MAT 312/AMS 351
Applied Algebra
Midterm 2 — Solutions

1. (a) (10 points) Show that the groups Zj x Zs and Zg are not isomorphic. (Remember
that two groups are isomorphic if one can be considered a re-labeling of the other:
the same algebra with different tags).

SOLUTION In Z3 x Zs, every element except 0 has order 3, since (a,b) + (a,b) +
(a,b) = (a+a+a,b+b+b)and 1+1+1=2+2+2=01in Z3. In Zy the element
1 has order 9. So the algebraic structures are different.

(b) (15 points) Show that the groups Zs x Zs and Zg are isomorphic.

SOLUTION It is enough to show that Zsz x Zs is cyclic of order 6. We can use
either (1,1) or (2,1) as generator:

(1,1)

(1,1) + (1,1) = (2,0)
(1,1) +(2,0) = (0,1)
(1,1) +(0,1) = (1,0)
(1,1) + (1,0) = (2,1)
(1,1) + (2,1) = (0,0).

The second version of the test had Zs X Zs.

2. (25 points) The group S,, of all permutations of n distinct objects, say, 1, 2, 3, ...n
has order n!. Show that for every k, 1 < k <mn, S, has a subgroup of order exactly k,
by exhibiting such a subgroup.

SoLUTION The cyclic subgroup generated by (12) has 2 elements: {(12), (12)? = e}.
The cyclic subgroup generated by (123) has 3 elements: {(123), (123)% = (132), (123)3 =
e}. Similarly the cyclic subgroup generated by any k-cycle, for example (123...k) has
order k:

1 2 3 k
NN N NN
1 2 3 k
NN N NN
1 2 3 k

NN N NN

(after k steps, each element is back where it started). So for each k < n the cyclic
subgroup < (123...k) > has order k.



3. (25 points) Two colorings of the vertices of an equilateral triangle are considered equiv-
alent if a symmetry of the triangle takes one to the other. In how many non-equivalent
ways can one color the vertices of an equilateral triangle with 5 colors?

SoLuTiON We apply Burnside’s Theorem. If the triangle has vertices A, B, C the
group G of symmetries is {e, (AB), (AC), (BC), (ABC),(ACB)}. All possible distinct
colorings are invariant under e: there are 5% of them, since each vertex can have any
one of the 5 colors; so | X.| = 5. The colorings invariant under (AB) must give A and
B the same color; the color for C' can be chosen independently, so there are 52 ways
of doing this, and | Xp)| = 52. Same for X(acy and X(pc). The colorings invariant
under (ABC') must give all 3 vertices the same color; this can be done 5 ways. So
| X(aBc)| = 5 and same for X(4cp). Burnside’s Theorem says the number of distinct

colorings up to symmetry is
= 51 = Kl

geG
In our case this gives (1/6)(5% +3-5%+2-5) = 35.

The other test had 4 colors, with number of distinct colorings up to symmetry equal
to (1/6)(4% +3-4*+2-4) = 20.

4. (25 points) The group Sy has 4! = 24 elements:
e
(12), (13), (14), (23), (24), (34)
(123), (132), (124), (142), (134), (143), (234), (243)
(1234), (13)(24), (1432), (1324), (12)(34), (1423), (1243), (14)(23), (1342)
The subgroup Hs = {all permutations that fix the element 2} has 6 elements:
e, (13), (14), (34), (134), (143),
What are the four left cosets determined by Hs?

SOLUTION The first coset is Hy itself: {e, (13), (14), (34), (134), (143)}.

To get another coset take any element not in Hj, e.g. (12), and calculate (12)H, =
[(12), (132), (142), (12)(34), (1342), (1432)}.

For a third coset, take any element not in Hs or in (12)Hs, e.g. (23), and calculate
(23)H, = {(23), (123), (23)(14), (234), (1234), (1423)}.

For the last coset you can take what’s left over, or take an element not in any of the
first 3, say (24), and use (24)Hy = {(24), (24)(13), (124), (243), (1324), (1243)}.

The other test used Hs, similarly defined, and the cosets were:
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{e,(12),(14), (24), (124), (142)},
(13)Hs = {(13), (123), (143), (13)(24), (1243), (1423)},

(23)H; = {(23), (132), (23)(14), (243), (1324), (1432)},
(34)Hs = {(34), (34)(12), (134), (234), (1234), (1342)}.

Hs =



