
MAT 312/AMS 351 Fall 2010 Review for Final Revised 12/9/10.

NOTE: Final is cumulative. Use review sheets 1 and 2 as well as this one. Also review
all homework, as well as midterms 1 and 2.

§3.2 Given a permutation π ∈ S(n), know how to compute its order (Definition 3.16).
Understand how to apply Proposiiton 3.21 to calculate the order of a permutation which has
been written as a product of disjoint cycles. Exercise 2 p. 83. Understand what it means
for two permutations π1, π2 ∈ S(n) to be conjugate (bottom of p.79); that congugacy is
an equivalence relation on S(n); understand what the shape of a permutation is (Definition
3.26) and that a conjugacy class (defined at top of p. 80) is made up of all the permutations
with the same shape (Theorem 3.27). Homework 9, Exercise 5. Understand the sign of a
permutation (Definition 3.31; alternate definition in “Notes and Exercises on Permutations
and Matrices”). Know that a permutation with sign −1 is odd, and one with sign 1 is even.
Understand that every transposition (Definition 3.4) has sign −1. Know how to prove Lemma
3.35 (every cycle is a product of transpositions) and understand why an odd-length cycle
is an even permutation, and vice-versa. Be able to apply Theorem 3.36 (if a permutation
is written as a product of transpositions, the permutation is odd if the number of those
transpositions is odd, and even if that number is even). Understand that the order, the sign
and the shape are the same for conjugate permutations.

§3.3 Understand the definition of a group. If you need examples, use the set S(n) of
permutations of n elements, with composition law the product of permutations. Examples
derived from the integers, e.g. Zn (with +) and Z∗

n
(with multiplication) have a rich structure

but are all commutative, so not typical. Make sure you are comfortable with the notation
conventions (3.42). Be able to prove Theorem 3.43 (identity and inverses are unique).

§4.1 Understand the definition of the order of an element g of a group G. (Same definition
as the order of a permutation). The concept of subgroup of G is elementary but important:
it’s a subset H of G which is closed under composition and inverses. In particular H, and
the composition law of G applied to elements of H, constitute a group. Examples 4.11 (1)
and (2). Special cases: for any element g ∈ G, the set of positive and negative powers of g,
i.e. {g, g ∗ g, g ∗ g ∗ g, . . . , g−1, g−1 ∗ g−1, . . . , g ∗ g−1 = e} forms a subgroup, called the cyclic
subgroup generated by g, and written 〈g〉 (Proposition 4.14). Exercises (1), (2), (3) p. 98.

§4.2 For a subgroup H of a group G, understand that the left H-coset corresponding to
an element a ∈ G is aH = {ah|h ∈ H}. Know that two left H-cosets either coincide or are
disjoint, and that left-multiplication by a produces a 1-1 correspondence between H and aH.
(Use Propositions 4.19 and 4.21, or follow the argument in “Notes and exercises on normal
groups and quotient groups.”) Understand that it follows, for a finite group G (i.e., a group
with a finite number o(G) of elements), that o(G) must be an integer multiple of o(H). This
is Lagrange’s Theorem (4.22).

§4.3 We did not cover homomorphisms in general, but only isomorphisms. These are
contained in Definition 4.26: a function θ : G → H from one group to another is an
isomorphism if it is 1-1, onto and respects the group operations. So if ∗ is the operation
in G, and @ is the operation in H, then θ(g1 ∗ g2) = θ(g1)@θ(g2). Be able to show that
θ−1 : H → G is then also an isomorphism, and understand that isomorphic groups are “the
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same group” with different labellings of the elements and the operation.

§4.5 (See also “Notes and exercises on normal groups and quotient groups”). Understand
what right cosets are, and that in general, for a subgroup H of a non-commutative group G,
the left coset aH and the right coset Ha are different subsets of G. (Example 2 of “Notes ...”
also on p. 107, bottom). The subgroup H is called normal if aH = Ha for every a ∈ G. (So
in a commutative group, every subgroup is normal). Understand why if o(H) = 1

2
o(G) then

H must be normal. Understand why if H is normal, there is a well-defined multiplication
between H-cosets, which makes the set of H-cosets into a group called the quotient group of
G modulo H, and written G/H. This is Theorem 4.44, or Proposition 2 in the “Notes ...”.
Example, and Exercise 2, in the “Notes ... ”.

§6.2 In this section, B stands for the group {0, 1} with addition mod 2, and Bn stands for
the group of n-tuples (n-component vectors) of elements of B, with componentwise addition.
A code is a function f : Bm → Bn which is 1-1 so it can be decoded. (This implies m ≤ n).
f is a group code if it preserves addition: f(w1 + w2) = f(w1) + f(w2). Understand the
Hamming distance d between vectors (“words”) in Bn: d(w1, w2) = the number of places in
which the two vectors have different components. Understand also the weight of a vector
in Bn: the number of “1”s among its components; and that the weight of w is equal to
d(w, (0, ..., 0)), the distance between w and the zero-vector. Be able to prove that for a
group code, the minimum distance between different words is equal to the minimum weight
of a non-zero word. (Theorem 6.12).

A code word for the code f : Bm → Bn is f(w) for some w ∈ Bm. Be able to prove
Theorems 6.7 and 6.8 about such a code f : it can detect k or fewer errors if and only if the
minimum distance between different code words is k+1; and it can correct k or fewer errors
if and only if the minimum distance between different code words is 2k + 1.

Understand how an m × n matrix G can be used to define a code fG, by matrix multi-
plication: fG(w) = wG, and that such a code is automatically a group code. Understand
the concept of a check bit: In a word c = (x1, . . . xn), xi is a (parity) check bit for locations
a1, . . . ak if xi + xa1

+ · · ·+ xak
= 0. In other words, xi = 1 if there is an odd number of “1”s

in locations a1, . . . ak, and xi = 0 if that number is even. Understand also that position i in
a code-word is a check bit for locations a1, . . . ak (in the code generated by matrix G) if the
i-th column of G has “1”s in rows a1, . . . ak, and “0” otherwise. Example at bottom of p.
137: here m = 4 and n = 7. Position 5 is a check bit on locations 2, 3, 4. Position 7 is a
check bit on locations 1, 3, 4.

Hamming codes will not be covered on the final exam.

2


