
MAT 312 Spring 2009 Review for Midterm 2

2.1 Understand that the concept “symmetry” (loosely defined on p. 62) depends
on the context. In particular the 24 symmetries of a regular tetrahedron (problem
12) cannot all be realized by physical motions in space since half of them involve a
reflection. Understand that in composing symmetries the order is important: Table
2.1 is not symmetrical about the diagonal (h2 ◦ h5 = h7, h5 ◦ h2 = h8); Problem 13.

2.2 Understand and be able to apply the definition of group and the discussion (top of
p. 73) of the “closure axiom.” Be able to tell whether or not a composition table is the
composition table of a group (Example 2.13). Understand Theorem 2.1 (symmetries
of a polygon form a group). Know what “commutative” means (Definition 2.4) and
that the word “abelian” is often used for this property.

2.3 Be familiar with {Zn, +} the additive group of integers modulo n, and with the
construction of the product (G×H, ⋆) of groups (G, ◦) and (H, ·) (Definition 2.6). Be
able to prove that (G×H, ⋆) satisfies the group axioms (Theorem 2.3). Understand the
concept of isomorphism and be able to prove that Z4 and Z2 ×Z2 are not isomorphic
(Example 2.25).

2.4 Be able to prove Theorem 2.4 (uniqueness of identity) and Theorem 2.5 (unique-
ness of inverses), and understand exactly where the group axioms enter into these
proofs. Be able to prove that (b ◦ a)−1 = a−1 ◦ b−1 (note order! note change, 03/31)
and understand it in terms of common sense, e.g. a = open refrigerator and a−1 =
close refrigerator, b = take out milk and b−1 = put in milk. Be able to prove that
(a−1)−1 = a (Theorem 2.7) and Theorem 2.8: in a group, the equation a ◦ x = b has
a unique solution x.

2.5 Understand the concept of subgroup (Definition 2.7) and the content of Theorem
2.9 (if H is a subgroup of G, then the composition in H is the composition in G,
applied to pairs of elements of H). Understand the distinction between a finite group
(e.g. (Zn, +)) and an infinite one (e.g. (Z, +)). Understand that the order of g ∈ G is
the smallest positive integer n with gn = e, and be able to prove that in a finite group
every element has finite order (Theorem 2.11). Know some examples of subgroups.
The cyclic subgroup < g > generated by g ∈ G is important. Be able to prove
Theorem 2.12. Understand why a nonempty subset S of a finite group is a subgroup
if and only if it contains the composition of any two of its elements (not true if group
not finite!).

2.6 Know the definition of Sn, the symmetric group on n letters. Understand cycle
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notation (pp. 114-115) and be able to represent any permutation as a product of
disjoint cycles (Examples 2.62, 2.63, 2.64). Understand (Example 2.64) that in a
product of cycles, the order of application of the permutations is right to left – like
composition of functions.

3.1 The basic concept here is equivalence relation (Definition 3.3). The main example
we study is G-equivalence: here G is a subgroup of the group of all permutations of a
set X (we call this “a group of permutations of X”) and for x, y ∈ X, x ∼G y if there
exists g ∈ G with g(x) = y. Understand how the 3 conditions (reflexive, symmet-
ric, transitive) that make ∼G an equivalence relation follow from the three axioms
(identity, inverses, associativity) for G (Proposition 3.1). In general, an equivalence
relation on X partitions X into disjoint equivalence classes: [x] = {y ∈ X | y ∼G x};
be able to prove Proposition 3.2. Know some examples like X = Z and x ≡ y mod n
if x − y is a multiple of n (Example 3.9); also Example 3.10 which is directly given
as a G-equivalence.

3.2 Understand Proposition 3.4. It treats a special case of G-equivalence where now
the set is G and the group is a subgroup H of G. For any h ∈ H, g → gh defines a
permutation of the elements of G (understand this point!), so H can be considered
as a subgroup of the group of all permutations of the elements of G. In this case the
equivalence class of g is called the corresponding left coset and written [g] = gH; the
notation is natural because everything in [g] is of the form gh for some h ∈ H. Note
that H = eH is automatically a coset (top of p. 133). Understand Examples 3.16
and 3.17.

Be able to prove Proposition 3.5 which says essentially that all left cosets have
the same number of elements, which is |H|, the order of H (Definition 3.6). This
proposition has Lagrange’s Theorem (Theorem 3.6) as an immediate consequence;
understand how this works. Understand how this implies that the order of any g ∈ G
must divide |G| (Theorem 3.7) and that therefore any group of prime order must be
cyclic (Theorem 3.8).

3.3 Start with Definition 3.7 (G is a group of permutations of X): Know how to
define the fixed point set Xg for g ∈ G and the stabilizer Gx of an element x ∈ X.
Be able to prove Proposition 3.9 (Gx is a subgroup of G). Proposition 3.10 (|Gx| =
|G|/|[x]| for any x ∈ X) is the main ingredient in the proof of Burnside’s Theorem.
Understand how the proof works. Understand also the proof of Burnside’s Theorem
(Theorem 3.11) itself: it follows from the counting argument

∑
x |Gx| =

∑
g |Xg|,

Proposition 3.10, and the observation that if x ∼G y then |[x]| = |[y]|. The examples
of applications of Burnside’s Theorem are important: Examples 3.31, 3.34, 3.35.
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