk is identically zero on Cb if
2 ≤ k ≤ ga + 1, and on Ca if ga + 2 ≤ k ≤ g.

Note that v1 has residues re2 = r−e1 = 1, thus we have τ1,1(s) =
ln |s1|+ ln |s2|+ c1,1 + l1,1 +O(|s|2). By (4.2), the constant term is

c1,1 = lim
|s|→0

(ˆ z−1
e2

(
√
|s2|)

z−1
e1

(
√
|s1|)

ωqe2−qe1 +

ˆ z−1
−e1

(
√
|s2|)

z−1
−e2

(
√
|s2|)

ωq−e1−q−e2
− ln |s1| − ln |s2|

)
.

As for the linear term l1,1, by (4.11) we obtain

l1,1 = −2s1σ−e1σe1 − 2s2σ−e2σe2 .

We also see that the expansion of τk,1(s) = τ1,k(s) is given by

τ1,k(s) =

{´ qe2
qe1

vk − s1vk(qe1)σ−e1 − s2vk(qe2)σ−e2 +O(|s|2) if 2 ≤ k ≤ ga + 1,´ q−e1

q−e2
vk − s2vk(q−e2)σe2 − s1vk(q−e1)σe1 +O(|s|2) if ga + 2 ≤ k ≤ g.

The remaining (g − 1) × (g − 1) minor τg−1(s) := {τh,k(s)}gh,k=2 of
the period matrix is computed as:

τg−1(s) =

(
τa 0
0 τb

)
− s1 ·

(
0 tRa(qe1)Rb(q−e1)

tRb(q−e1)Ra(qe1) 0

)
− s2 ·

(
0 tRa(qe2)Rb(q−e2)

tRb(q−e2)Ra(qe2) 0

)
+O(|s|2),

where τa (resp. τb) is the period matrix of Ca (resp. Cb), and Ra :=
(v2, . . . , vga+1), Rb := (vga+2, . . . , vg).

5.3. Totally Degenerate Curves. It is a fact that the stable curves
that lie in the intersection of the Teichmüller curve and the boundary
of Mg are of arithmetic genus zero. In this subsection we study the
largest dimensional boundary stratum of such stable curves and give
the variational formula of its period matrix, which to the knowledge of
the authors is again not dealt with in literature before. The periods
of totally degenerate curves has been studied by Gerritzen in his series
of papers [Ger90] [Ger92a] [Ger92b]. The perspectives in those papers
are algebraic, mainly by studying the theta functions, the Torreli map
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and the Schottky problem. No analytic construction such as plumbing
is involved.

Let C be a totally degenerate stable curve, namely the normalization

C̃ is a P1 with g pairs of marked points {q±i}gi=1. Let qi and q−i be the
preimages of the i-th node on C, and ri = −r−i be the residue of Ω at
qi.

Let z be the global coordinate, then the local coordinates at the pre-
images of nodes are given by z±i := z − q±i, where i = 1, . . . , g. We

have as usual ξ
(0)
±i (z) := Ω(z)∓ ridz

z−q±i
, and ξ̃±i := ξ̃

(0)
±i (q±i).

The Cauchy kernel and the fundamental bidifferential on P1 are given
explicitly: K(z, w) = dz

2πi(z−w)
; ω(z, w) = 2πi∂wK(z, w) = dzdw

(z−w)2
. We

compute ω̃(z, qi) = 1
(z−qi)2 , for i ∈ {±1, . . . ,±g}. The expansion of Ωs

is thus given by

Ωs(z) = Ω(z)− dz
g∑

k=1

sk

(
ξ̃−k

(z − qk)2
+

ξ̃k
(z − q−k)2

)
+O(|s|2)

where z ∈ Ĉ.
The classes of the seams {[γi]}gi=1 generate the Lagrangian subgroup

of H1(Cs,Z), thus we can take Ai := γi and Bi the path from q−i to qi.
The corresponding normalized basis of 1-forms will be vi := ωqi−q−i

=

dz
(

1
z−qi −

1
z−q−i

)
for i = 1, . . . , g. Let Ω = vi, we have for k 6= ±i,

ξ̃k = qi−q−i

(qk−qi)(qk−q−i)
and ξ̃i = ξ̃−i = 1

q−i−qi .

One thus computes the period matrix as follows.

i = j : τi,i = ln |si| − 2 ln |qi − q−i| −
2si

(qi − q−i)2

−
∑

k∈{1,..̂i,..g}

2sk(qi − q−i)2

(qk − q−i)(qk − qi)(q−k − q−i)(q−k − qi)
+O(|s|2)

i 6= j : τi,j = ln (qi, q−i; qj, q−j)−
∑
k 6=i,j

sk

( (qi − q−i)(qj − q−j)
(qk − qi)(qk − q−i)(q−k − qj)(q−k − q−j)

+
(qi − q−i)(qj − q−j)

(qk − qj)(qk − q−j)(q−k − qi)(q−k − q−i)

)
− si

qj − q−j
q−i − qi

( 1

(qi − qj)(qi − q−j)
+

1

(q−i − qj)(q−i − q−j)

)
− sj

qi − q−i
q−j − qj

( 1

(qj − qi)(qj − q−i)
+

1

(q−j − qi)(q−j − q−i)

)
+O(|s|2)
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where (qi, q−i, qj, q−j) stands for the cross-ratio of the (ordered) four
points.

6. Higher Order Plumbing

In the last section we construct the solution to the jump problem
with the initial data arising from the jumps of an abelian differential
that has higher order zeroes and poles at the nodes of the limit curve.
Following the terminology in [Gen15] and [BCGGM16], we call the
procedure of smoothing such a differential higher order plumbing. We
obtain an alternative proof of the sufficiency part of the main theorem
in [BCGGM16]. Moreover, our approach gives more information than
the two constructions given in that paper. We first give a brief review
of definitions and results in [BCGGM16]. Readers that are familiar
with this material can safely skip the following subsection.

6.1. Incidence variety compactification. Let µ = (m1, . . . ,mn) be
a partition of 2g−2, and we assume mi > 0 for i = 1, . . . , n. We denote
ΩMg,n(µ) to be the stratum whose points are abelian differentials that

have multiplicity mk at the marked point pk. Let PΩMinc

g,n(µ) be the
closure of the strata in the projectivized compactification of the Hodge
bundle PΩMg,n over Mg,n, called the incidence variety compactifica-
tion (IVC) of the stratum ΩMg,n(µ) in [BCGGM16].

Take a stable pointed differential (C,Ω) in the boundary of ΩMg,n,
where C is a stable nodal curve with marked points p1, . . . , pn, and Ω is
a stable differential on C. Let (C,W)→ ∆ be a one parameter family
in the stratum ΩMg,n(µ), where ∆ is a disk with parameter t, such
that C0 = C. Note that Ω may be identically zero on some irreducible
component Cv of C. By an analytic argument [BCGGM16, Lemma 4.1]
one can show that there exist lv ∈ Z≤0 for each Cv such that

Ξv := lim
t→0

tlvΩv

is non-zero and not equal to infinity. Such differential {Ξv}v must sat-
isfy the following conditions (see the proof of necessity of [BCGGM16,
Theorem 1.3]):

(0) If pk ∈ Cv for some k, Ξv vanishes to the correct order: ordpk Ξv =
mk;

(1) The only singularities of Ξv are (possible) poles at the nodes of
Cv;

(2) For any node q|e| on C, ordqe Ξv(e) + ordq−e Ξv(−e) = −2;
(3) If ordqe Ξv(e) = ordq−e Ξv(−e) = −1 at some node q|e|, then the

residues are opposite at the node: resqe Ξv(e) = − resq−e Ξv(−e).
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Definition 6.1 ([BCGGM16, Def. 1.1]). A differential Ξ satisfying
conditions (0) ∼ (3) is called a twisted differential of type µ.

Given a one parameter family, l : v 7→ lv gives a (full) level function
on the vertices of the dual graph ΓC . The function l makes ΓC into
a level graph, in which the order is denoted by “ < ”. Moreover,
the twisted differential Ξ constructed from the one-parameter family
must satisfy the following conditions (again see the proof of necessity
of [BCGGM16, Theorem 1.3]):

(4) At a node e, v(e) < v(−e) if and only if ordqe Ξv(e) ≥ ordq−e Ξv(−e),
and v(e) � v(−e) if and only if ordqe Ξv(e) = ordq−e Ξv(−e) = −1

(5) For any level L in the level graph, for any v such that lv > L, let
EL
v be the set of all the nodes e such that v(e) = v, lv(−e) = L,

we have ∑
e∈EL

v

resq−ei
Ξv(−ei) = 0.

The last condition is called the Global residue condition in [BCGGM16].

Definition 6.2 ([BCGGM16, Def. 1.2]). A twisted differential Ξ is
called compatible with the stable differential Ω and the full level func-
tion l (or equivalently the full level graph ΓC) if (i) Ξ and l satisfy
the conditions (0)∼(5); (ii) the maxima of the level graph correspond
to the components Cv where Ωv is not identically zero, and on those
components, Ξv = Ωv.

The main result of [BCGGM16] is that the necessary and sufficient
condition for a pointed stable differential (C,Ω) to lie in the bound-
ary of the IVC compactification of strata is the existence of a twisted
differential Ξ (on C) and a full level function l (on ΓC) such that Ξ is
compatible with Ω and l.

6.2. Jump problem for higher order plumbing. The proof of suf-
ficiency of this result requires a construction of a family of abelian dif-
ferentials in the smooth locus of the strata that degenerates to the limit
differential (C,Ω), given the compatible data (Ξ, l). In [BCGGM16],
the authors give two proofs to the sufficiency by: 1) constructing a one
complex parameter family using plumbing; 2) constructing a one real
parameter family via a flat geometry argument. We now give a third
argument via the jump problem approach. Moreover, the number of
parameters over C in our degenerating family is equal to the number
of levels in ΓC minus 1. Similar to the plumbing argument used in
[BCGGM16], we will also use a modification differential to match up
the residues. Furthermore, the original argument in [BCGGM16] on
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the operation merging the zeroes will also be applied here to embed
the family into the stratum.

Take a plumbing family {Cs} as in Definition 2.2 such that C =
C0, and s = {s|e|}|e|∈|E|C are the plumbing parameters. Denote the
restriction of Ξ on the irreducible component Cv by Ξv. Let Nl be the
number of levels in ΓC . Without loss of generality, we assume the range
of the level function l to be {0,−1, . . . , 1−Nl}.

Assume j = lv(−e), recall that Ej
v = {e ∈ Ev : lv(−e) = j} as defined

in condition (5). To glue the twisted differentials Ξv and Ξv(−e), we
need to add a modification differential φv,j to Ξv in order to match the
residue (denoted by r−e) of Ξv(−e). The modification differential φv,j is
chosen to be any differential which has simple pole at qe with residue
re = −r−e, where e ∈ Ej

v. The global residue condition ensures that
the sum of the residues of φv,j is zero. The existence of φv,j is due to
the classical Mittag-Leffler problem.

For e ∈ Ej
v, assume Ξv has a zero of order ke at the node qe, then

by conditions (2), Ξv(−e) has a pole of order ke + 2 at the node q−e.
In order to apply the jump problem to obtain a global differential, the
following conditions need to be imposed on the plumbing parameters
s:

(i) For any e, e′ ∈ Ej
v, we have ske+1

e = s
ke′+1
e′ ;

(ii) For any two vertices v0, v1 at different levels (namely lv0 6=
lv1), for any two paths {ei}i∈I and {ẽj}j∈J connecting v0, v1

with lv(ei) > lv(−ei) (∀i ∈ I) and the same for {ẽj}, we have∏
i∈I s

kei+1
ei =

∏
j∈J s

kẽj +1

ẽj
=: s(v0, v1);

(iii) If lv0 = lv1 , we require that s(v0, v1) = 1.

It is important to remark that for such a tuple of plumbing param-
eters one can deduce that s(v0, v1) depends only on the levels of v0, v1,
namely, s(v0, v1) = s(v′0, v

′
1) as long as lv0 = lv′0 and lv1 = lv′1 . We can

thus choose one parameter for each level drop:

Definition 6.3. Let ti,j := s(v0, v1) where v0, v1 are two vertices at
level i, j respectively. The tuple t := {t−1, . . . , t1−Nl

} where ti :=
t0,i/t0,i+1 are called the scaling parameters.

Note that ti,j =
∏j

k=i tk. The theorem below gives a degenerating
family of abelian differentials parametrized by t with central fibre the
differential (C,Ω) in the boundary of the IVC.

Theorem 6.4. Let (C,Ω, p1, . . . , pn) be a stable pointed differential in a
given stratum ΩMg,n(µ). Given the triple (C,Ξ, l) where Ξ is a twisted
differential of type µ on C and l is a full level function on ΓC, such
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that Ξ is compatible with Ω and l, there exists a degenerating family
of abelian differentials (Ct,Ξt) ⊂ ΩMg,n(µ) such that limt→0(Ct,Ξt) =
(C,Ω), where t are the scaling parameters.

Proof. The proof is completed in three steps. Firstly we construct via
the jump problem method a degenerating family of abelian differentials

(Ct, Ξ̂t) in ΩMg,n. Then we show that the family lies sufficiently “near”
the stratum, i.e. we show that the solution to the jump problem is
uniformly controlled by some positive power of |t| := max1≤i≤Nl−1 |ti|.
Lastly we apply [BCGGM16, Lemma 4.7] to merge the zeroes of Ξ̂t to
obtain a family contained in the stratum.

For the jump problem construction, we only need to construct the

correct initial data {ξ(0)
e }, the rest of the construction is given by (3.3)

and (3.8).
Assume that the vertex v lies on the i-th level. We define

Ξ̂v := Ξv +
∑
j<i

ti,jφv,j,

where φv,j is the modification differential we defined earlier.
We now apply the jump problem construction to glue the differentials

at the opposite sides of each node q|e|. Assume v(e) and v(−e) are on

the levels i and j respectively. We glue t0,i · Ξ̂v and t0,j · Ξ̂v(−e) from the
opposite sides of the node q|e|. Namely, let

ξ(0)
e (ze) := t0,i ·

(
Ξ̂v(ze)− ti,jI∗eP (Ξ̂v(−e))(ze)

)
;

ξ
(0)
−e (z−e) := t0,j · hol(Ξ̂v(−e))(z−e),

where P (·) denotes the principal part of a differential, and hol(·) de-
notes the holomophic part. Conditions (i) ∼ (iii) ensures that t0,iti,j =
t0,j.

Note that the initial data t0,i(Ξ̂v − I∗e Ξ̂v(−e))(ze) is equal to (ξ
(0)
e −

I∗e ξ
(0)
−e )(ze). In order to apply (3.3) and (3.8) to construct the A-

normalized solution to the jump problem with this initial data, we need

to show that ξ
(0)
e (ze) is holomorphic in ze. It is immediate because the

pair of differentials Ξ̂v and ti,jΞ̂v(−e) have opposite residues at the node
q|e| and the pull-back of the principal part by Ie is holomorphic.
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We recall here the construction of the A-normalized solution in (3.3)
and (3.9): For k ≥ 1, we define

for ze ∈ Ue : ξ(k)
e (ze) :=

∑
e′∈Ev

ˆ
we′∈γe′

Kv(ze, we′) · I∗e′ξ
(k−1)
−e′ (we′);

for z ∈ Ĉv : η(k)
v (z) :=

∑
e∈Ev

ˆ
ze∈γe

Kv(z, ze) · I∗e ξ
(k−1)
−e (ze).

By Theorem 3.3, ηv :=
∑

k≥1 η
(k)
v (z) is the A-normalized solution to

the jump problem of higher order zeroes and poles.
Similar to the proof of Theorem 3.3, we need to show that ηv is

convergent by giving a L2-bound for the solution ηv. We can repeat
the proof in Lemma 3.2 and Theorem 3.3 to get (3.10), which we recall
as

||ηv||L2 <
√
|s|

1+ord ξ̃
(0)

M |ξ̃(0)|1
for some constantM . We have shown above that ξ

(0)
e (ze) is holomorphic

for every e, therefore ord ξ̃
(0)

= mine ordqe ξ̃
(0)
e ≥ 0. The only thing left

to show here is that |ξ̃(0)|1 is bounded by some power of t, in other

words, the power of t in ξ
(0)
±e is non-negative for any e.

Note that the power of t in ξ
(0)
−e is automatically non-negative, we only

need to show the same holds for ξ
(0)
e . Note that when pulling back the

principal part of Ξ̂v(−e) through Ie, its lowest order term z−ke−2
−e dz−e

contributes a factor of s−ke−1
e , which is seen to be equal to t−1

i,j by
condition (ii). Since all other terms in the principal part contribute

factors of lower powers of se, the power of t in ξ
(0)
e must be non-negative.

We can thus apply the same argument as in the proof of Lemma 3.2
and Theorem 3.3 and achieve an L2-bound for ηv.

Let Ξ̂v,t := t0,iΞ̂v+ηv for any v at level i, then by the argument in the

proof of Theorem 3.3, we have that {Ξ̂v,t}v glues to a global differential

Ξ̂t on Ct such that limt→0(Ct, Ξ̂t) = (C,Ω).
Note that by adding the modification differential φv,j and the solution

differential ηv to Ξv, the zeroes of multiplicity mi of Ξv at pi ∈ Cv are
broken into mi simple zeroes in a small neighborhood Ui of pi. The
radius of the neighborhood is controlled by the norm of the added
differentials. The modification differentials φv,j are multiples of ti,j,
and the argument above gives the L2-bound on ηv. We can thus merge

the zeroes of Ξ̂t using the arguments in [BCGGM16, Lemma 4.7] to
get the wanted degenerating family (C,Ξt) with ordpi Ξt = mi, and
limt→0(Ct,Ξt) = (C,Ω).
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�

Although the differential Ξt depends on the choice of the modification
differentials {φLv }, the existence of such a degenerating family does not
rely on the choice of {φLv }. Theorem 6.4 in particular implies:

Corollary 6.5. [BCGGM16, Sufficiency Part of Theorem 1.3] A stable

pointed differential (C,Ω, p1, . . . , pn) lies in the boundary of PΩMinc

g,n(µ)
if there exist a twisted differential Ξ of type µ and a full level function
l such that Ξ is compatible with Ω and l.
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