
Stony Brook University MAT 341 Fall 2011
Homework Solutions, Chapter 4

§4.2 # 6 Solve the potential equation in the rectangle 0 < x < a, 0 < y < b,
subject to the boundary conditions u(a, y) = 1, 0 < y < b, and u = 0
on the rest of the boundary.

SOLUTION: The boundary conditions are homogeneous with respect
to y so when we separate variables u(x, y) = X(x)Y (y),

∇2u = X ′′Y +XY ′′ = 0,
X ′′

X
+
Y ′′

Y
= 0,

Y ′′

Y
= −X

′′

X
= c

(with boundary conditions Y (0) = Y (b) = 0 and X(0) = 0) the con-
stant c should be negative, i.e. −λ2. In that case the general solution
for Y is

Y (y) = aλ cos(λx) + bλ sin(λx).

The boundary conditions on Y force first aλ = 0 and then λ = nπ
b

: the
n-th eigenfunction is sin nπy

b
.

The n-th corresponding X-equation is X ′′ = (nπ
b

)2X with general so-
lution

Xn(x) = An cosh
nπ

b
x+Bn sinh

nπ

b
x.

The boundary condition X(0) = 0 forces An = 0.

Since these conditions are homogeneous, and the equation is linear, we
can use superposition to write

u(x, y) =
∞∑
1

Bn sinh
nπx

b
sin

nπy

b

and use the boundary condition u(a, y) = 1 to determine the coefficients
{Bn}. In fact

u(a, y) =
∞∑
1

Bn sinh
nπa

b
sin

nπy

b
= 1

means thatBn sinh nπa
b

is the n-th Fourier sine coefficient of the function
equal to 1 on [0, b], i.e. the n-th Fourier coefficient of the square wave:
4
πn

if n is odd, 0 if n is even. So if n is odd, then

Bn =
4

πn

1

sinh nπa
b
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and Bn = 0 if n is even.

§4.3 # 1 Solve the problem consisting of the potential equation on the rectangle
0 < x < a, 0 < y < b with the given boundary conditions. Two of the
three are very easy if a polynomial is subtracted from u.

(a). ∂u
∂x

(0, y) = 0; u = 1 on the rest of the boundary.

SOLUTION. Follow hint, set v(x, y) = u(x, y)−1. Then ∇2v = ∇2u =
0 and the boundary conditions become ∂v

∂x
(0, y) = 0; u = 0 on the rest

of the boundary. The solution to this problem is clearly the constant
function v = 0, so the solution to the given problem is the constant
function u(x, y) = 1.

(b). ∂u
∂x

(0, y) = 0; ∂u
∂x

(a, y) = 0; u(x, 0) = 0; u(x, b) = 1.

SOLUTION. Follow hint, set v(x, y) = u(x, y)− y
b
. Then Then ∇2v =

∇2u = 0 and the boundary conditions become ∂v
∂x

(0, y) = 0; ∂u
∂x

(a, y) =
0; u(x, 0) = 0; u(x, b) = 0. The solution to this problem is clearly the
constant function v = 0, so the solution to the given problem is the
constant function u(x, y) = y

b
.

(c). ∂u
∂x

(x, 0) = 0; u(x, b) = 0; u(0, y) = 1; u(a, y) = 0.

SOLUTION. The condition ∂u
∂x

(x, 0) = 0 is equivalent to u(x, 0) = C,
a constant. Now the problem splits into two problems: u = u1 + u2
where

∇2u1 = 0, u1(0, y) = u1(a, y) = 0, u1(x, 0) = C, u1(x, b) = 0

∇2u2 = 0, u2(x, 0) = u1(x, b) = 0, u2(0, y) = 1, u2(a, y) = 0.

These each can be solved by the method of §4.2 # 6. To simplify the
calculations switch to v1(x, y) = u1(x, b− y) and v2(x, y) = u2(a−x, y)
and then switch back.

§4.4 # 4 Solve the potential problem in the slot 0 < x < a, 0 < y, for each of
these sets of boundary conditions.

(a.) u(0, y) = 0, u(a, y) = 0, 0 < y; u(x, 0) = 1, 0 < x < a.
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SOLUTION: This is a u1-type problem (homogeneous x-boundary con-
ditions) as on p. 279. So when we separate to get

X ′′

X
= −Y

′′

Y
= c

we should take c = λ2; the X-eigenfunctions are then sin nπx
a

as usual.

The Yn equation then has general solution Ane
nπy
a + Bne

−nπy
a . The

requirement that solutions be bounded as y → ∞ forces An = 0.
Note how the choice of exponential solutions rather than hyperbolic-
trigonometric simplifies the calculation. The other choice is also legit-
imate, but will involve more work. The general solution is then

u(x, y) =
∞∑
0

Bn sin
nπx

a
e−

nπy
a .

The coefficients Bn are determined by the boundary condition u(x, 0) =
1, 0 < x < a:

∞∑
0

Bn sin
nπx

a
= 1.

This is the sine series for the square wave: Bn = 4
πn

if n is odd, 0 if n
is even.

(b.) u(0, y) = 0, u(a, y) = e−y, 0 < y; u(x, 0) = 0, 0 < x < a.

SOLUTION. Here the boundary condition in y is homogeneous, so we
separate as

X ′′

X
= −Y

′′

Y
= c

with c positive, e.g. c = λ2, and we solve for Y first. The general Y
solution is Y = a cosλy + b sinλy. The boundary condition u(x, 0) =
0 forces a = 0. The corresponding X-equation is X ′′ = λ2X with
general solution X = A(λ) coshλx + B(λ) sinhλx, and the general
u(x, y) solution is

u(x, y) =
∫ ∞
0

(A(λ) coshλx+B(λ) sinhλx) sinλy dλ.

The coefficient functions A(λ) and B(λ) are determined by the bound-
ary conditions u(0, y) = 0, u(a, y) = e−y:

u(0, y) =
∫ ∞
0

A(λ) sinλy dλ = 0
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means that A(λ) corresponds to the Fourier sine integral of the zero
function, so by uniqueness A(λ) ≡ 0. Then

u(a, y) =
∫ ∞
0

B(λ) sinhλa sinλy dλ = e−y

means that B(λ) sinhλa is the Fourier sine integral of e−y so

B(λ) sinhλa =
2

π

∫ ∞
0

e−y sinλy dy =
2

π

λ

1 + λ2

(integrate by parts or use table of integrals) and

B(λ) =
2

π

λ

1 + λ2
1

sinhλa
.

(c.) Similar to (b.), with an easier integral. Make life simpler by setting
v(x, y) = u(a − x, y) so v(0, y) = 0 and v(a, y) = f(y); switch back to
u to finish.

§4.4 # 5 Solve the potential problem in the slot 0 < x < a, 0 < y, for each of
these sets of boundary conditions.

(a.) ∂u
∂x

(0, y) = 0, u(a, y) = 0, 0 < y; u(x, 0) = 1, 0 < x < a.

SOLUTION. In this case the x-problem is homogeneous, so we separate
as

X ′′

X
= −Y

′′

Y
= −λ2

and solve for X first. The general solution is X(x) = a cosλx+b sinλx;
the boundary conditions translate to X ′(0) = 0, X(a) = 0. The first

forces b = 0; the second forces λ = (2n−1)π
2a

, so the n-th X-eigenfunction

is cos (2n−1)πx
2a

. The corresponding Yn equation is

Y ′′n = (
(2n− 1)π

2a
)2Yn

with solution Yn = an exp( (2n−1)πy
2a

) + bn exp(− (2n−1)πy
2a

). Note choice
of basis for solutions. The requirement that solutions be bounded as
y →∞ forces an = 0. The general solution is then

u(x, y) =
∞∑
0

bne
−(2n− 1)πy

2a cos
(2n− 1)πx

2a
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where the {bn} are determined by the boundary condition

u(x, 0) =
∞∑
0

bn cos
(2n− 1)πx

2a
= 1.

The functions cos (2n−1)πx
2a

for n = 1, 2, 3, ... are an orthogonal family
on [0, a] with ∫ a

0
cos2

(2n− 1)πx

2a
dx =

a

2
,

so

bn =
2

a

∫ a

0
cos

(2n− 1)πx

2a
dx =

2

a

2a

(2n− 1)π
sin

(2n− 1)πx

2a
|a0

=
2

a

2a

(2n− 1)π
sin

(2n− 1)π

2
=


4

(2n− 1)π
n = 1, 3, 5, ...

− 4
(2n− 1)π

n = 2, 4, 6, ...
.

(b.) ∂u
∂x

(0, y) = 0, u(a, y) = e−y, 0 < y; u(x, 0) = 0, 0 < x < a. Here the
y-boundary condition is homogeneous, so we separate as

X ′′

X
= −Y

′′

Y
= λ2

and solve for Y first. The general solution is Y (y) = a cosλy+ b sinλy;
the boundary condition translates to Y (0) = 0, which forces a = 0. The
X equation is then X′′

X
= λ2, with general solution X = A(λ) coshλx+

B(λ) sinhλx. The general solution for u is

u(x, y) =
∫ ∞
0

(A(λ) coshλx+B(λ) sinhλx) sinλy dλ,

where the coefficient functions are determined by the boundary condi-
tions using Fourier integrals. Namely:

∂u

∂x
(0, y) =

∫ ∞
0

(λB(λ) sinλy dλ = 0

means that λB(λ) is the Fourier sine integral for the zero function; by
uniqueness λB(λ) ≡ 0 so B(λ) ≡ 0. Then
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u(a, y) =
∫ ∞
0

A(λ) coshλa sinλy dλ = e−y

means that A(λ) coshλa is the Fourier sine integral for e−y, i.e.

A(λ) coshλa =
2

π

∫ ∞
0

e−y sinλy dy =
2

π

λ

1 + λ2

(the same integral as in 4.b.) so

A(λ) =
2

π

λ

1 + λ2
1

coshλa
.

(c.) u(0, y) = 0, u(a, y) = f(y) =

{
1, 0 < y < b
0 b < y

, ∂u
∂y

(x, 0) = 0, 0 <

x < a.

SOLUTION: Here the y-conditions are homogeneous, so we separate
and set Y ′′

Y
= −λ2, X′′

X
= λ2, and solve for Y first. The general solution

is Y = a cosλy + b sinλy; the boundary condition at y = 0 translates
to Y ′(0) = 0, which forces b = 0, with no condition on λ. The cor-
responding X equation has general solution X(x) = A(λ) coshλx +
B(λ) sinhλx, leading to

u(x, y) =
∫ ∞
0

(A(λ) coshλx+B(λ) sinhλx) cosλy dλ

where A(λ) and B(λ) are determined by the boundary conditions:

u(0, y) =
∫ ∞
0

A(λ) cosλy dλ = 0

gives A(λ) as the cosine integral of the zero function, so A(λ) ≡ 0.
Then

u(a, y) =
∫ ∞
0

B(λ) sinhλa cosλy dλ = f(y)

gives

B(λ) sinhλa =
2

π

∫ ∞
0

f(y) cosλy dy =
2

π

∫ b

0
cosλy dy =

2

πλ
sinλb

and so

B(λ) =
2

πλ

sinλb

sinhλa
.
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§4.5 # 1 Solve the potential equation in the disc 0 < r < c if the boundary
condition is v(c, θ) = |θ|, −π < θ < pi.

SOLUTION. As described in §4.5, the potential equation ∇2v = 0
leads, via writing v(r, θ) = R(r)Q(θ), to Q′′ = −λ2Q with general so-
lution Q(θ) = a cosλθ+ b sinλθ; since Q must be periodic of period 2π
for the function to be well-defined on the disc, λ must be an integer:
n = 0, 1, 2, 3, ... (negative integers don’t give new solutions). The cor-
responding Rn must satisfy the Cauchy-Euler equation; the solutions
are Rn(r) = rn, Rn(r) = r−n. The second solution blows up at r = 0
and is not useful. The solution to the problem is then

v(r, θ) = a0 +
∞∑
1

(an cosnθ + bn sinnθ)rn,

where the coefficients an, bn are determined from the initial conditions
by Fourier analysis:

v(c, θ) = a0 +
∞∑
1

(an cosnθ + bn sinnθ)cn = |θ|.

So a0, anc
n and bnc

n are the coefficients of the Fourier series of f(θ) =
|θ|, − π < θ < π. This f is an even function, so the sine coefficients
are zero, and

a0 =
1

π

∫ π

0
θ dθ =

π

2

anc
n =

2

π

∫ π

0
θ cosnθ dθ =

 −4
πn2 n odd

0 n even

(note that |θ| = θ on [0, π]). Finally

v(r, θ) =
π

2
− 4

π

∑
n odd

rn cosnθ

n2cn
.

§4.5 #4 Same as Exercise 1 with boundary condition

v(c, θ) = f(θ) =

{
−1 −π < θ < 0
1 0 < θ < π

.
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SOLUTION. Same as Exercise 1, except here f is odd, so the cosine
coefficients are zero, and

bnc
n =

2

π

∫ π

0
sinnθ dθ = − 2

πn
cosnθ|π0 =

{
4
πn n odd
0 n even

.

So

v(r, θ) =
4

π

∑
n odd

1

ncn
rn sinnθ.

§4.5 #5 Find the value of the solution at r = 0 for the problems of Exercises 1
and 4.

SOLUTION. When r = 0 the solution of Exercise 1 gives v = π
2
, and

the solution of Exercise 4 gives v = 0.
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