MAT 126: PRoblem Set 4 Solutions

1. We have $f(x)=-x^{2}+3 x$, and $g(x)=2 x^{3}-x^{2}-5 x$. We first solve for the intersection points:

$$
\begin{aligned}
& -x^{2}+3 x=2 x^{3}-x^{2}-5 x \\
& \Rightarrow 2 x(x-2)(x+2)=0 \\
& \Rightarrow x=0, \pm 2
\end{aligned}
$$

Looking at the equations, we see that one is a parabola that opens downwards, while the other is a cubic with a leading term of $2 x^{3}$. We may also easily factor each equation to obtain its roots. This information is sufficient to produce a rough sketch of the curves:

We see that the $g \geqslant f$ on $[-2,0]$ while $f \geqslant g$ on $[0,2]$. From this, we can set up an integral which computes the area:

$$
\begin{aligned}
A & =\int_{-2}^{0}[g(x)-f(x)] d x+\int_{0}^{2}[f(x)-g(x)] d x \\
& =\int_{-2}^{0}\left[2 x^{3}-8 x\right] d x+\int_{0}^{2}\left[8 x-2 x^{3}\right] d x \\
& =\left.\left(\frac{1}{2} x^{4}-4 x^{2}\right)\right|_{-2} ^{0}+\left.\left(4 x^{2}-\frac{1}{2} x^{4}\right)\right|_{0} ^{2} \\
& =[0-(8-16)]+[(16-8)-0]=16
\end{aligned}
$$

2. By inspection, when $x=1$, we have $3 / 2-1 / 2=\sqrt{1}$. These curves are easy to sketch:

a) To set up an integral with respect to x that computes the area, we simply integrate the lengths of the vertical slices of this region over the interval $[0,1]$.

$$
\begin{aligned}
A & =\int_{0}^{1}\left[\left(\frac{3}{2}-\frac{1}{2} x\right)-\sqrt{x}\right] d x \\
& =\left.\left(\frac{3}{2} x-\frac{1}{4} x^{2}-\frac{2}{3} x^{3 / 2}\right)\right|_{0} ^{1} \\
& =\left(\frac{3}{2}-\frac{1}{4}-\frac{2}{3}\right)-0 \\
& =\frac{18-3-8}{12}=\frac{7}{12}
\end{aligned}
$$

b) To set up an integral with respect to y that computes the area, we have to split the region up into pieces. Solving for x, our equations become $x=3-2 y$ and $x=y^{2}$. Writing an integral for the area, we obtain:

$$
\begin{aligned}
A & =\int_{0}^{1} y^{2} d y+\int_{1}^{3 / 2}[3-2 y] d y \\
& =\left.\frac{1}{3} y^{3}\right|_{0} ^{1}+\left.\left(3 y-y^{2}\right)\right|_{0} ^{3 / 2} \\
& =\left(\frac{1}{3}-0\right)+\left(\left(\frac{9}{2}-\frac{9}{4}\right)-(3-1)\right) \\
& =\frac{4+27-24}{12}=\frac{7}{12}
\end{aligned}
$$

3. As always, we begin with a sketch:

a) We will use the washers method to find the volume of the solid of revolution.

$$
\begin{aligned}
V & =\int_{0}^{1} \pi\left[(x)^{2}-\left(x^{2}\right)^{2}\right] d x \\
& =\pi \int_{0}^{1}\left[x^{2}-x^{4}\right] d x=\left.\pi\left(\frac{1}{3} x^{3}-\frac{1}{5} x^{5}\right)\right|_{0} ^{1} \\
& =\pi\left(\frac{1}{3}-\frac{1}{5}\right)-0=\frac{2}{15} \pi
\end{aligned}
$$

b) For this part, we use cylindrical shells. We have $h(x)=x-x^{2}$.

$$
\begin{aligned}
V & =\int_{0}^{1} 2 \pi x h(x) d x=\int_{0}^{1} 2 \pi x\left(x-x^{2}\right) d x \\
& =2 \pi \int_{0}^{1}\left[x^{2}-x^{3}\right] d x=\left.2 \pi\left(\frac{1}{3} x^{3}-\frac{1}{4} x^{4}\right)\right|_{0} ^{1} \\
& =2 \pi\left(\frac{1}{3}-\frac{1}{4}\right)-0=\frac{1}{6} \pi
\end{aligned}
$$

4. We will find the volume of the torus using the cylindrical shells method while integrating with respect to x. First picture the region inside of the curve $(x-a)^{2}+y^{2}=b^{2}$. The range of x values over which there lies a vertical slice of the circle is $[a-b, a+b]$. We would like to find the heights of these slices. Towards this end, we solve for y when x is taken as fixed:

$$
\begin{aligned}
& (x-a)^{2}+y^{2}=b^{2} \\
& \Rightarrow y^{2}=b^{2}-(x-a)^{2} \\
& \Rightarrow y= \pm \sqrt{b^{2}-(x-a)^{2}} \\
& \Rightarrow h(x)=2 \sqrt{b^{2}-(x-a)^{2}}
\end{aligned}
$$

Knowing the heights and the bounds allows us to set up an integral:

$$
\begin{aligned}
& V=\int_{a-b}^{a+b} 2 \pi x h(x) d x=4 \pi \int_{a-b}^{a+b} x \sqrt{b^{2}-(x-a)^{2}} d x\left[\begin{array}{c}
\text { Let } x-a=b \sin (u) \\
d x=b \cos (u) d u
\end{array}\right] \\
& =4 \pi \int_{\arcsin (-1)}^{\arcsin (1)}(b \sin (u)+a) \sqrt{b^{2}-b^{2} \sin ^{2}(u)} b \cos (u) d u \\
& =4 \pi b^{2} \int_{-\pi / 2}^{\pi / 2}(b \sin (u)+a) \cos ^{2}(u) d u \\
& =4 \pi b^{3} \int_{-\pi / 2}^{\pi / 2} \cos ^{2}(u) \sin (u) d u\left[\begin{array}{c}
\text { Let } w=\cos (u) \\
d w=-\sin (u) d u
\end{array}\right]+2 \pi a b^{2} \int_{-\pi / 2}^{\pi / 2}[1+\cos (2 u)] d u \\
& =-4 \pi b^{3} \int_{0}^{0} w^{2} d w+\left.\left(2 \pi a b^{2} u+\pi a b^{2} \sin (2 u)\right)\right|_{-\pi / 2} ^{\pi / 2} \\
& =0+\left(\pi^{2} a b^{2}+0\right)-\left(-\pi^{2} a b^{2}+0\right)=2 \pi^{2} a b^{2}
\end{aligned}
$$

5. We will again use the cylindrical shells method while integrating with respect to x. If we look at the cross section of this solid in the $x y$-plane, then we get a circle of radius $2 a$ with all vertical slices lying over $[-a, a]$ removed. If we parametrise the remaining cylindrical shells (which extend on both sides of the y axis) by x values, then our parameter is restricted to lie in $[a, 2 a]$. We solve for the height as before:

$$
\begin{aligned}
& x^{2}+y^{2}=(2 a)^{2} \\
& \Rightarrow y^{2}=4 a^{2}-x^{2} \\
& \Rightarrow y= \pm \sqrt{4 a^{2}-x^{2}} \\
& \Rightarrow h(x)=2 \sqrt{4 a^{2}-x^{2}}
\end{aligned}
$$

We set up the integral as before:

$$
\begin{aligned}
& V=\int_{a}^{2 a} 2 \pi x h(x) d x=4 \pi \int_{a}^{2 a} x \sqrt{4 a^{2}-x^{2}} d x\left[\begin{array}{l}
\text { Let } x=2 a \sin (u) \\
d x=2 a \cos (u) d u
\end{array}\right] \\
& =16 \pi a^{2} \int_{\arcsin (1 / 2)}^{\arcsin (1)} \sin (u) \sqrt{4 a^{2}-4 a^{2} \sin ^{2}(u)} \cos (u) d u \\
& =32 \pi a^{3} \int_{\pi / 6}^{\pi / 2} \cos ^{2}(u) \sin (u) d u\left[\begin{array}{c}
\text { Let } w=\cos (u) \\
d w=-\sin (u) d u
\end{array}\right] \\
& =-32 \pi a^{3} \int_{\sqrt{3} / 2}^{0} w^{2} d w=-\left.\frac{32}{3} \pi a^{3} w^{3}\right|_{\sqrt{3} / 2} ^{0}=4 \sqrt{3} \pi a^{3}
\end{aligned}
$$

6. a)

$$
\begin{aligned}
& f(x)=\frac{1}{24} x^{3}+\frac{2}{x} \\
& f^{\prime}(x)=\frac{1}{8} x^{2}-\frac{2}{x^{2}} \\
& 1+\left(f^{\prime}(x)\right)^{2}=1+\left(\frac{1}{8} x^{2}-\frac{2}{x^{2}}\right)^{2} \\
& =1+\frac{1}{64} x^{4}-\frac{1}{2}+\frac{4}{x^{4}} \\
& =\frac{1}{64} x^{4}+\frac{1}{2}+\frac{4}{x^{4}}=\left(\frac{1}{8} x^{2}+\frac{2}{x^{2}}\right)^{2} \\
& l=\int_{2}^{4} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x=\int_{2}^{4}\left(\frac{1}{8} x^{2}+\frac{2}{x^{2}}\right) d x \\
& =\left.\left(\frac{1}{24} x^{3}-\frac{2}{x}\right)\right|_{2} ^{4}=\left(\frac{8}{3}-\frac{1}{2}\right)-\left(\frac{1}{3}-1\right) \\
& =\frac{16-3-2+6}{6}=\frac{17}{6}
\end{aligned}
$$

6. b)

$$
\begin{aligned}
& f(x)=\frac{1}{2}\left(e^{x}+e^{-x}\right) \\
& f^{\prime}(x)=\frac{1}{2}\left(e^{x}-e^{-x}\right) \\
& 1+\left(f^{\prime}(x)\right)^{2}=1+\frac{1}{4} e^{2 x}-\frac{1}{2}+\frac{1}{4} e^{-2 x} \\
& =\frac{1}{4} e^{2 x}+\frac{1}{2}+\frac{1}{4} e^{-2 x}=\frac{1}{4}\left(e^{x}+e^{-x}\right)^{2} \\
& l=\int_{0}^{1} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x=\int_{0}^{1} \frac{1}{2}\left(e^{x}+e^{-x}\right) d x \\
& =\left.\frac{1}{2}\left(e^{x}-e^{-x}\right)\right|_{0} ^{1}=\frac{1}{2}\left(e-e^{-1}\right)
\end{aligned}
$$

7. a) $\int_{0}^{\pi / 3} \frac{1}{2-\cos (\mathrm{x})} \mathrm{d} x[$ Let $u=\tan (x / 2)]=\int_{0}^{1 / \sqrt{3}} \frac{1}{2-\frac{1-\mathfrak{u}^{2}}{1+\mathfrak{u}^{2}}} \frac{2}{1+\mathrm{u}^{2}} \mathrm{du}$

$$
=\int_{0}^{1 / \sqrt{3}} \frac{2}{2\left(1+u^{2}\right)-\left(1-u^{2}\right)} d u=\int_{0}^{1 / \sqrt{3}} \frac{2}{(\sqrt{3} u)^{2}+1} d u
$$

$$
\left[\begin{array}{c}
\text { Let } w=\sqrt{3} u \\
d w=\sqrt{3} d u
\end{array}\right]=\frac{2}{\sqrt{3}} \int_{0}^{1} \frac{1}{w^{2}+1} d w=\left.\frac{2}{\sqrt{3}} \arctan (w)\right|_{0} ^{1}
$$

$$
=\frac{2}{\sqrt{3}}(\arctan (1)-\arctan (0))=\frac{2}{\sqrt{3}}\left(\frac{\pi}{4}-0\right)=\frac{1}{\sqrt{3}} \pi
$$

7. b)

$$
\begin{aligned}
& \int_{2 \sqrt{2}}^{4} \frac{1}{x \sqrt{x^{2}-4}} d x\left[\begin{array}{c}
\text { Let } x=2 \sec (u) \\
d x=2 \sec (u) \tan (u) d u
\end{array}\right] \\
& =\int_{\operatorname{arcsec}(\sqrt{2})}^{\operatorname{arcsec}(2)} \frac{2 \sec (u) \tan (u)}{2 \sec (u) \sqrt{4 \sec ^{2}(u)-4}} d u \\
& =\frac{1}{2} \int_{\arccos (1 / \sqrt{2})}^{\arccos (1 / 2)} \frac{\sec (u) \tan (u)}{\sec (u) \tan (u)} d u=\frac{1}{2} \int_{\pi / 4}^{\pi / 3} d u \\
& =\left.\frac{1}{2} u\right|_{\pi / 4} ^{\pi / 3}=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{4}\right) \pi=\frac{1}{24} \pi
\end{aligned}
$$

7. c)

$$
\begin{aligned}
& \int_{0}^{\pi / 6} \cos ^{5}(3 x) \mathrm{d} x\left[\begin{array}{l}
\text { Let } u=3 x \\
d u=3 \mathrm{~d} x
\end{array}\right]=\frac{1}{3} \int_{0}^{\pi / 2} \cos ^{5}(\mathrm{u}) \mathrm{d} u \\
& =\frac{1}{3} \int_{0}^{\pi / 2}\left(1-\sin ^{2}(\mathrm{u})\right)^{2} \cos (\mathrm{u}) \mathrm{d} x\left[\begin{array}{l}
\text { Let } w=\sin (u) \\
\mathrm{d} w=\cos (u) \mathrm{du}
\end{array}\right] \\
& =\int_{0}^{1}\left(1-w^{2}\right)^{2} \mathrm{~d} w=\int_{0}^{1}\left[w^{4}-2 w^{2}+1\right] \mathrm{d} w \\
& =\left.\left(\frac{1}{5} w^{5}-\frac{2}{3} w^{3}+w\right)\right|_{0} ^{1}=\left(\frac{1}{5}-\frac{2}{3}+1\right)-0 \\
& =\frac{3-10+15}{15}=\frac{8}{15}
\end{aligned}
$$

7. $\frac{d)}{\left(x^{2}-4\right)\left(x^{2}+1\right)}=\frac{A}{x-2}+\frac{B}{x+2}+\frac{C x+D}{x^{2}+1}$

$$
\begin{aligned}
& =\frac{A(x+2)\left(x^{2}+1\right)+B(x-2)\left(x^{2}+1\right)+(C x+D)\left(x^{2}-4\right)}{\left(x^{2}-4\right)\left(x^{2}+1\right)} \\
& =\frac{A\left(x^{3}+2 x^{2}+x+2\right)+B\left(x^{3}-2 x^{2}+x-2\right)+C\left(x^{3}-4 x\right)+D\left(x^{2}-4\right)}{\left(x^{2}-4\right)\left(x^{2}+1\right)} \\
& =\frac{(A+B+C) x^{3}+(2 A-2 B+D) x^{2}+(A+B-4 C) x+(2 A-2 B-4 D)}{\left(x^{2}-4\right)\left(x^{2}+1\right)} \\
& \Rightarrow A+B+C=0,2 A-2 B+D=5, A+B-4 C=0,2 A-2 B-4 D=0 \\
& \Rightarrow A=1, B=-1, C=0, D=1
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{1} \frac{5 x^{2}}{\left(x^{2}-4\right)\left(x^{2}+1\right)} d x=\int_{0}^{1}\left[\frac{1}{x-2}-\frac{1}{x+2}+\frac{1}{x^{2}+1}\right] d x \\
& =\left.(\log |x-2|-\log |x+2|+\arctan (x))\right|_{0} ^{1} \\
& =(\log (1)-\log (3)+\arctan (1))-(\log (2)-\log (2)+\arctan (0)) \\
& =\left(0-\log (3)+\frac{\pi}{4}\right)-0=\frac{\pi}{4}-\log (3)
\end{aligned}
$$

