
Stony Brook University MAT 341 Fall 2011
Homework Solutions, Chapter 5

§5.3 # 10 Show that the function

umn(x, y, t) = sin(µmx) sin(νny) cos(λmnct)

where µm = mπ
a
, νn = nπ

b
, and λ2

mn = µ2

m + ν2

n is a solution of the
two-dimensional wave equation on the rectangle 0 < x < a, 0 < y < b,
with u = 0 on the boundary.

SOLUTION. This involves plugging u into the equation ∇2u = 1

c2
∂u
∂t

and checking that umn = 0 if x = 0, x = a, y = 0, or y = b.

§5.3 # 11 The places where umn(x, y, t) = 0 for all t are called nodal lines. De-
scribe the nodal lines for

(m,n) = (1, 2), (2, 3), (3, 2), (3, 3).

SOLUTION. Take (3, 2) for example. The function u32(x, y, t) is zero
for all t for points (x, y) where sin(3πx

a
) sin(2πy

b
) = 0, i.e. where either

one of the sines is zero. In the interval [0, a], sin(3πx
a
) = 0 when x =

0, a/3, 2a/3, a, since then 3πx
a

is an integer multiple of π. Besides the
vertical borders, this gives vertical nodal lines x = a/3, 0 < y < b
and x = 2a/3, 0 < y < b. Similarly the points in the rectangle where
sin(2πy

b
) = 0 satisfy y = 0, b/2, b. Besides the horizontal borders, this

gives an additional, horizontal, nodal line y = b/2, 0 < x < a.

§5.3 # 12 Determine the frequencies of vibration for the functions umn of Exercise
10. Are there different pairs (m,n) that have the same frequency if
a = b?

SOLUTION. sin(λmnct) has period 2π/(λmnc) and frequency λmnc/(2π)
cycles per second (Hertz), if t is measured in seconds. For example u32

has frequency λ32c/(2π) =

c
√

(3π
a
)2 + (2π

b
)2

2π
=

c

2

√

(
3

a
)2 + (

2

b
)2.
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When a = b, umn has frequency c
2a

√
m2 + n2. Clearly the pairs (m,n)

and (n,m) have the same frequency. On the other hand since 50 =
72 + 12 = 52 + 52 the modes (7, 1) and (5, 5) vibrate with the same
frequency. See

http://mathworld.wolfram.com/SumofSquaresFunction.html

for more information on this problem; of related interest is the “hearing
the shape of a drum” problem: see

http://en.wikipedia.org/wiki/Hearing_the_shape_of_a_drum.

§5.4 # 5 Suppose the [wave and heat] problems were to be solved in the half-disk
0 < r < a, 0 < θ < π, with additional conditions

v(r, 0, t) = 0, 0 < r < a, 0 < t

v(r, π, t) = 0, 0 < r < a, 0 < t.

What eigenvalue problem arises in place of [the full disk analysis]?
Solve it.

SOLUTION. The separation of variables v(r, θ, t) = R(r)Q(θ)T (t) goes
just as for the full disk, and leads as before to Q′′+µ2Q = 0, with gen-
eral solution Q(θ) = a cosµθ + b sinµθ. The new boundary conditions
become conditions on Q:

Q(0) = 0, Q(π) = 0.

The first condition forces a = 0; the second is b sinµπ = 0, which forces
µ = n, an integer. So the eigenvalues are the positive integers 1, 2, 3, . . .
and the Q-eigenfunctions are sin θ, sin 2θ, sin 3θ, . . ..

§5.5 # 1 Find the values of the parameter λ for which the following problem has
a non-zero solution:

1

r

d

dr
(r
dφ

dr
) + λ2φ = 0, 0 < r < a

φ(a) = 0, φ(0) bounded.
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SOLUTION. This is Bessel’s Equation with µ = 0. The solution
which is bounded at 0 is the Bessel function J0(λr). The boundary
condition φ(a) = 0 means that λa must be one of the zeroes of J0;
the first four are listed on page 328. So the possible values of λ are
2.405/a, 5.520/a, 8.654/a, . . .

§5.5 # 2 Sketch the first few eigenfunctions found in exercise 1.

SOLUTION. Use the graph of J0 on page 329, and suppose a = 5 for
the sketch. The graph on [0,5] of the first eigenfunction is obtained
by stretching the page 329 graph horizontally to drag the first zero
from 2.405 to 5, and then discarding the rest of the graph. For the
second eigenfunction, compress the page 329 graph horizontally to drag
the second zero from 5.420 to 5, and discard the rest. For the third,
compress to drag 8.654 to 5. Etc.

§5.5 # 10 Using the result of exercise 4, solve the eigenvalue problem

1

r

d

dr
(r
dφ

dr
) + λ2φ = 0, 0 < r < a

dφ

dr
(a) = 0, φ(0) bounded.

SOLUTION. The equation as before is Bessel’s Equation with µ = 0;
the solution which is bounded at 0 is J0(λr). The possible values of λ
are determined by the boundary condition dφ

dr
(a) = 0, i.e.

d

dr
J0(λr)|a = 0.

From exercise 4 we have

d

dr
J0(λr) = −λJ1(λr)

so our boundary condition becomes

λJ1(λa) = 0.

So λ must be 0 or 1

a
times one of the zeroes of the Bessel function J1;

the first few are listed on p. 328: λ = 3.832/a, 7.016/a, . . . .
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§5.6 #7 Solve the general problem of determining the temperature in a cylin-
der with an isulated cylindrical surface [in a disk with an insulated
boundary, and no θ-dependence]. The problem is

1

r

∂

∂r
(r
∂v

∂r
) =

1

k

∂v

∂t
, 0 < r < a, 0 < t

∂v

∂r
(a, t) = 0, 0 < t

v(r, 0) = f(r), 0 < r < a.

The separation of variables v(r, t) = φ(r)T (t) goes as in the text and
leads to

T ′′ + λ2T = 0, 0 < t

(rφ′)′ + λ2rφ = 0, 0 < r < a.

The second equation is Bessel’s Equation with µ = 0; the solution
bounded at r = 0 is φ(r) = J0(λr). The eigenvalues λ are determined
by the boundary condition which becomes φ′(a) = 0. These are worked
out in §5.5 #10 above: λ0 = 0, λ1 = 3.832/a, λ2 = 7.016/a, . . . . Using
superposition, the general solution is

v(r, t) =
∞
∑

0

anJ0(λnr)e
−kλ2

n
t.

The coefficients an are determined by the initial condition

v(r, 0) = f(r) =
∞
∑

0

anJ0(λnr).

There is some more work to do: the orthogonality we need is different
from that described on p. 333, since these λs come from the zeroes of
J1, not J0. But the same double-integration-by-parts proof works in
this case also:

∫ a

0

J0(λmr)J0(λnr)r dr = 0, n 6= m

and (see §5.6 #8)
∫ a

0

[J0(λnr)]
2r dr =

a2

2
[J0(λna)]

2

so

an =
2

a2[J0(λna)]
2

∫ a

0

f(r)J0(λnr)r dr.
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