
Section 3.3

4) 1. By Burnside’s Theorem, there are 1
6

(2 + 2 + 2) = 1 equivalence class. This agrees.

2. By Burnside’s Theorem again, there are 1
6

(3 + 3 + 2 + 2 + 2 + 6) = 3 equivalence
classes. This agrees.

5) Label the three vertices of the triangle A, B, and C. Let X be the set of colorings of
{A, B, C} by three colors. |X| = 33 = 27.

The identity permutation fixes any coloring, so |Xe| = 27.

In order of a coloring to be fixed by (ABC), then A, B, and C must all have the same
color. Therefore, the coloring is completely determined by the color of A, and there
are three choices for this. |X(ABC)| = 3. Similarly, |X(ACB)| = 3.

The permutation (BC) fixes exactly those colorings for which B and C have the same
color. The color of A is arbitrary. Therefore, the coloring is determined by the colors
of A and B; so there are 32 = 9 fixed colorings. |X(BC)| = 9. Similarly, |X(AC)| =
|X(AB)| = 9.

Thus, by Burnside’s Theorem, the number of inequivalent colorings is: 1
6
(27 + 3 + 3 +

9 + 9 + 9) = 10.

6) Label the vertices of the rectangle, going clockwise A, B, C, D. The symmetries of
the rectangle are the identity, the two reflections (AB)(CD) and (AD)(BC), and the
rotation (AC)(BD). There are 81 colorings of the vertices by 3 colors. |Xe| = 81.
|X(AB)(CD)| = |X(AD)(BC)| = |X(AC)(BD)| = 32 = 9. So by Burside’s Theorem, k =
1
4
(81 + 9 + 9 + 9) = 27.

7) We think of the necklace as a regular pentagon where we want to color the vertices with
two colors: ruby and diamond. Label the vertices of the pentagon A, B, C, D, and
E. The group of symmetries of this figure has ten elements: 5 rotations (including the
identity), and 5 reflections. There are 32 different colorings of the pentagon, so |Xe| =
32. The four other rotations are (ABCDE), (ACEBD), (ADBEC), (AEDCB), so
each one fixes only 2 colorings, the two constant colorings. The five reflections are of
the form (A)(BE)(CD); fixing one vertex and pairing up the remaining 4. Thus, they
fix 23 = 8 elements since they are each a product of three cycles. Therefore,

k =
1

10
(32 + 4 · 2 + 5 · 8) = 8

9) a) Two colorings are equivalent if there is a symmetry of the figure, inducing a permu-
tation on the set of vertices, that preserves color. Thus, blue vertices must always
be mapped to other blue vertices, and can only be mapped from blue vertices.
Thus, the number of blue vertices must remain constant.

b) Six inequivalent colorings are as follows: all blue vertices, all red vertices, 3 blue
and 1 red, 3 red and 1 blue, 2 blue and 2 red with the 2 blues at adjacent vertices,
2 blue and 2 red with the 2 blues at opposite vertices.
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11) In addition to the 8 group elements listed in example 3.36, there are 8 more gotten
by composing with the operation that inverts the output. Using the notation on page
139, this operation sends fn to f15−n for all 0 ≤ n ≤ 15. The first eight still fix the
same number of elements as stated on page 150.

The inverting output operation, which I will denote as f 7→ f fixes no function.

The operation that sends f(x, y) 7→ f(x′, y) fixes 22 functions, as do the operations
f(x, y) 7→ f(x, y′) and f(x, y) 7→ f(x′, y′).

The operation f(x, y) 7→ f(y, x) again fixes no function, for then we would have to
have f(0, 0) = f(0, 0). Similarly, by looking at (1, 0), we see that f(x, y) 7→ f(y′, x′)
fixes no function. The operations f(x, y) 7→ f(y, x′) and f(x, y) 7→ f(y′, x) both fix
2 functions. Therefore, by Burnside’s Theorem

k =
1

16
(16 + 4 + 4 + 4 + 8 + 2 + 2 + 8 + 0 + 4 + 4 + 4 + 0 + 2 + 2 + 0) = 4

15) The number of colorings that satisfy the requirement of exactly two sides of each color
are 6!

2!2!2!
= 90. The identity preserves all of them, |Xe| = 90. We will follow the

labels of Example 3.34. The elements like (1245) and (1542), which correspond to
rotations of 90◦ and 270◦ about the center of a face fix no colorings in the set. Indeed,
if (1245) fixed a coloring, then faces 1, 2, 4, and 5 would all be the same color. The
element (14)(25), which corresponds to a rotation of 180◦ about the center of a face
fixes colorings where faces 1 and 4 are the same, 2 and 5 are the same, and hence 3
and 6 must also be the same. There are 3! = 6 such colorings, and there are 3 such
symmetries.

The symmetries like (14)(26)(35) that correspond to rotation about the centers of edges
also fix 6 colorings. There are 6 such symmetries.

The symmetries (135)(246) that correspond to rotation about a vertex fix colorings
where faces 1, 3, and 5 are the same color. There are no such colorings in the set we
are considering.

Therefore, by Burnside’s Theorem, the number of equivalence classes of colorings is

k =
1

24
(90 + 3(6) + 6(6)) = 6
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