
MAT 319/320

Correction of HW3

Exercise 1. Page 50, #2.

Proof.

1. If S is bounded then there exists a lower bound m and an upper bound M . By defini-
tion, they are such that any x in S satisfies m 6 x 6 M . But this means x ∈ [m,

M ].Therefore S ⊂ [m, M ].

2. Conversely, S ⊂ [m, M ] exactly means that any x in S is bounded above by M , and
below by m.

�

Exercise 2. Page 50, #9.

Proof. By contradiction: assume that the intersection is non empty, and therefore contains
some real number x. Pick any integer K strictly larger than x (for example 1 + E(x), where
E(x) is the integral part of x): then clearly x � (K, ∞) and thus x � ⋂

n=1

∞ (n, ∞), a contradic-
tion.

�

Exercise 3. Page 50, #13.

Proof. Since 1/3 is strictly less than 1, the binary representation starts with 0.
We want to find a, b, c, d ∈ {0, 1} such that the binary representation of 1/3 starts with

(0.abcd� )2.
We notice that

1

2
>

1

3
, so the first digit a must be 0 (not one). Then

1

4
<

1

3
, so the next digit

is 1. Then
1

4
+

1

8
is too large so the following digit must be 0. Similarly the fourth digit is 1

because
0

2
+

1

22
+

0

23
+

1

24
< 1/3.

It seems that there is a pattern: so let’s prove that the binary expansion of 1/3 is
0.010101�

Call x 4 (0.0101010101� )2 Then notice that 22.x = (1.01010101� )2, so by subtraction one

has that (22− 1).x = 1 which means exactly that x= 1/3.
�

Exercise 4. Page 50, #17.

Proof. Write x= 1.25137137� then 100x = 125+ 0.137137�
But if you write y = 0.137137� , you see that 999y = 137, therefore x =

125 +
1 3 7

9 9 9

100
=

125012

99900
.

Similarly, if y = 35.14653653� you see that 100y = 3514+
653

999
therefore y =

3511139

99900
.
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Exercise 5. Page 59, #3c.

Proof. We have already z1 =1, z2 = 2, z3 =
2+1

2− 1
= 3, z4 =

3 +2

3− 2
= 5, z5 =

5+3

5− 2
=

8

3
. �

Exercise 6. Page 59, #4.

Proof. Let ε > 0, by the archimedean property we know the existence of an integer K satisfying

K >
|b|
ε
. Therefore, for any n > K one has n >

|b|
ε

and thus
∣

∣

∣

b

n

∣

∣

∣
6 ε. Therefore, the sequence is

converging to zero. �

Exercise 7. Page 59, #5c.

Proof. One has 0 6

∣

∣

∣

3n +1

2n +5
− 3

2

∣

∣

∣
=

∣

∣

∣

6n +2− 6n − 15

4n + 10

∣

∣

∣
6

13

4n + 10
6

13

4
.
1

n

Since we know that 1/n converges to zero, we deduce that xn converges to 3/2. �

Exercise 8. Page 59, #6c.

Proof. One has 0 6

∣

∣

∣

n
√

n + 1

∣

∣

∣
6

1

n
√ for n > 1, so it is enough to prove that 1/( n

√
) converges to

zero.
Given any ε > 0, by the archimedean property one can find an integer K > ε2, therefore for

any n >K, one has n > ε2 and so 06 1/( n
√

)6 ε, so (1/ n
√

) converges to zero. �

Exercise 9. Page 59, #8.

Proof. The convergence of (xn) to zero translates as follows:
for any ε > 0 there exists an integer K such that: for all n> K one has |xn|< ε.

The convergence of (|xn|) to zero translates as follows:
for any ε > 0 there exists an integer K such that: for all n >K one has ||xn||<ε.

Since |xn|> 0, one has that |xn|= ||xn|| so the two propositions are equivalent.

Now if xn =(− 1)n, one can see that |xn|= 1 so it converges, but (xn) doesn’t converge.
�

Exercise 10. Page 67, #5b.

Proof. A convergent sequence must be bounded. Since (( − 1)n.n2) is unbounded, it cannot
converge.

(Remark: to be convinced that it is unbounded, use the Archimedean property. Given any

M > 0, there exists an integer K > M
√

and therefore any n > K satisfies
∣

∣

∣
(− 1)n.n2

∣

∣

∣
> M)

�

Exercise 11. Page 67, #6d.

Proof. One has xn =
n +1

n n
√ =

1

n
√ +

1

n n
√ . Now we have already proved above that (1/ n

√
) con-

verges to zero (Archimedean property!), and since 0 6

∣

∣

∣

1

n n
√

∣

∣

∣
6

1

n
→ 0, we see that xn is the sum

of two sequences converging to zero, therefore it converges to zero.
�

2



Exercise 12. Page 67, #7.

Proof. Let M > 0 be an upper bound for the sequence (bn).
Given any ε > 0, since (an) converges to zero, we know the existence of an integer K such

that for all n >K one has
∣

∣an

∣

∣ 6
ε

M
.

Now for any n > K, one has |an.bn|6 |an|.M 6 ε. But this exactly says that (anbn) converges
to zero.

The theorem 3.2.3 cannot be applied because (bn) is only bounded, and not necessarily con-
vergent.

�

Exercise 13. Page 67, #17.

Proof. Let r be a real number satisfying 1 < r < L. Since
(

xn+1/xn

)

converges to L, we know

the existence of an integer K such that for any n > K one has
∣

∣

∣

xn+1

xn

− L
∣

∣

∣
< L − r. But this

implies that for any n > K one has
xn+1

xn

> r .

Let’s prove by induction that for any n> K one has xn > rn−K.xK

This is true for n =K because xK = r0.xK.
Assume it is true for n, then we have that xn+1 > r.xn > r.rn−K.xK = rn+1−K.xK, so we are

done.
Now it remains to prove that the sequence (rn) for r > 1 is unbounded.
Here is one possible way: write r = 1 + d, and prove by induction that for any n one has

(1+ d)n > 1 +n.d.
Another way is to take the log(rn) and apply the archimedean property.
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