Stony Brook University MAT 341 Fall 2011
Homework Solutions, Chapter 3.

(Some notation changed on Nov 11 at 5:45 PM).

§3.2 # 5 Solve the vibrating-string problem with the initial conditions f(x) =
0, gx)=1, O<z<a.

SOLUTION: The general solution for a vibrating string of length a is
(Equation (9))

u(z,t) = i sin(%x)[an cos(%ct) + b, sin((%ct)].

The initial conditions u(z,0) = f(z), 2%(z,0) = g(z) determine a, and
b, by Fourier analysis (pp. 220-221). Here f(z) =0 so
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§3.3 # 7 Solve (pressure of air in organ pipe)

Pp 10%
@:g@, 0<SL’<CL, 0<t

with boundary conditions:
a. p(07 t) = Do, p(aa t) = Po-

SOLUTION: to have homogeneous boundary conditions we define ¢(x,t) =
p(z,t)—po. Then ¢ satisfies the same wave equation as p, but ¢(0,t) = 0,
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q(a,t) = 0. Separating variables as usual, we set q(z,t) = ¢(z)7T(t) and
derive AR

The boundary conditions on ¢ give boundary conditions ¢(0) = 0, ¢(a)
0 which can only be satisfied by a non-zero ¢ if K is negative, say
K = —\2. Then the general solution is ¢(x) = Acos(\z) + Bsin(Az).
The boundary condition ¢(0) = 0 gives us A = 0. Then the bound-
ary condition ¢(a) = 0 gives BsinAa = 0, so A = “%. These are the
eigenvalues, and ¢,, = sin “Zx are the eigenfunctions.

a

a. p(0,t) = po, %(a,t) =0.

Again we set g(z,t) = p(x,t) — po, and separate variables as before.
The boundary conditions on ¢ are now ¢(0) = 0 and ¢'(a) = 0. (As
before, these force K = —\2.) The general solution is again ¢(z) =
A cos(Az) + Bsin(Ax). Again ¢(0) = 0 forces A = 0. Now ¢ = Bsin Az
and ¢'(x) = AB cos Az. Setting ¢'(a) = 0 gives cos A\a = 0 so A must be
an odd multiple of -. These are the eigenvalues: o 3T 5T etc. The
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corresponding eigenfunctions are sin -z, sin 57, sin 3"z, etc.

Find eigenfunctions, eigenvalues and product solutions for:

Ou 182u+k8u O<ax< 0<t
= = S5 — r<a
or?2 2 ot? ot’ ’

uw(0,t) =0, wu(a,t)=0, t<0
SOLUTION: Separation of variables leads to
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where the boundary conditions on ¢ force K = —)? as usual, and as
usual we find eigenvalues A, = “* and eigenfunctions ¢, (z) = sin “*x,
n=1,2,3,.... The corresponding T" problem is
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or
T! + kT, + *\2T, = 0.

This is a linear order-2 equation with constant coefficients. As we
learned in Calc II, we look for a solution of the form 7, = e%*. Sub-
stituting this form in the differential equation yields

a2 + c’ka, + *\2 =0,

an algebraic equation with solutions:

—C?k 4 /K2 — 4c2\2
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We are told that k is small, so we can take the square root to be
imaginary, and the two solutions we get are

2Lt WAL — c4k;2t 2Lt AN, — c4k2t

T.=e 2 e 2 T,=¢ 2 e 2

As usual, any combination of e®* and e~** can be rewritten as a com-

bination of sinwt and coswt; so the most general product solution is

,@ I I
up(x,t) =sin \,ze 2 [a, COS<§\/4)\% — k2 t)+b, 8111(5\/4)\721 — k2 t)],
where \,, = %T.



