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Abstract Hass and Scott’s example of a 4-valent graph on the 3-punctured
sphere that cannot be realized by geodesics in any metric of negative curva-
ture is generalized to impossible configurations filling surfaces of genus n with k
punctures for any n and k.

1 Introduction

By a configuration on a surface S we mean a 4-valent, connected graph embedded in
S. Going straight (neither right nor left) at each intersection decomposes any config-
uration canonically into a collection of closed curves (the tracks of the configuration)
intersecting themselves and others transversally.

A basic question is whether or not there is a hyperbolic metric on S such that the
configuration is isotopic to a collection of closed geodesics intersecting transversally.
We will say in this case that the configuration can be realized by geodesics. It is an old
but remarkable fact that the simple configuration shown in Figure 1 cannot be realized
by a geodesic in any metric of negative curvature. Joel Hass and Peter Scott discovered
this phenomenon in 1999 [1]. As they remark, their proof of non-realizability can be
by replaced by an argument, due to Ian Agol, using the Gauss-Bonnet Theorem.

In this paper Agol’s argument is generalized to produce an infinite family of non-
realizable configurations, the polygonal impossible configurations, including a one-track,
non-realizable configuration filling the surface of genus n with k punctures for every
n ≥ 2 and k ≥ 0. In some sense polygonal impossible configurations are all of the non-
realizable examples that can be constructed using our general form of the argument.

1.1 Preliminaries

We will construct configurations with the following properties.
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Figure 1: The Hass-Scott example.

• The first property, required by negative curvature, is that none of the curves
represents a power (> 1) in the free homotopy group π1S, nor do two distinct
curves represent powers (≥ 1) of the same element of π1S. Since in negative
curvature each free homotopy class contains a unique geodesic, a power curve
collapses to multiple tracings of a single geodesic, and two homotopic curves
collapse to the same geodesic; in either case the initial configuration is destroyed.

• The second is that the configuration fills the surface in the sense that every
complementary region is topologically either a disc or a once-punctured disc. (For
a graph embedded in a smooth surface [3], this corresponds to the property of
being cellular; when the configuration is one-track, it produces a filling curve [2]).
Without this filling property one easily gets examples of impossible configurations
with any genus or number (≥ 3) of deleted points directly from the Hass-Scott
example by adding punctures and handles.

2 Polygonal impossible configurations

Definition 2.1. A polygonal impossible configuration P is any orientable, connected
2-dimensional cellular complex constructed as follows:

(1) Choose a number N ≥ 3, which will be the number of vertices in the configuration.

(2) Choose a number p, with N/4 ≤ p ≤ N/3, and p polygons A1, . . . , Ap which
together have N corners (This is possible since p ≤ N/3). Furthermore, at least
one Ai must be a triangle: see the remark below.

(3) Choose q = N−2p even-sided polygons B1, . . . , Bq which together have 2N corners.
(This is possible since p ≥ N/4 implies 4q = 4N − 8p ≤ 2N).

(4) Identify an edge of one of the Ai with every other edge of each Bj, preserving
orientations. Avoid forming a ring of squares: such a ring would lead to two
parallel tracks.

Remark 2.2. At least one of the Ai must be a triangle. In fact, suppose first all the
Ai are squares; then N = 4p, q = N − 2p = 2p, and 2N/q = 4, so all the Bi must also
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be squares; and then the configuration P constructed by the algorithm will be made
up of one or more sets of parallel curves, so cannot be non-power. On the other hand if
all the Ai have ≥ 4 sides, and at least one has strictly more, then N > 4p contradicting
p ≥ N/4.

Theorem 2.3. A polygonal impossible configuration cannot cannot be embedded in a
surface of negative curvature so that the set of curves defined by its 1-skeleton is a set
of geodesics.

Proof. Set ni to be the number of vertices of Ai, and αi,j, j = 1, . . . , ni to be the
interior angle at the jth vertex of Ai.

Likewise set mi to be the number of vertices of Bi, and βi,j, j = 1, . . . ,mi to be the
interior angle at the jth vertex of Bi.

Assume all the edges are geodesic arcs extending smoothly from polygon to polygon,
so that each of the αi,j is complementary to exactly two of the βi,j.

The Gauss-Bonnet theorem [7] gives

α1,1 + α1,2 + · · ·α1,n1 < (n1 − 2)π
. . .

αp,1 + αp,2 + · · ·αp,np < (np − 2)π.

Adding these equations,

p∑
i=1

ni∑
j=1

αi,j < (N − 2p)π. (∗)

Similarly, the sum of all the βs is strictly less than (2N − 2q)π. On the other hand
each β is π − α for some α, with each α occurring exactly twice.

So

(2N − 2q)π >

q∑
i=1

mi∑
j=1

βi,j = 2

p∑
i=1

ni∑
j=1

(π − αi,j) = 2Nπ − 2

p∑
i=1

ni∑
j=1

αi,j

i.e.
∑p

i=1

∑ni

j=1 αi,j > qπ. Since by the construction q = N − 2p, this inequality
contradicts (∗).

3 The genus of a polygonal impossible configura-

tion; minimal configurations

Consider a polygonal configuration P created from N , A1, . . . , Ap and B1, . . . Bq as
above. Topologically, P is an orientable surface with boundary: the N unused edges
of the Bs are grouped by the identifications in step 4 above into a certain number
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γ1, . . . , γr of closed curves, which together form the booundary ∂P . Adding a disc
along each γi creates a closed, orientable surface SP , with Euler characteristic χ =
N − 2N + (p+ q + r) = −p+ r , and genus

gP =
1

2
(2− χ) =

1

2
(2− r + p) (∗).

We can take gP as the genus of P ; this matches the usual definition of the genus of
a graph as the genus of the simplest surface on which it can be embedded so that its
complement is topologically a set of discs. To make SP into a hyperbolic surface on
which P gives an impossible, filling configuration it suffices to puncture each monogon
or bigon of SP and, in case gP = 0 or 1, to add punctures to one or more of the discs.

We will call a polygonal configuration on a smooth surface minimal if it fills the
surface, and has the smallest possible number of vertices. Since r ≥ 1, (∗) implies
that p, the number of A-polygons, must satisfy p ≥ 2g − 1. And since each A-polygon
is at least a triangle, the minimum number of vertices for a polygonal impossible
configuration filling the smooth surface of genus g ≥ 2 is 6g − 3.

4 Examples

The smallest possible N is N = 3. Here p and q must equal 1, with A1 a triangle and
B1 a hexagon. There are two ways to make the identification, with different results, as
shown in Figure 2.

a.

b.

c.

Figure 2: N = 3. a. one triangle, one hexagon. b. (Asterisks represent punctures).
Here the identification gives r = 3 and gP = 0, yielding a (1-track) impossible config-
uration on the 3-punctured sphere (the configuration exhibited by Hass and Scott). c.
Otherwise the identification gives r = 1 and gP = 1; hence a graph on the torus which
becomes an impossible (3-track) configuration on the punctured torus. This figure
illustrates the shorthand diagrams we will be using to describe polygonal impossible
configurations. Each (2n)−B-polygon is represented by a tree with n ends. The more
“realistic” image is straightforward to reconstruct from the diagram.
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a. b.

Figure 3: With the same conventions, a 1-track (a.) and a 2-track (b.) polygonal
impossible configuration on the punctured torus.

5 Unicursal, filling configurations

Definition 5.1. A configuration is unicursal if it has exactly one track, i.e., as de-
scribed in the introduction, if it can be traversed by a single curve.

5.1 Smooth surfaces of genus ≥ 2

Proposition 5.2. There exists a minimal unicursal impossible polygonal configuration
filling the smooth surface of genus n.

Proof. We begin with genus 2.

Figure 4: A 1-track impossible configuration on the genus-2 surface with N = 9, p =
3, q = 3 (decagon and 2 squares), r = 1, shown with its diagram.

This construction can be extended to give an impossible configuration Pn filling the
surface of genus n, for each n ≥ 2.
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   n-2

copies

Figure 5: The configuration Pn has p = 2n− 1 triangles matched with 2n− 2 squares
and a (4n+ 2)-gon. It has r = 1 and therefore genus 1

2
(2 + p− r) = n.

Assertion: The configuration Pn has a single track if n ≡ 0 or 2 mod 3, and 3 tracks
if n ≡ 1 mod 3.
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b2
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y2

z2
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x2
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Figure 6: The two ends of Pn, with track segments labeled.

In fact, at each stage in the assembly (from left to right) there are 3 tracks of the
curve, a1a2,b1b2 and c1c2. Adding the next stage permutes the six free ends by the
cycle (a1b1c1)(a2c2b2). After 0 iterations (n = 2), the ends a1,b2, c1, a2,b1, c2 will
be joined respectively to the free ends on the right x1,x2,y1,y2, z1, z2 resulting in a
single loop:

x1a1a2y2y1c1c2z2z1b1b2x2.

After 1 iteration (n = 3), there still is a single loop:

x1b1b2z2z1c1c2y2y1a1a2x2.

But after 2 iterations (n = 4) the identifications give three loops: x1c1c2x2, y1b1b2y2,
z1a1a2z2. Since the permutation has order 3, the sequence repeats.

The case of genus 3k + 4, k ≥ 0. In this case a different construction produces a
family of minimal, unicursal, filling configurations. It is shown in Figure 7.
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copies

Figure 7: The configuration Q3k+4, k ≥ 0 has 6k + 7 A-polygons, all triangles, so
N = 18k + 21 and q = 6k + 7. The B-polygons are 6k + 6 squares and one 12k + 18-
gon. One can check this configuration is unicursal and that r = 1, so the genus is
1
2
(2 + p− r) = 3k + 4 and the configuration is filling.

5.2 Surfaces with punctures

Theorem 5.3. The number of tracks in a polygonal configuration is congruent mod 2
to the number of vertices. In particular, a configuration can be unicursal only if the
number of vertices is odd.

This theorem is proved in the Appendix.

For configurations filling surfaces with two or more punctures, this theorem pro-
duces a conflict between being unicursal and being minimal, as defined above. Suppose
that P (N, p, q, r) is a minimal, unicursal configuration on the smooth surface Σn,0 (we
use the notation Σn,k for the surface of genus n with k punctures). By minimality
and (∗), p = 2n − 1. Since r = 1 the surface can be given one puncture in that com-
plementary region; the result will be a minimal, unicursal configuration filling Σn,1.
No problem so far. Working on Σn,2 we will need r = 2 and, by (∗), p = 2n. Mini-
mality would require all p of the A-polygons to be triangles, but then N = 3p would
be even and, by Theorem 1, the configuration cannot be unicursal. Both possibilities
can be realized separately, by adding to the configutation P one or the other of the
sub-configurations shown in Fig. 8.

This discussion can be summarized as follows:

Proposition 5.4. There exist a minimal polygonal impossible configuration and a uni-
cursal polygonal impossible configuration filling the surface of genus n with k punctures,
n ≥ 2, k ≥ 0. These are generally different.

5.3 Genus 0 and 1

For genus 0 the unicursal and minimal (Hass-Scott) example on the 3-punctured sphere
can be extended by splicing in copies of Fig. 8 a. (resp. b.) to give a minimal (resp.
unicursal) polygonal impossible configuration on the sphere with k punctures (k ≥ 3).
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a. b.

Figure 8: These two sub-configuration can be added to a configuration P filling Σn,k.
Sub-configuration a. can be grafted along a free edge of any B-polygon; b. can be
inserted at any of the interfaces between a B-polygon and an A. The result is a con-
figuration on the same surface, but with r increased by 1. Puncturing the new comple-
mentary cell will exhibit the new configuration as a polygonal impossible configuration
filling Σn,k+1. If P was minimal, using a. will also give a minimal configuration (this
follows from (∗)); but it will clearly not be unicursal. If P was unicursal, using b. will
also give a unicursal configuration; but it will not be minimal.

For genus 1 the minimal example of Fig. 2 b. can be extended by splicing in copies
of Fig. 8 a. to give a minimal polygonal impossible configuration on the torus with k
punctures (k ≥ 1); similarly for unicursals, using Fig. 3 a. and Fig. 8 b.

6 Appendix: Unicursal configurations

The examples in Figs. 2, 3 and 4 suggest the following statement.

Theorem 6.1. The number of tracks of a polygonal impossible configuration is con-
gruent mod 2 to the number of vertices. In particular, such a configuration can only be
unicursal if the number of vertices is odd.

Preliminaries for the proof.

(1) Taking the planar polygons Ai and Bi as in the construction of the configuration,
give each one the standard (counterclockwise) orientation. Then give the segments
of the configuration their inherited orientation, except segments shared by an A
and a B keep their A-orientation. With this convention, the track-segments at
each intersection are coherently oriented, and give a well-defined orientation on
each track (Figure 9).

(2) Project the configuration into the plane, and consider it as a collection of oriented
immersed curves. The configuration depends only on the nature of the polygons
Ai and Bi and the way they are connected. In particular, its projection can be
displayed so that the Ai and Bi appear as in Figure 10.

Proof of Theorem 6.1
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A A

B

B

Figure 9: The A and B orientations are adjusted to give a well-defined orientation on
each track.

B1

B2

B3

A2

A3

B1 B2
B3

A1 A2 A3

A1

Figure 10: The projection of a polygonal impossible configuration can be displayed
with all the B polygons at the top, all the A polygons at the bottom, and so that the
only horizontal tangents appear at the top and at the bottom. This figure shows the
configuration from Figure 4, oriented as above, with its display in this form.

(1) We show that the sum of the rotation numbers of the projected complex of curves
is even. This is the sum of the degrees of the Gauss maps, which take a parameter
value to the unit tangent vector to the track in question, considered as a point on
the unit circle. The degree of a smooth map is equal modulo 2 to the number of
inverse images of a regular value [4]. For a regular value we choose (−1, 0), the
horizontal unit vector pointing left.

First, inspection of Fig. 10 shows that each B polygon contributes exactly one
to the count of inverse images of (−1, 0). With notation from the definition of
polygonal impossible configuration, the contribution of the B-polygons is q.

Next we will show that (∗) the ni-gon Ai contributes ni − 2 to this count. It will
follow that the total contribution of the A-polygons is

∑p
i=1(ni − 2) = N − 2p.

Since q = N − 2p, the grand total is the even number 2q.

To prove (∗) note that an oriented n-gon in general position must fall in one of the
three cases:
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tL tR

sRsL

eL

bR

eR

bL

Figure 11: The eight possible relative positions of an edge in an general-position ori-
ented polygon: tL, tR top left and right, sL, sR side left and right, bL,bR botton left
and right and eL, eR top-to-bottom left and right.

(1) tL + tR + bL + bR + (n− 4){sL, sR}
(2) eL + tR + bR + (n− 3)sR
(3) eR + tL + bL + (n− 3)sL.

In each of these cases, the number of inverse images of −x is n − 2 (compare
Figure 11.

(2) The number of self-intersection points of an immersed oriented curve in the plane,
counted mod 2, is one less than its rotation number. (Because the self-intersection
number mod 2 is a regular homotopy invariant [6], and because any curve with
rotation number n is regularly homotopic to n turns of a spiral, with the endpoints
joined [5]: a curve with |n| − 1 intersection points). So a curve with even rotation
number must have an odd number of self-intersection points.

(3) Let γ1, . . . , γk be the k tracks of the path through our configuration. We know
that the sum of their winding numbers is even, so an even number ` of them have
odd winding number; these ` tracks each have even self-intersection number. The
other k − ` tracks have even winding number and therefore odd self-intersection
number. The sum of their self-intersection numbers is therefore congruent to k− `
and therefore to k, since ` is even; it follows that the sum of all the self-intersection
numbers of the γi is congruent mod 2 to k.

(4) Finally, the self-intersection points of the path through the configuration, drawn
as in Fig. 10, are of three types: those coming from the self-intersection numbers
of γi for i = 1, . . . , k, those coming from intersections between γi and γj for i 6= j,
and those coming from the intersections of the descending arms of the B-polygons.
The second and third types come in pairs. So the total number of self-intersections
is congruent mod 2 to k; and this must also hold for the number of those of the
first two types, which is the number of vertices of the configuration.
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The following result is useful in constructing unicursal configurations.

Theorem 6.2. A polygonal impossible configuration with an odd number of vertices can
be adjusted, by changing the identifications in step 4 of the algorithm, to be unicursal.
(This may change the genus; see Remark below.)

Proof. uppose the configuration, displayed as in Fig. 10, is not unicursal. Then by
Theorem 1 it has at least three distinct paths; label them I, J,K, . . . etc. Let us call
connectors the parts of the B-polygons that stretch down to the A; an IJ-connector
will be one with path I on the left, so leading away from the B-polygon in question,
and J on the right. We will see that two of the connectors can be switched (each
attaching to the A-polygon edge previously attached to the other) in such a way that
the number of paths is reduced by 2. Iterating this process if necessary proves the
theorem.

Assertion: There exist three paths I, J,K such that P (IJK): the configuration
has an IJ-connector and a KI-connector.

Proof of Assertion: Start with B1. We can suppose without loss of generality that
B1 is incident to at least two paths, so B1 has an IJ-connector with I 6= J . Now

• (case a) B1 has no other paths incident, in which case it must have a JI-connector
as well, or

• (case b) B1 is traversed by other paths K,L, . . . , so there must exist

– (case b1) an IK-connector for some K

∗ (case b11) if B1 has a JI-connector we have P (IKJ) and

∗ (case b12) if not, B1 must have an LI-connector for some L 6= I giving
P (IJL).

– or (case b2) a JK-connector for some K, which leads to P (JKI).

• This leaves case a. The set of B-polygons traversed by a path or paths K,L, . . .
different from I and J must be non-empty, since the configuration has at least
three paths, and at least one polygon in that set must be traversed by I or J ,
since the configuration is connected. That polygon must contain a connector of
type IK,KI, JK or KJ for some K 6= I,K 6= J . Since B1 contains both an IJ
and a JI, those four connectors yield, respectively, P (IKJ), P (IJK), P (JKI),
P (JIK).

After the connectors have been switched, I, J and K have been welded into a single
path. Compare Figure 12. Initially I goes from b to c (out of the picture) and then
from d to a. Now between c and d the path also traverses the whole of J , and between
a and b it traverses the whole of K.

11
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Figure 12: The relevant part of the configuration, before and after the connectors have
been switched.

Remark 6.3. The (IJK) adjustment may change the genus of the resulting surface,
because it also reconnects tracks of ∂P . For example, when it is made on the 3-
component configuration of Figure 2c (genus 1) it yields the uncursal configuration of
Figure 2b (genus 0).
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