MAT 320 Fall 2007 Review for Final

Note: Final is cumulative, so use the Midterm 2 Review and the Midterm 1 Practice Exam as well as the material below.

- Theorem: be able to apply
- Theorem: and know what goes into the proof
- Theorem: and be able to prove.

§7.1 Understand the parallelism between the definition of “\(f \) is Riemann integrable on \([a,b]\) with integral \(L \)” and, for example, “the sequence \((a_n)\) is convergent with limit \(L \)” Basic: Theorem 7.1.2 The integral is unique. Understand examples (c) and (d) on p.198, and understand the elementary Theorem 7.1.4. Also Theorem 7.1.5, and review Example 7.1.6 (Thomae’s function on \([0,1]\) is in \(R([0,1]) \)).

§7.2 Theorem 7.2.1 (Cauchy Criterion) important because it gives a definition of “\(f \) integrable on \([a,b]\)” that does not involve the value of \(\int_a^b f \). Theorem 7.2.3 - “Squeeze Theorem” used in proof of Theorem 7.2.6: If \(f \) is continuous on \([a,b]\) then \(f \in R([a,b]) \). Theorem 7.2.7: If \(f \) is monotone on \([a,b]\) then \(f \in R([a,b]) \). Theorem 7.2.8 (Additivity Theorem) etc.

§7.3 Theorem 7.3.1 Fundamental Theorem, I. Understand where all the hypotheses are used; in particular understand Example 7.3.2(e). Theorem 7.3.4: if \(f \in R([a,b]) \), then the function \(x \mapsto \int_a^x f \) is continuous on \([a,b]\); elementary once you have 7.1.5 and additivity. Theorem 7.3.5 Fundamental Theorem, II. Theorem 7.3.6 is a corollary.

§8.1 Definition 8.1.1: convergence \((f_n) \to f\) is defined pointwise. Understand the difference from Definition 8.1.4: uniform continuity \((f_n) \Rightarrow f\) (book uses double arrow). Understand why the convergence in Examples 8.1.2 (a,b) is not uniform. Understand the “uniform norm” \(\|f-g\|_D = \sup_{x \in D} |f(x) - g(x)| \) as a measure of the distance from \(f \) to \(g \), and in terms of this norm understand Theorem 8.1.10: a Cauchy criterion allowing us to prove \((f_n)\) converges uniformly without a priori knowing what the limit is. Obviously useful.

§8.2 This section contains three important theorems describing how continuity, integrability and differentiability behave under uniform limits. They are
all proved by 3ϵ arguments. (Review the Examples 8.2.1 (a,b,c) to see what can go wrong when convergence is not uniform). **Theorem 8.2.2**: A uniform limit of continuous functions is continuous. **Theorem 8.2.3** and **Theorem 8.2.4**.

§9.1 Understand that an infinite sum interpreted literally does not make sense, and gets meaning as the limit of the sequence of partial sums, where it is amenable to ϵ, N analysis. Go back to section 3.7 and make sure you know how to show that $\sum_0^\infty ar^n = a/(1 - r)$ when $|r| < 1$, and diverges otherwise. Know the “nth term test,” the comparison test and the Cauchy criterion for series. You should know an elementary proof that $\sum_1^\infty \frac{1}{n}$ diverges and that $\sum_1^\infty (-1)^{n+1}\frac{1}{n}$ converges.

Know the definition of “$\sum x_n$ is absolutely convergent,” and **Theorem 9.1.2**: an absolutely convergent series is convergent. Understand the definition of “rearrangement” (9.1.4) and the **Rearrangement Theorem 9.1.5**.

§9.2 Understand the Root Test, the Ratio Test and the Integral test - remember that f must be positive and decreasing. Know the applications to the “p-series” $\sum_{n=1}^\infty (1/n^p)$.

§9.3 Understand the Alternating Series Test.

§9.4 An infinite sum of functions $\sum_{n=1}^\infty f_n$ means the limit (if it exists) of the sequence of partial-sum functions $s_n = f_0 + \cdots + f_n$. Similarly, the sum $\sum_{n=1}^\infty f_n$ converges uniformly to f if $(s_n) \Rightarrow f$. The theorems of §8.2 translate into theorems about series: **Theorems 9.4.2, 9.4.3, 9.4.4**; as does the Cauchy Criterion (9.4.5); its corollary is the **Weierstrass M-test 9.4.6**.

There is a special and important analysis for power series. Know the extreme examples $\sum_{n=0}^\infty n!x^n$ and $\sum_{n=0}^\infty (x^n/n!)$ and remember that $\sum_{n=0}^\infty x^n$ is a geometric series converging for $|x| < 1$ and diverging otherwise. Understand the definition of “limit superior” of a bounded sequence (b_n), because the radius of convergence R of the series $\sum_{n=0}^\infty a_n x^n$ is defined in terms of $\limsup(|a_n|^{1/n})$ - essentially, its reciprocal: Definition 9.4.8 and **Theorem 9.4.9**. This theorem is overkill for series for which $R = \lim |a_n/a_{n+1}|$ exists: then that R is the radius of convergence (Exercise 5).

Theorem 9.4.10: A power series $\sum a_n x^n$ with radius of convergence R converges uniformly on any closed, bounded interval $K \subset (-R, R)$. **Theorems 9.4.11** and **9.4.12** then follow from the theorems of section 8.2.