Shannon's noiseless coding theorem

We are working with messages written in an alphabet of symbols x_{1}, \ldots, x_{n} which occur with probabilities p_{1}, \ldots, p_{n}. We have defined the entropy E of this set of probabilities to be

$$
E=-\sum_{i=1}^{n} p_{i} \log _{2} p_{i}
$$

These pages give a proof of an important special case of Shannon's theorem, which holds for any uniquely decipherable code. We will prove it for prefix codes, which are defined as follows:

Definition: A (binary) prefix code is an assignment of binary strings (strings of 0 s and 1s, "code words") to symbols in the source alphabet so that no code word occurs as the beginning of another code word.

Note that message written in a prefix code can be unambiguously decoded by "slicing off" code words as they occur.

Theorem: For any binary prefix code encoding x_{1}, \ldots, x_{n} the average length of a word must be greater than E. More explicitly, setting ℓ_{i} as the length of the code word for x_{i},

$$
\sum_{i=1}^{n} p_{i} \ell_{i} \geq E
$$

Our proof of this theorem will involve two lemmas.
Lemma 1: (Gibbs' inequality). Suppose p_{1}, \ldots, p_{n} is a probability distribution (i.e. each $p_{i} \geq 0$ and $\sum_{i} p_{i}=1$). Then for any other probability distribution q_{1}, \ldots, q_{n} with the same number of elements,

$$
\sum_{i=1}^{n} p_{i} \log _{2} p_{i} \geq \sum_{i=1}^{n} p_{i} \log _{2} q_{i}
$$

(Note: the inequality is usually stated

$$
-\sum_{i=1}^{n} p_{i} \log _{2} p_{i} \leq-\sum_{i=1}^{n} p_{i} \log _{2} q_{i}
$$

Our formulation avoids many minus signs, even though the numbers involved are both negative. For a heuristic motivation consider the case where all the p_{i} are equal. Each $p_{i}=\frac{1}{n}$ and

$$
\sum_{i=1}^{n} p_{i} \log _{2} p_{i}=\sum_{i=1}^{n} \log _{2} p_{i}=\log _{2}\left(p_{1} \cdot p_{2} \cdot \ldots \cdot p_{n}\right)
$$

Substituting $q_{1}, \ldots q_{n}$ for $p_{1}, \ldots p_{n}$ gives $\log _{2}\left(q_{1} \cdot q_{2} \cdot \ldots \cdot q_{n}\right)$. And we know that when the sum of the side-lengths is fixed, the maximum volume of a rectangular solid is obtained when all the sides are equal.)

Proof: (from http : //en.wikipedia.org/wiki/Gibbs\'_inequality)
Since $\log _{2} p_{i}=\frac{\ln p_{i}}{\ln 2}$ and $\ln 2>0$ it is enough to prove the inequality with $\log _{2}$ replaced by \ln wherever it occurs.

We use the following property of the natural logarithm:

$$
\ln x \leq x-1 \text { for all } x>0, \text { and } \ln x=x-1 \text { only when } x=1
$$

In order to avoid zero denominators in the following calculation, we set $I=$ $\left\{i \mid p_{i}>0\right\}$, the set of indices for which p_{i} is non-zero. Then we write

$$
\sum_{i \in I} p_{i} \ln \frac{q_{i}}{p_{i}} \leq \sum_{i \in I} p_{i}\left(\frac{q_{i}}{p_{i}}-1\right)=\sum_{i \in I} q_{i}+\sum_{i \in I} p_{i}=\sum_{i \in I} q_{i}+1 \leq 0 .
$$

Since $\ln \frac{q_{i}}{p_{i}}=\ln q_{i}-\ln p_{i}$, this chain of inequalities gives

$$
\sum_{i \in I} p_{i} \ln q_{i} \leq \sum_{i \in I} p_{i} \ln p_{i} .
$$

Now $\sum_{i \in I} p_{i} \ln p_{i}=\sum_{i=1}^{n} p_{i} \ln p_{i}$ since the new terms all have $p_{i}=0$; and $\sum_{i \in I} p_{i} \ln q_{i} \geq \sum_{i=1}^{n} p_{i} \ln q_{i}$ since new terms are ≤ 0. I.e.

$$
\sum_{i=1}^{n} p_{i} \ln q_{i} \leq \sum_{i \in I} p_{i} \ln q_{i} \leq \sum_{i \in I} p_{i} \ln p_{i}=\sum_{i=1}^{n} p_{i} \ln p_{i}
$$

yielding Gibbs' inequality.
Lemma 2: (Kraft's inequality for binary prefix codes) Let x_{1}, \ldots, x_{n} be the symbols in our alphabet, and suppose we have encoded them as binary words using a prefix code. Let $\ell_{1}, \ldots, \ell_{n}$ be the lengths of the words corresponding to x_{1}, \ldots, x_{n}. Then

$$
\sum_{i=1}^{n} 2^{-\ell_{i}} \leq 1
$$

Proof: Note that a (binary) prefix code can always be represented as a binary tree: as a word is read, the tree branches right or left according as the next bit is 0 or 1 . Each word occurs at the end of a unique "branch."

Set $L=\max _{i} \ell_{i}$. Then the tree corresponding to our prefix code can be extended to a tree where every branch has length L, and there are 2^{L} branches. A code word of length ℓ_{i} corresponds to pruning off from this tree all the possible extensions of the corresponding branch. There are $2^{L-\ell_{i}}$ of these. The total number of deleted branches is then $\sum_{i} 2^{L-\ell_{i}}$; since this sum must be smaller than the total number of branches, we have

$$
\sum_{i=1}^{n} 2^{L-\ell_{i}}=2^{L} \sum_{i=1}^{n} 2^{-\ell_{i}} \leq 2^{L}
$$

so $\sum_{i=1}^{n} 2^{-\ell_{i}} \leq 1$, Kraft's inequality.
Proof of Shannon's theorem: Take x_{1}, \ldots, x_{n} and p_{1}, \ldots, p_{n} as in the statement, suppose the x_{i} have been encoded in a binary prefix code, and let ℓ_{i} be the length of the code word for x_{i}. Then by Kraft's inequality $\sum_{i} 2^{-\ell_{i}} \leq 1$. Call this number $1 / C$, so that $C 2^{-\ell_{1}}, \ldots, C 2^{-\ell_{n}}$ is a probability distribution, and can play the role of $\left\{q_{i}\right\}$ in Gibbs' inequality, which then tells us

$$
\sum_{i=1}^{n} p_{i} \log _{2} p_{i} \geq \sum_{i=1}^{n} p_{i} \log _{2}\left(C 2^{-\ell_{i}}\right)=\sum_{i=1}^{n} p_{i}\left(\log _{2} C-\ell_{i}\right)=\log _{2} C-\sum_{i=1}^{n} p_{i} \ell_{i}
$$

Now put back the minus signs and remember that since $1 / C \leq 1$ we have $C \geq 1$ and $\log _{2} C \geq 0$. We get

$$
\sum_{i=1}^{n} p_{i} \ell_{i} \geq-\sum_{i=1}^{n} p_{i} \log _{2} p_{i}+\log _{2} C \geq-\sum_{i=1}^{n} p_{i} \log _{2} p_{i}
$$

as required.

