
Shannon’s noiseless coding theorem

We are working with messages written in an alphabet of symbols x1, . . . , xn

which occur with probabilities p1, . . . , pn. We have defined the entropy E of
this set of probabilities to be

E = −
n∑

i=1

pi log
2
pi.

Theorem For any uniquely decipherable encoding of x1, . . . , xn as binary
code words (e.g. strings of 0s and 1s) the average length of a word must be
greater than E.

Our proof of this theorem will involve two lemmas.

Lemma 1 (Gibbs’ inequality). Suppose p1, . . . , pn is a probability dis-

tribution (i.e. each pi ≥ 0 and
∑

i pi = 1). Then for any other probability
distribution q1, . . . , qn with the same number of elements,

−
n∑

i=1

pi log
2
pi ≤ −

n∑

i=1

pi log
2
qi.

Proof: Since log
2
pi = ln pi

ln 2
and ln 2 > 0 it is enough to prove the inequality

with log
2

replaced by ln wherever it occurs.We use the following property of

the natural logarithm:

ln x ≤ x − 1 for all x > 0, and ln x = x − 1 only when x = 1.

In order to avoid zero denominators in the following calculation, we set I =
{i|pi > 0}, the set of indices for which pi is non-zero. Then we write

−
∑

i∈I

pi ln
qi

pi

≥ −
∑

i∈I

pi(
qi

pi

− 1) = −
∑

i∈I

qi +
∑

i∈I

pi = −
∑

i∈I

qi + 1 ≥ 0.

Since ln qi
pi

= ln qi − ln pi, this last inequality becomes

−
∑

i∈I

pi ln qi ≥ −
∑

i∈I

pi ln pi.

Now −
∑

i∈I pi ln pi = −
∑n

i=1
pi ln pi since the new terms all have pi = 0; and

−
∑

i∈I pi ln qi ≤ −
∑n

i=1
pi ln qi since new terms are ≤ 0. I.e.

−
n∑

i=1

pi ln qi ≥ −
∑

i∈I

pi ln qi ≥ −
∑

i∈I

pi ln pi = −
∑

i∈I

pi ln pi

1



yielding Gibbs’ inequality.
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