Stony Brook University MAT 341 Fall 2011
Homework Solutions, Chapter 4

§4.2 # 6 Solve the potential equation in the rectangle 0 < z < a, 0 <y < b,
subject to the boundary conditions u(a,y) = 1,0 <y < b, and u =0
on the rest of the boundary.

SOLUTION: The boundary conditions are homogeneous with respect
to y so when we separate variables u(x,y) = X (z)Y (y),
X/l Y// Y// X/l

Vu=X"Y+XY"=0, —+4+-—=0, —=—"— =
Y + X Ty =Yy x ¢

(with boundary conditions Y (0) = Y (b) = 0 and X (0) = 0) the con-
stant ¢ should be negative, i.e. —A2. In that case the general solution
for Y is

Y (y) = ay cos(Az) + by sin(Az).

The boundary conditions on Y force first ay = 0 and then A = 5*: the

n-th eigenfunction is sin “7¥.

The n-th corresponding X-equation is X" = (%%)2X with general so-
lution

X, (x) = A, cosh %x + B,, sinh %x

The boundary condition X (0) = 0 forces A4,, = 0.

Since these conditions are homogeneous, and the equation is linear, we
can use superposition to write

ZB smh—smn%:y

and use the boundary condition u(a,y) = 1 to determine the coefficients
{B,}. In fact

nmwa nmw
ZB smh—sinTy =1
means that B, sinh “7¢ is the n-th Fourier sine coefficient of the function
equal to 1 on [0, b], i. e the n-th Fourier coefficient of the square wave:
% if n is odd, 0 if n is even. So if n is odd, then

4 1

7n sinh %

B, =

1
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and B,, = 0 if n is even.

Solve the problem consisting of the potential equation on the rectangle
0 <z <a, 0<y<bwith the given boundary conditions. Two of the
three are very easy if a polynomial is subtracted from wu.

(a). 9%(0,y) = 0; u =1 on the rest of the boundary.

SOLUTION. Follow hint, set v(z,y) = u(x,y) —1. Then V?v = V?u =
0 and the boundary conditions become %(O, y) = 0; u = 0 on the rest
of the boundary. The solution to this problem is clearly the constant

function v = 0, so the solution to the given problem is the constant
function u(x,y) = 1.

(b). 24(0,y) = 0; 2(a,y) = 0; u(z,0) = 0; u(z,b) = 1.

) Oz
SOLUTION. Follow hint, set v(x,y) = u(z,y) — £. Then Then V?v =
V2u = 0 and the boundary conditions become %(0, y) = 0; %(a, y) =

0; u(z,0) = 0; u(x,b) = 0. The solution to this problem is clearly the
constant function v = 0, so the solution to the given problem is the
constant function u(z,y) = ¥.

(). Ge(w,0) = 0; u(z,b) = 0; u(0,y) = 1; u(a,y) = 0.
SOLUTION. The condition %(m, 0) = 0 is equivalent to u(z,0) = C,
a constant. Now the problem splits into two problems: u = u; + us

where
V2ul - 07 ul(O,y) = ul(a,y) = 07 ul(x, 0) = O? Ul(l',b) =0

VQUQ — 07 UQ(CL’,O) - Ul(l’,b) - 07 UQ(an) = 17u2(a7y> = 0.

These each can be solved by the method of §4.2 # 6. To simplify the
calculations switch to vi(x,y) = uy(z,b—1y) and ve(x,y) = us(a —x,y)
and then switch back.

Solve the potential problem in the slot 0 < x < a,0 < y, for each of
these sets of boundary conditions.

(a.) w(0,y) =0, u(a,y) =0,0 < y; u(z,0) =1,0 < z < a.



SOLUTION: This is a ui-type problem (homogeneous z-boundary con-
ditions) as on p. 279. So when we separate to get
X// Y//

=C

X Y

we should take ¢ = \?; the X-eigenfunctions are then sin "% as usual.

The Y, equation then has general solution A,e"a + B,e "« . The
requirement that solutions be bounded as y — oo forces A, = 0.
Note how the choice of exponential solutions rather than hyperbolic-
trigonometric simplifies the calculation. The other choice is also legit-

imate, but will involve more work. The general solution is then
NAL _nry

u(z,y) =Y B,sin Te’T.
0

The coefficients B,, are determined by the boundary condition u(z,0) =
1.0<z < a:

Z B, sin 1.
0

This is the sine series for the square wave: B,, = ﬂin if n is odd, 0 if n
is even.

a

(b.) w(0,y) =0, wu(a,y)=e€Y, 0<y;u(z,0)=0 0<zx<a.

SOLUTION. Here the boundary condition in y is homogeneous, so we
separate as
X// Y//
X v
with ¢ positive, e.g. ¢ = A2, and we solve for Y first. The general YV
solution is Y = acos Ay + bsin A\y. The boundary condition u(x,0) =
0 forces @ = 0. The corresponding X-equation is X” = A\2X with
general solution X = A(\)cosh Az + B(A)sinh Az, and the general

u(z,y) solution is
u(z,y) = /OO(A()\) cosh Az + B(A) sinh Ax) sin Ay dA.
0

The coefficient functions A(A) and B(A) are determined by the bound-
ary conditions u(0,y) = 0, u(a,y) = e~ ¥:

u(0,y) = /OOO A(N)sin Ay dA =0

3
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means that A(\) corresponds to the Fourier sine integral of the zero
function, so by uniqueness A(\) = 0. Then

u(a,y) = /OOO B(X)sinh Aasin Ay d\ =e™

means that B(\)sinh Aa is the Fourier sine integral of e™¥ so

. 2 oo . 2 A
B(A) sinh Aa = ;/0 e Ysin\y dy = T2

(integrate by parts or use table of integrals) and

2 A 1
B =2 -
() 714 A2sinh \a

(c.) Similar to (b.), with an easier integral. Make life simpler by setting
v(z,y) = ula —z,y) so v(0,y) = 0 and v(a,y) = f(y); switch back to
u to finish.

Solve the potential problem in the slot 0 < x < a,0 < y, for each of
these sets of boundary conditions.

(a.) 24(0,y) = 0,u(a,y) = 0,0 < y; u(z,0) =1,0 <z < a.

SOLUTION. In this case the z-problem is homogeneous, so we separate

as
X vy

X Y

and solve for X first. The general solution is X (x) = a cos Az +bsin Az;
the boundary conditions translate to X’(0) = 0, X (a) = 0. The first

—)\2

forces b = 0; the second forces A = %, so the n-th X-eigenfunction
is cos @ The corresponding Y,, equation is
Yy — ((Qn — 1)7T)2Y

with solution Y, = a, exp(%) + by exp(—%). Note choice

of basis for solutions. The requirement that solutions be bounded as
y — oo forces a, = 0. The general solution is then
(2n — D)7y

2 (-1
u(z,y) = bue 2a cos w
0



where the {b,} are determined by the boundary condition

> 2n —1
u(z,0) :ancos(nQ)m; =1.
0

a

The functions COSW for n = 1,2,3,... are an orthogonal family

on [0, a] with
a o (2n—1)rx a
RSl
/0 cos 50 T=g,
SO

2 [ 2n—1 2 2 2n—1
b= cos Zn =TT Oy oYz,
0 ™

a 2a N 5(271— 1) 2a
4 _
_ g 2a sin (2n— 1) _ @2n—1)r n=135,..
a(2n—1)7 2 _ﬁ n=24.6,..

(b.) 24(0,y) = 0,u(a,y) =e7¥,0 <y; u(z,0) = 0,0 < z < a. Here the
y-boundary condition is homogeneous, so we separate as

X// Y//

)\2
X Y

and solve for Y first. The general solution is Y (y) = a cos \y + bsin \y;
the boundary condition translates to Y'(0) = 0, which forces a = 0. The
X equation is then XTH = A\?, with general solution X = A(\) cosh Az +
B(A) sinh Az. The general solution for w is

u(z,y) = /OOO(A()\) cosh Az + B(A) sinh Ax) sin Ay dA,

where the coefficient functions are determined by the boundary condi-
tions using Fourier integrals. Namely:

ou o0 )
S (0.) = /0 (AB(A)sin Ay d = 0

means that AB()) is the Fourier sine integral for the zero function; by
uniqueness AB(A) =0 so B(A\) = 0. Then



u(a,y) = / A(N) cosh Aasin Ay d\ = e
0
means that A()\)cosh Aa is the Fourier sine integral for e7Y, i.e.
2 A

2 00
A()) cosh Aa = ;/0 e Ysin \y dy = T

(the same integral as in 4.b.) so
2 A 1

A =
() 714 A2 cosh \a
(c) u(0,9) = 0,u(a,y) = f(y) —{ 0 bey @0 =00<

T < a.

SOLUTION: Here the y-conditions are homogeneous, so we separate
and set X = —X2, £ = A2 and solve for Y first. The general solution
is Y = acos Ay + bsin \y; the boundary condition at y = 0 translates
to Y’(0) = 0, which forces b = 0, with no condition on A. The cor-
responding X equation has general solution X (z) = A(\)cosh Az +

B(A) sinh Az, leading to
u(z,y) = /OO(A()\) cosh Az + B(A) sinh Ax) cos Ay dA
0
where A(\) and B()) are determined by the boundary conditions:
u(0,y) = /OO A(N) cos Ay dA =0
0

gives A()\) as the cosine integral of the zero function, so A(\) = 0.
Then ~
u(a,y) :/ B(A)sinh Aacos \y d\ = f(y)
0

gives

2 [ 2 b 2
B(A) sinh Aa = —/ f(y)cos Ay dy = —/ cos \y dy = = sin Ab
0 T

T m Jo
and so 5 sin )b
sin
B = mAsinh A\a’



§4.5 # 1 Solve the potential equation in the disc 0 < r < ¢ if the boundary
condition is v(c,0) = 10|, —7 < 0 < pi.
SOLUTION. As described in §4.5, the potential equation V?v = 0
leads, via writing v(r,0) = R(r)Q(6), to Q" = —\*Q with general so-
lution Q(6) = acos A\J + bsin A@; since () must be periodic of period 27
for the function to be well-defined on the disc, A must be an integer:
n =0,1,2,3,... (negative integers don’t give new solutions). The cor-
responding R, must satisfy the Cauchy-Euler equation; the solutions
are R,(r) =", R,(r) = r~™. The second solution blows up at r = 0
and is not useful. The solution to the problem is then

v(r,0) = ag+ > _(a, cosnb + b, sinnd)r",
1

where the coefficients a,,, b, are determined from the initial conditions
by Fourier analysis:

v(c,0) = ag+ > _(ancosnb + b, sinnd)c" = |6].
1

So ag, a,c™ and b,c" are the coefficients of the Fourier series of f(6) =
0], —m <60 <. This f is an even function, so the sine coefficients

are zero, and
1 s
aoz—/ hdo="
T Jo 2

—4
2 T
a,c" = —/ 0 cosnb df = { ™’ n odd
0

T 0 neven
(note that |#| = 6 on [0, 7]). Finally

T 4 r" cosnb
U(T,Q):g—; Z _.

n2c"

§4.5 #4 Same as Exercise 1 with boundary condition

et =10 ={ 3 T



SOLUTION. Same as Exercise 1, except here f is odd, so the cosine
coefficients are zero, and

2 (7 2 4
bnc”:—/ sin nf d0:—008n9|3:{ a1 odd
7 Jo

™ 0 neven
So
4 1
o(r,0) == > —r"sinnf.
T odd ™

§4.5 #5 Find the value of the solution at r = 0 for the problems of Exercises 1
and 4.

SOLUTION. When 7 = 0 the solution of Exercise 1 gives v = 7, and
the solution of Exercise 4 gives v = 0.



