
MAT 320 Fall 2009 Review for Final

• Theorem: be able to apply

• Theorem: and know what goes into the proof

• Theorem: and be able to prove.

§5.4 Know definition of uniform continuity and be able to show, for example,
that f(x) = 1/x on (0, 1], which is continuous, is not uniformly continuous
(this is discussed on pp. 136-137). Be familiar with the logical manipula-
tions to get Nonuniformity criteria 5.4.2 (ii) and (iii). Uniform Continuity

Theorem (f continuous on [a, b] is uniformly continuous): by contradiction
using (iii) and Bolzano- Weierstrass to locate a point at which you can show
f is not continuous.

Know definition of Lipschitz function. A Lipschitz function is uniformly

continuous.

Theorem 5.4.7 (a uniformly continuous function takes Cauchy sequences to
Cauchy sequences): nice combination of Cauchy criterion with ǫ−δ definition
of uniform continuity. Continuous Extension Theorem 5.4.8 is a consequence.

§5.6 Here we will consider functions defined on an interval I (without spec-
ifying which if any endpoints are included). Know distinction betweem “in-
creasing” and “strictly increasing,” etc. and also “monotone” and “strictly
monotone.” For f increasing, understand the definition of the jump jf (c)
of f at an interior point c of I (it’s limx→c+ f(x) − limx→c− f(x)) and the
definitions of jumps at endpoints. Theorem 5.6.3 (An increasing f is con-
tinuous on I iff jf (c) = 0 for every c ∈ I). And similarly for decreasing.
Theorem 5.6.4 (a monotonic function on an interval (a, b) has at most a
countable number of points of discontinuity): at most 1 with jump ≥ (b−a),
at most 2 with jump ≥ (b − a)/2, etc., using 5.6.3. Continuous Inverse

Theorem 5.6.5 (a strictly monotone, continuous f defined on an interval I
has a continuous inverse g): first g exists because f strictly monotonic; g is
also (strictly) monotonic; a discontinuity of g would be a jump; this would
force I to be missing a point.

§6.1 Here again f is defined on an interval I. Know the definition of the
derivative of f at c ∈ I. Theorem 6.1.2 (f has a derivative at c implies f
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continuous at c): directly from the definition, show limx→c(f(x) − f(c)) =
0. Theorem 6.1.3 - Differentiation Rules - pay attention to the quotient.
Carathéodory’s Theorem 6.1.5 (very useful in getting rid of trouble-
some denominators): proof is straightforward. Chain Rule 6.1.6 -use
Carathéodory. Derivative of Inverse - note requirement that f ′(c) 6= 0; use
Carathéodory.

§6.2 Interior Extremum Theorem 6.2.1 (if c is an interior extremum
of f , then if f ′(c) exists, it is 0): straightforward proof by contradiction,
using definition of derivative. Rolle’s Theorem 6.2.3 and Mean Value

Theorem 6.2.4 both for f continuous on [a, b] and differentiable on (a, b).
RT: if f(a) = f(b) then there exists c ∈ (a, b) with f ′(c) = 0. Use continuity
and Maximum Theorem to find an extremum; show it must be interior; apply
6.2.1. MVT: there exists c ∈ (a, b) with f ′(c) = (f(b)−f(a))/(b−a). Cook up
a function expressing the difference between f and the straight-line function
from (a, f(a)) to (b, f(b)), and apply Rolle’s Theorem. Theorems 6.2.5 and

6.2.7 (with same hypotheses: f ′(x) = 0 for all a < x < b iff f is constant;
f ′(x) ≥ 0 for all a < x < b iff f is increasing; f ′(x) ≤ 0 for all a < x < b iff f
is decreasing). Directly from MVT and definition of derivative. Note remark
on p. 171 about f(x) = x3, etc. Darboux’s Theorem 6.2.12 (f differentiable
on [a, b] implies that f ′ takes on any value k between f ′(a) and f ′(b)) follows
from Lemma 6.2.11 (straightforward from definition of derivative) and the
interior extremum theorem applied to g(x) = kx − f(x).

§6.4 Know the definition of the nth Taylor Polynomial Pn(x) approximat-
ing a function f at a point x0. Taylor’s Theorem 6.4.1 (f(x) − Pn(x) =
f (n+1)(c)
(n+1)!

(x − x0)
n+1 for some c between x0 and x): understand that it is

proved by applying Rolle’s Theorem to an appropriately cooked up auxiliary
function. Newton’s Method 6.4.7: understand how it works and why it gives
“quadratic” convergence.
§7.1 Understand the parallelism between the definition of “f is Riemann
integrable on [a, b] with integral L” and, for example, “the sequence (an) is
convergent with limit L.” Basic: Theorem 7.1.2 The integral is unique.
Understand examples (c) and (d) on p.198, and understand the elementary
Theorem 7.1.4. Also Theorem 7.1.5, and review Example 7.1.6 (Thomae’s
function on [0, 1] is in R([0, 1]).

§7.2 Theorem 7.2.1 (Cauchy Criterion) important because it gives a definition
of “f integrable on [a, b]” that does not involve the value of

∫ b
a f . Theorem
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7.2.3 - “Squeeze Theorem” used in proof of Theorem 7.2.6: If f is
continuous on [a, b] then f ∈ R([a, b]).
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