next up previous
Next: About this document ...

Homework 13 Solution

FILIPE MOURA



11.2.1

a


\begin{displaymath}\sum_{k=0}^{5} 2^k =1 + 2 + 4 +8 + 16 + 32 =63\end{displaymath}


\begin{displaymath}\frac{1-2^6}{1-2}=2^6-1 = 63\end{displaymath}

b


\begin{displaymath}\sum_{k=0}^{5}{\left(\frac{1}{100}\right)^k} =1 + \frac{1}{10...
...00000}+
\frac{1}{100000000000} =\frac{10101010101}{10000000000}\end{displaymath}


\begin{displaymath}\frac{1-0.01^6}{1-0.001}=\frac{1-\frac{1}{1000000000000}}{1-\...
...ac{111111111111}{110000000000}= \frac{10101010101}{10000000000}\end{displaymath}

(notice that $11 \times 10101010101 = 101010101010 + 10101010101 =
111111111111 $).

c

If we apply the formula for r=1, we get $\frac{0}{0}$.

In this case,

\begin{displaymath}\sum_{k=0}^{n}{a 1^k} = (n+1)a\end{displaymath}

d


\begin{displaymath}S_n - r S_n = \sum_{k=0}^{n}{a r^k} - \sum_{k=0}^{n}{a r^{k+1...
...- \sum_{k=1}^{n}{a r^k} - a r^{n+1} = a \left(1-r^{n+1} \right)\end{displaymath}

e

Using the formula from d,

\begin{displaymath}S_n - r S_n = (1-r) S_n =a \left(1-r^{n+1}
\right)\end{displaymath}

from where we get

\begin{displaymath}S_n =a \left( \frac{1-r^{n+1}}{1-r}
\right)\end{displaymath}

f

$3+6+ \cdots + 3072 = 3(1+2+4+8+ \cdots +1024)= 3\sum_{k=0}^{10}{2^k}=3
\left( \frac{1-2^{11}}{1-2} \right) = 3 \left(2^{11} -1 \right)= 6141$

11.2.2

a

$a_1 =1; a_2=\frac{1}{2}; a_5=\frac{1}{120}; a_{10}=\frac{1}{3628800}$

b

$S_1=1; S_2=\frac{5}{2}; S_5=\frac{163}{60};
S_{10}=\frac{9864101}{3628800}$

11.2.4

a

$a_1 =\frac{1}{5}; a_2=\frac{1}{25}; a_5=\frac{1}{3125};
a_{10}=\frac{1}{9765625}$

b

$S_1 =\frac{1-\left(\frac{1}{5}\right)^{2}}{1-\frac{1}{5}}=\frac{6}{5};
S_2=\fra...
...frac{1-\left(\frac{1}{5}\right)^{11}}{1-\frac{1}{5}}=\frac{12207
031}{97656255}$

c

Sn is increasing because $S_{n+1}-S_n=\left(\frac{1}{5}\right)^{n+1}>0$.

Sn is bounded above: $S_n=\frac{1-\left(\frac{1}{5}\right)^{n+1}}{1-\frac{1}{5}}=\frac{5-
\left(\frac{1}{5}\right)^{n}}{4} < \frac{5}{4}$.

Therefore, Sn must converge.

d


\begin{displaymath}\lim_{k \rightarrow \infty} S_n=\lim_{k \rightarrow \infty} \frac{5-
\left(\frac{1}{5}\right)^{n}}{4} = \frac{5}{4}\end{displaymath}

e

$R_n=\sum_{k=n+1}^{\infty} \left(\frac{1}{5}\right)^{k} = \frac{1}{4}
\left(\frac{1}{5}\right)^{n}$

$R_1 =\frac{1}{20}; R_2=\frac{1}{100}; R_5=\frac{1}{12500};
R_{10}=\frac{1}{39062500}$

f

Clearly, Rn>0.

$R_{n+1}-R_n=-\left(\frac{1}{5}\right)^{n+1}<0$

g


\begin{displaymath}\lim_{k \rightarrow \infty} R_n=\frac{1}{4} \lim_{k \rightarrow
\infty} \left(\frac{1}{5}\right)^{n} = 0\end{displaymath}

11.2.18

We have S2n=1, S2n+1=0. This implies that $\lim_{k \rightarrow
\infty} S_n=\sum_{k=0}^{\infty} (-1)^k$ does not exist.

11.2.56

After the first bounce, the ball rebounds to a heigth of $4 \times
\frac{2}{3} $ feet. The ball then falls from this heigth and rebounds to $4 \times \left(\frac{2}{3}\right)^2 $ feet, etc.

Therefore, the total distance the ball travels is

\begin{displaymath}4+ 2\times 4 \times
\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n =4 +\frac{8}{1-
\frac{2}{3}} -8= 20\end{displaymath}

11.2.68

a

If the interval $\left[1, n+1 \right]$ is divided into n equal subintervals, and the left endpoint of the jth interval is frac1j. Therefore, $L_n= \sum_{k=1}^{n} \frac{1}{k} =H_n$.

b

Since $\frac{1}{x}$ is a decreasing function on the interval $\left[1,
\infty \right)$, Ln > IN, for all $n \geq 1$. Since $I_n =
\int^{n+1}_{1} \frac{d x}{x} =\ln (n+1)$, $\lim_{k \rightarrow \infty}
I_n=\infty$ and $\lim_{k \rightarrow \infty} L_n=\lim_{k \rightarrow
\infty} H_n=\sum_{k=1}^{\infty} \frac{1}{k}=\infty$.

11.3.1

a

For $k \geq 0$, $k+ 2^k \geq 2^k$. This implies $a_k \leq
\frac{1}{2^k}$. Since

$\sum_{k=0}^{\infty} \frac{1}{2^k}$ converges, so does $\sum_{k=0}^{\infty} a_k$

b

$R_{10}=\sum_{k=11}^{\infty} a_k < \sum_{k=11}^{\infty} \frac{1}{2^k} =
\frac{1}{2^{11}} \sum_{k=0}^{\infty} \frac{1}{2^k} =
\frac{1}{2^{10}}$

c

Since $R_{10}<\frac{1}{2^{10}} \approx 0.00097656$, Sn has the desired accuracy if $n \geq 10$. A good estimate for the limit is


\begin{displaymath}\sum_{k=0}^{10} a_k =\frac{127807216183}{75344540040}\end{displaymath}

d

Since ak >0, $\sum_{k=0}^{10} a_k < \sum_{k=0}^{\infty} a_k$.

11.3.12

We have, for k>3, $\ln k > \ln 3$, or $\frac{1}{\ln k} < \frac{1}{\ln
3} <1$. Therefore, $\sum_{k=1}^{\infty} \frac{1}{{\ln k}^k}$ converges, since $\sum_{k=1}^{\infty} \frac{1}{(\ln 3)^k}$ converges to $\frac{1}{1-\frac{1}{\ln 3}} =\frac{\ln 3}{\ln 3 - 1}$.

11.3.14


\begin{displaymath}\lim_{k \rightarrow \infty} \frac{a_{k+1}}{a_k} = \lim_{k \rightarrow
\infty} \frac{(k+1)^2}{k^2} \frac{1}{k+1} =0 <1 \end{displaymath}

11.3.15


\begin{displaymath}\lim_{k \rightarrow \infty} \frac{a_{k+1}}{a_k} = \lim_{k \rightarrow
\infty} \frac{2}{k+1} =0 <1 \end{displaymath}

11.3.16


\begin{displaymath}\lim_{k \rightarrow \infty} \frac{a_{k+1}}{a_k} = \lim_{k \rightarrow
\infty} \frac{(k+1)^2}{k^2} \frac{1}{2} =\frac{1}{2} <1 \end{displaymath}

11.3.21

We have


\begin{displaymath}\lim_{k \rightarrow \infty} \frac{a_{k+1}}{a_k} = \lim_{k \ri...
...imes
(2k+3)} = \lim_{k \rightarrow \infty} \frac{1}{2k+3} =0 <1\end{displaymath}

Therefore, by the ratio test, the series converges.

11.3.27
a
We have


\begin{displaymath}\lim_{k \rightarrow \infty} \frac{a_{k+1}}{a_k} = \lim_{k \ri...
...{3}\right)^{k+1}}{1+\left(\frac{2}{3}\right)^{k}}=
\frac{1}{2}\end{displaymath}

b
Since $\lim_{k \rightarrow \infty} \frac{a_{k+1}}{a_k} <1$, the series converges.

c

\begin{displaymath}\sum_{k=1}^{\infty}{\left(\frac{1}{2^k} +\frac{1}{3^k}
\right...
...c{1}{1-\frac{1}{2}} +
\frac{1}{1-\frac{1}{3}} - 2 = \frac{3}{2}\end{displaymath}

(sum of two absolutely convergent series).



 
next up previous
Next: About this document ...
Tony Phillips
1998-05-05