Stony Brook University MAT 341 Fall 2011 Homework Solutions, Chapter 3. (Some notation changed on Nov 11 at 5:45 PM).

§3.2 # 5 Solve the vibrating-string problem with the initial conditions f(x) = 0, g(x) = 1, 0 < x < a.

SOLUTION: The general solution for a vibrating string of length a is (Equation (9))

$$u(x,t) = \sum_{n=1}^{\infty} \sin(\frac{n\pi}{a}x) [a_n \cos(\frac{n\pi}{a}ct) + b_n \sin((\frac{n\pi}{a}ct))].$$

The initial conditions u(x,0) = f(x), $\frac{\partial u}{\partial t}(x,0) = g(x)$ determine a_n and b_n by Fourier analysis (pp. 220-221). Here f(x) = 0 so

$$a_n = \frac{2}{a} \int_0^a f(x) \sin(\frac{n\pi}{a}x) \, dx = 0.$$

Also in this problem g(x) = 1 so

$$b_n = \frac{2}{n\pi c} \int_0^a g(x) \sin(\frac{n\pi}{a}x) \, dx = \frac{2}{n\pi c} \int_0^a \sin(\frac{n\pi}{a}x) \, dx$$
$$= \frac{2}{n\pi c} \frac{a}{n\pi} (-\cos(\frac{n\pi}{a}x))|_0^a = \frac{2a}{n^2 \pi^2 c} (1 - \cos n\pi)$$
$$= \begin{cases} \frac{4a}{n^2 \pi^2 c} & n \text{ odd} \\ 0 & n \text{ even} \end{cases}.$$

 $\S3.3 \# 7$ Solve (pressure of air in organ pipe)

$$\frac{\partial^2 p}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2}, \qquad 0 < x < a, \qquad 0 < t$$

with boundary conditions:

a.
$$p(0,t) = p_0, \ p(a,t) = p_0.$$

SOLUTION: to have homogeneous boundary conditions we define $q(x,t) = p(x,t)-p_0$. Then q satisfies the same wave equation as p, but q(0,t) = 0,

q(a,t) = 0. Separating variables as usual, we set $q(x,t) = \phi(x)T(t)$ and derive

$$\frac{\phi''}{\phi} = \frac{1}{c^2} \frac{T''}{T} = K.$$

The boundary conditions on q give boundary conditions $\phi(0) = 0, \phi(a) = 0$ which can only be satisfied by a non-zero ϕ if K is negative, say $K = -\lambda^2$. Then the general solution is $\phi(x) = A\cos(\lambda x) + B\sin(\lambda x)$. The boundary condition $\phi(0) = 0$ gives us A = 0. Then the boundary condition $\phi(a) = 0$ gives $B\sin\lambda a = 0$, so $\lambda = \frac{n\pi}{a}$. These are the eigenvalues, and $\phi_n = \sin \frac{n\pi}{a} x$ are the eigenfunctions.

a.
$$p(0,t) = p_0, \frac{\partial p}{\partial x}(a,t) = 0$$

Again we set $q(x,t) = p(x,t) - p_0$, and separate variables as before. The boundary conditions on ϕ are now $\phi(0) = 0$ and $\phi'(a) = 0$. (As before, these force $K = -\lambda^2$.) The general solution is again $\phi(x) = A \cos(\lambda x) + B \sin(\lambda x)$. Again $\phi(0) = 0$ forces A = 0. Now $\phi = B \sin \lambda x$ and $\phi'(x) = \lambda B \cos \lambda x$. Setting $\phi'(a) = 0$ gives $\cos \lambda a = 0$ so λ must be an odd multiple of $\frac{\pi}{2a}$. These are the eigenvalues: $\frac{\pi}{2a}, \frac{3\pi}{2a}, \frac{5\pi}{2a}$, etc. The corresponding eigenfunctions are $\sin \frac{\pi}{2a} x, \sin \frac{3\pi}{2a} x, \sin \frac{5\pi}{2a} x$, etc.

 $\S3.2 \# 9$ Find eigenfunctions, eigenvalues and product solutions for:

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} + k \frac{\partial u}{\partial t}, \qquad 0 < x < a, \qquad 0 < t$$

 $u(0,t) = 0, \quad u(a,t) = 0, \quad t < 0$

SOLUTION: Separation of variables leads to

$$\frac{\phi''}{\phi} = \frac{1}{c^2} \frac{T''}{T} + k \frac{T'}{T} = K$$

where the boundary conditions on ϕ force $K = -\lambda^2$ as usual, and as usual we find eigenvalues $\lambda_n = \frac{n\pi}{a}$ and eigenfunctions $\phi_n(x) = \sin \frac{n\pi}{a}x$, $n = 1, 2, 3, \dots$ The corresponding T problem is

$$\frac{1}{c^2}\frac{T_n''}{T_n} + k\frac{T_n'}{T_n} = -\lambda_n^2,$$

$$T_n'' + c^2 k T_n' + c^2 \lambda_n^2 T_n = 0.$$

This is a linear order-2 equation with constant coefficients. As we learned in Calc II, we look for a solution of the form $T_n = e^{a_n t}$. Substituting this form in the differential equation yields

$$a_n^2 + c^2 k a_n + c^2 \lambda_n^2 = 0,$$

an algebraic equation with solutions:

$$a_n = \frac{-c^2k \pm \sqrt{c^4k^2 - 4c^2\lambda_n^2}}{2}.$$

We are told that k is small, so we can take the square root to be imaginary, and the two solutions we get are

$$T_n = e^{-\frac{c^2kt}{2}} e^{\frac{i\sqrt{4c^2\lambda_n^2 - c^4k^2}}{2}t}, T_n = e^{-\frac{c^2kt}{2}} e^{\frac{-i\sqrt{4c^2\lambda_n^2 - c^4k^2}}{2}t}$$

As usual, any combination of $e^{i\omega t}$ and $e^{-i\omega t}$ can be rewritten as a combination of $\sin \omega t$ and $\cos \omega t$; so the most general product solution is

$$u_n(x,t) = \sin \lambda_n x \, e^{-\frac{c^2 kt}{2}} [a_n \cos(\frac{c}{2}\sqrt{4\lambda_n^2 - c^2 k^2} t) + b_n \sin(\frac{c}{2}\sqrt{4\lambda_n^2 - c^2 k^2} t)],$$

where $\lambda_n = \frac{n\pi}{a}$.

or