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Notes on convergence of sequences

Proposition 1: Every monotone, bounded sequence converges.
Proof: This is Ross, Theorem 10.2.

Proposition 2: Every sequence has a monotone subsequence.
Proof: This is Ross, Theorem 11.3.

Definition: (sn) is a Cauchy sequence if for every ε > 0 there exists a natural number N
such that if m,n > N then |sm − sn| < ε. (Ross, Definition 10.8)

Proposition 3: Every Cauchy sequence converges.
Proof: We first establish (A): A Cauchy sequence (sn) is bounded. This means that if

(sn) is Cauchy, then there exists a number M such that |sn| ≤M for every index n.

• Taking ε = 1, the definition of Cauchy sequence tells us that there exists N such that
if n,m > N then |sn − sm| < 1. We use this index N in the rest of the argument.
In particular, if n > N then |sn − sN+1| < 1, so |sn| = |sn − sN+1 + sN+1| ≤ |sn −
sN+1| + |sN+1| < 1 + |sN+1|. On the other hand, the finite set of terms s1, s2, . . . , sN
have a finite maximum absolute value R = max{|s1|, |s2|, . . . , |sN |}. We can now take
M = max{R, 1 + |sN+1|} since if n ≤ N then |sn| ≤ R, whereas if n > N then
|sn| < 1 + |sN+1|.

Next we establish (B): A Cauchy sequence (sn) has a convergent subsequence.

• By Proposition 2, (sn) has a monotone subsequence, say (snk
) = sn1 , sn2 , sn3 , . . .. Since

(sn) is bounded, by (A), any subsequence of sn is bounded. So (snk
), being monotone

and bounded, converges by Proposition 1 to a limit we will call L.

Now we can prove (C): with the notation above, lim sn = L. I.e. the whole sequence converges
to the limit we have established for the subsequence.

• We need to show that for any ε > 0 there exists an index P such that if n > P then
|sn − L| < ε. Since (sn) is Cauchy we know there exists an index P such that if
n,m > P then |sn − sm| < ε/2. Since (snk

) is a subsequence, there is a J1 ≥ J such
that if j > Ji then nj > P . We know from (B) that there exists a (sub)index J2 such
that if j > J2 then |snj

− L| < ε/2. Take any j > max{J1, J2}, and suppose n > P .
Then |sn−L| = |sn− snj

+ snj
−L| ≤ |sn− snj

|+ |snj
−L|. Since j > J1 we know that

nj is also > P , so the first term is < ε/2. Since j > J2 the second term is also < ε/2,
so their sum is less than ε, as was to be shown.


