1. Write a complete, clear and correct proof of the following statement:
Given \(v_1 \) and \(v_2 \) eigenvectors of a linear operator; if their associated eigenvalues are different, then \(v_1 \) and \(v_2 \) are linearly independent.

Solution. (This is an abridged version of a proof in the book). Let \(\lambda_1 \neq \lambda_2 \) be the corresponding eigenvalues. If \(T \) is the operator, then \(Tv_1 = \lambda_1 v_1 \) and \(Tv_2 = \lambda_2 v_2 \). Suppose a linear relation \(a_1 v_1 + a_2 v_2 = 0 \). Since \(v_1 \) and \(v_2 \), being eigenvectors, are not zero, both \(a_1 \) and \(a_2 \) are nonzero. Then for example \(v_1 = -\frac{a_2}{a_1} v_2 \). so \(Tv_1 = -\frac{a_2}{a_1} \lambda_2 v_2 \); on the other hand, \(Tv_1 = \lambda_1 v_1 = -\frac{a_2}{a_1} \lambda_1 v_2 \). Since everything else is nonzero, \(\lambda_1 \) must equal \(\lambda_2 \), a contradiction. So there is no such linear relation, and \(v_1, v_2 \) are linearly independent.

2. Consider the linear operator \(T \) defined in the standard basis \((1, 0), (0, 1)\) by the matrix
\[
\begin{bmatrix}
11 & -4 \\
30 & -11
\end{bmatrix}.
\]
Take \(v = (1, 0) \) and note that \(T(v) = (11, 30) \) and \(T^2(v) = (1, 0) \), so \(T \) satisfies the equation \((T^2 - I)v = 0 \). Factor \(T^2 - I \) as \((T - aI)(T - bI) \). When you have calculated \(a \) and \(b \), apply \((T - bI) \) and then \((T - aI) \) to \(v \) to obtain an eigenvector for \(T \), as in the proof in the text that every operator on a complex vector space has an eigenvector.

Solution. The polynomial \(x^2 - 1 \) factors as \((x + 1)(x - 1) \), so \(T^2 - I = (T + I)(T - I) \), giving \(a = -1, b = 1 \) in the statement of the problem. If we apply
\[
T - I = \begin{bmatrix}
10 & -4 \\
30 & -12
\end{bmatrix}
\]
to \(v = (1, 0) \) we get \((10,30)\). This is an eigenvector, with eigenvalue \(-1\) as can be checked. (If we applied \(T + I = \begin{bmatrix}
12 & -4 \\
30 & -10
\end{bmatrix}\) instead, we would get \((12,30)\), an eigenvector with eigenvalue \(1\).) Similar analysis for the other form of this problem, where \(v = (0, 1) \).
3. Give an example of a linear operator on \mathbf{R}^2 which is not diagonalizable but can be put in upper-triangular form.

Solution. Suppose T is an operator which with respect to some basis is in upper-triangular form, with matrix

$$
\begin{bmatrix}
a & c \\
0 & b
\end{bmatrix}.
$$

We know that the diagonal entries are eigenvalues of T, and that if they are distinct the corresponding eigenvectors are linearly independent; using those eigenvectors as basis gives a diagonal matrix. So a and b must be equal. If $c = 0$ then our matrix is diagonal. So take for example

$$
A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.
$$

We check this matrix is not diagonalizable. The only eigenvalue is 1; a possible eigenvector must satisfy

$$
A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x + y \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}.
$$

The first components give $x + y = x$ so $y = 0$. So any eigenvector is a multiple of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$. There cannot be two linearly independent vectors, so this transformation is not diagonalizable.