
Stony Brook University MAT 341 Fall 2011
Homework Solutions, Chapter 3.
(Some notation changed on Nov 11 at 5:45 PM).

§3.2 # 5 Solve the vibrating-string problem with the initial conditions f(x) =
0, g(x) = 1, 0 < x < a.

SOLUTION: The general solution for a vibrating string of length a is
(Equation (9))

u(x, t) =
∞
∑

n=1

sin(
nπ

a
x)[an cos(

nπ

a
ct) + bn sin((

nπ

a
ct)].

The initial conditions u(x, 0) = f(x), ∂u
∂t
(x, 0) = g(x) determine an and

bn by Fourier analysis (pp. 220-221). Here f(x) = 0 so

an =
2

a

∫ a

0

f(x) sin(
nπ

a
x) dx = 0.

Also in this problem g(x) = 1 so

bn =
2

nπc

∫ a

0

g(x) sin(
nπ

a
x) dx =

2

nπc

∫ a

0

sin(
nπ

a
x) dx

=
2

nπc

a

nπ
(− cos(

nπ

a
x))|a

0
=

2a

n2π2c
(1− cosnπ)

=

{

4a
n2π2c

n odd
0 n even

.

§3.3 # 7 Solve (pressure of air in organ pipe)

∂2p

∂x2
=

1

c2
∂2p

∂t2
, 0 < x < a, 0 < t

with boundary conditions:

a. p(0, t) = p0, p(a, t) = p0.

SOLUTION: to have homogeneous boundary conditions we define q(x, t) =
p(x, t)−p0. Then q satisfies the same wave equation as p, but q(0, t) = 0,
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q(a, t) = 0. Separating variables as usual, we set q(x, t) = φ(x)T (t) and
derive

φ′′

φ
=

1

c2
T ′′

T
= K.

The boundary conditions on q give boundary conditions φ(0) = 0, φ(a) =
0 which can only be satisfied by a non-zero φ if K is negative, say
K = −λ2. Then the general solution is φ(x) = A cos(λx) + B sin(λx).
The boundary condition φ(0) = 0 gives us A = 0. Then the bound-
ary condition φ(a) = 0 gives B sinλa = 0, so λ = nπ

a
. These are the

eigenvalues, and φn = sin nπ
a
x are the eigenfunctions.

a. p(0, t) = p0,
∂p

∂x
(a, t) = 0.

Again we set q(x, t) = p(x, t) − p0, and separate variables as before.
The boundary conditions on φ are now φ(0) = 0 and φ′(a) = 0. (As
before, these force K = −λ2.) The general solution is again φ(x) =
A cos(λx)+B sin(λx). Again φ(0) = 0 forces A = 0. Now φ = B sinλx
and φ′(x) = λB cosλx. Setting φ′(a) = 0 gives cosλa = 0 so λ must be
an odd multiple of π

2a
. These are the eigenvalues: π

2a
, 3π

2a
, 5π

2a
, etc. The

corresponding eigenfunctions are sin π
2a
x, sin 3π

2a
x, sin 5π

2a
x, etc.

§3.2 # 9 Find eigenfunctions, eigenvalues and product solutions for:

∂2u

∂x2
=

1

c2
∂2u

∂t2
+ k

∂u

∂t
, 0 < x < a, 0 < t

u(0, t) = 0, u(a, t) = 0, t < 0

SOLUTION: Separation of variables leads to

φ′′

φ
=

1

c2
T ′′

T
+ k

T ′

T
= K

where the boundary conditions on φ force K = −λ2 as usual, and as
usual we find eigenvalues λn = nπ

a
and eigenfunctions φn(x) = sin nπ

a
x,

n = 1, 2, 3, .... The corresponding T problem is

1

c2
T ′′

n

Tn

+ k
T ′

n

Tn

= −λ2

n,

2



or
T ′′

n + c2kT ′

n + c2λ2

nTn = 0.

This is a linear order-2 equation with constant coefficients. As we
learned in Calc II, we look for a solution of the form Tn = eant. Sub-
stituting this form in the differential equation yields

a2n + c2kan + c2λ2

n = 0,

an algebraic equation with solutions:

an =
−c2k ±

√

c4k2 − 4c2λ2
n

2
.

We are told that k is small, so we can take the square root to be
imaginary, and the two solutions we get are

Tn = e
−
c2kt
2 e

i
√

4c2λ2
n − c4k2

2
t
, Tn = e

−
c2kt
2 e

−i
√

4c2λ2
n − c4k2

2
t
.

As usual, any combination of eiωt and e−iωt can be rewritten as a com-
bination of sinωt and cosωt; so the most general product solution is

un(x, t) = sinλnx e
−
c2kt
2 [an cos(

c

2

√

4λ2
n − c2k2 t)+bn sin(

c

2

√

4λ2
n − c2k2 t)],

where λn = nπ
a .
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