MAT 126: Problem Set 1 Solutions

1. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be positive real numbers greater than 1 . Show that

$$
\log _{a}(b c) \log _{b}(a c) \log _{c}(a b)=\log _{a}(b c)+\log _{b}(a c)+\log _{c}(a b)+2
$$

Solution: By logarithm identities we have:

$$
\log _{a}(b c)=\frac{\log (b c)}{\log (a)}=\frac{\log (b)+\log (c)}{\log (a)}
$$

Let $A=\log a, B=\log b$, and $C=\log c$. Then we have:

$$
\begin{aligned}
& \log _{a}(b c) \log _{b}(a c) \log _{c}(a b) \\
= & \left(\frac{B+C}{A}\right)\left(\frac{A+C}{B}\right)\left(\frac{A+B}{C}\right) \\
= & \frac{1}{A B C}\left(A B+B C+A C+C^{2}\right)(A+B) \\
= & \frac{1}{A B C}\left(A^{2} B+A B C+A^{2} C+A C^{2}+A B^{2}+B^{2} C+A B C+B C^{2}\right) \\
= & \frac{A}{C}+1+\frac{A}{B}+\frac{C}{B}+\frac{B}{C}+\frac{B}{A}+1+\frac{C}{A} \\
= & \left(\frac{B+C}{A}\right)+\left(\frac{A+C}{B}\right)+\left(\frac{A+B}{C}\right)+2 \\
= & \log _{a}(b c)+\log _{b}(a c)+\log _{c}(a b)+2 .
\end{aligned}
$$

2. (a) Show that if a and h are positive numbers with $h<a^{2}$, then

$$
\sqrt{a^{2}+h}-a<\frac{h}{2 a}<a-\sqrt{a^{2}-h}
$$

Solution: By multiplying by the conjugate, we obtain:

$$
\begin{aligned}
\sqrt{a^{2}+h}-a & =\left(\sqrt{a^{2}+h}-a\right) \frac{\sqrt{a^{2}+h}+a}{\sqrt{a^{2}+h}+a} \\
& =\frac{a^{2}+h-a^{2}}{\sqrt{a^{2}+h}+a}=\frac{h}{\sqrt{a^{2}+h}+a}
\end{aligned}
$$

Now, notice that, because we have $h>0$, and since the function $f(x)=\sqrt{x}$ is increasing, we have $a^{2}+h>a^{2}$ and thus $\sqrt{a^{2}+h}>\sqrt{a^{2}}=a$. Thus, $\sqrt{a^{2}+h}+a>2 a$. Since a dividing by a smaller number yields a bigger number, we have:

$$
\sqrt{a^{2}+h}-a=\frac{h}{\sqrt{a^{2}+h}+a}<\frac{h}{2 a} .
$$

The other inequality is established similarly. We have:

$$
\begin{aligned}
a-\sqrt{a^{2}-h} & =\left(a-\sqrt{a^{2}-h}\right) \frac{a+\sqrt{a^{2}-h}}{a+\sqrt{a^{2}-h}} \\
& =\frac{a^{2}-\left(a^{2}-h\right)}{a+\sqrt{a^{2}-h}}=\frac{h}{a+\sqrt{a^{2}-h}} .
\end{aligned}
$$

As before, we have $a^{2}-h<a^{2}$, so $a+\sqrt{a^{2}-h}<\sqrt{a^{2}}+a=2 a$. We thus have:

$$
\frac{h}{2 a}<\frac{h}{a+\sqrt{a^{2}-h}}=a-\sqrt{a^{2}-h}
$$

2. (b) Factor $x^{3}-y^{3}$ and use this to show that if a and h are positive numbers with $\mathrm{h}<\mathrm{a}^{3}$, then

$$
\sqrt[3]{a^{3}+h}-a<\frac{h}{3 a^{2}}<a-\sqrt[3]{a^{3}-h}
$$

Solution: We first begin by observing that $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$. This suggests that $x^{2}+x y+y^{2}$ acts as a degree two analogue of the conjugate $x-y$. In particular, multiplying the top and bottom of $x-y$ by $x^{2}+x y+y^{2}$ achieves the effect of cubing both summands.

With this insight, we manipulate the leftmost term in the inequality:

$$
\begin{aligned}
\sqrt[3]{a^{3}+h}-a & =\left(\sqrt[3]{a^{3}+h}-a\right) \frac{\left(\sqrt[3]{a^{3}+h}\right)^{2}+a \sqrt[3]{a^{3}+h}+a^{2}}{\left(\sqrt[3]{a^{3}+h}\right)^{2}+a \sqrt[3]{a^{3}+h}+a^{2}} \\
& =\frac{a^{3}+h-a^{3}}{\left(\sqrt[3]{a^{3}+h}\right)^{2}+a \sqrt[3]{a^{3}+h}+a^{2}} \\
& =\frac{h}{\left(\sqrt[3]{a^{3}+h}\right)^{2}+a \sqrt[3]{a^{3}+h}+a^{2}}
\end{aligned}
$$

Subsequent to this, we once again have that $h>0$ and that the cube root function is increasing, and so $\sqrt[3]{a^{3}+h}>\sqrt[3]{a^{3}}=a$. From elementary properties of inequalities, we conclude that $\left(\sqrt[3]{a^{3}+h}\right)^{2}+a \sqrt[3]{a^{3}+h}+a^{2}>3 a^{2}$. We thus have

$$
\sqrt[3]{a^{3}+h}-a=\frac{h}{\left(\sqrt[3]{a^{3}+h}\right)^{2}+a \sqrt[3]{a^{3}+h}+a^{2}}<\frac{h}{3 a^{2}}
$$

For the other inequality we proceed similarly:

$$
\begin{aligned}
a-\sqrt[3]{a^{3}-h} & =\left(a-\sqrt[3]{a^{3}-h}\right) \frac{a^{2}+a \sqrt[3]{a^{3}-h}+\left(\sqrt[3]{a^{3}-h}\right)^{2}}{a^{2}+a \sqrt[3]{a^{3}-h}+\left(\sqrt[3]{a^{3}-h}\right)^{2}} \\
& =\frac{a^{3}-\left(a^{3}-h\right)}{a^{2}+a \sqrt[3]{a^{3}-h}+\left(\sqrt[3]{a^{3}-h}\right)^{2}} \\
& =\frac{h}{a^{2}+a \sqrt[3]{a^{3}-h}+\left(\sqrt[3]{a^{3}-h}\right)^{2}}
\end{aligned}
$$

We once gain have that $a^{3}-h<a^{3}$ and thus $\sqrt[3]{a^{3}-h}<\sqrt[3]{a^{3}}=a$. This yields $a^{2}+a \sqrt[3]{a^{3}-h}+\left(\sqrt[3]{a^{3}-h}\right)^{2}<3 a^{2}$. We thus have:

$$
\frac{h}{3 a^{2}}<\frac{h}{a^{2}+a \sqrt[3]{a^{3}-h}+\left(\sqrt[3]{a^{3}-h}\right)^{2}}=a-\sqrt[3]{a^{3}-h}
$$

2. (c) Write $||83-\sqrt{6891}|-|9-\sqrt[3]{726}||$ without using absolute value signs.

Solution: Notice that $6891=83^{2}+2$ and $726=9^{3}-3$. The innermost absolute value signs are thus trivial to remove, since $83-\sqrt{83^{2}+2}<0$ and $9-\sqrt[3]{9^{3}-3}>0$. We thus have:

$$
||83-\sqrt{6891}|-|9-\sqrt[3]{726}||=\left|\left(\sqrt{83^{2}+2}-83\right)-\left(9-\sqrt[3]{9^{3}-3}\right)\right|
$$

By the inequalities from the previous parts, we have:

$$
\sqrt{83^{2}+2}-83<\frac{2}{2 \cdot 83}=\frac{1}{83}<\frac{1}{81}=\frac{3}{3 \cdot 9^{2}}<9-\sqrt[3]{9^{3}-3}
$$

We are thus currently subtracting a bigger number from a smaller one, and so the expression in the absolute value bars is negative. Hence we conclude:

$$
||83-\sqrt{6891}|-|9-\sqrt[3]{726}||=(9-\sqrt[3]{726})-(\sqrt{6891}-83)
$$

At this point we are done, but if you're feeling particularly keen on doing arithmetic, then you can write this as $92-\sqrt[3]{726}-\sqrt{6891}$.
3. Let $r \in \mathbb{R}$ and consider the sequence $x_{n}=r^{n}$. How does this sequence behave for different values of r ? For which r does $\lim _{n} r^{n}$ exist?
Solution: If $|r|<1$, then each subsequent term of the sequence r^{n} multiplies each previous term by a number less than 1 in absolute value. These terms are thus getting smaller. This alone does not "prove" that the sequence converges
to 0 , but the Greeks knew that if you kept multiplying by numbers uniformly bounded away from 1, then you would eventually have something arbitrarily small - this is the Exhaustion Lemma of Eudoxus.

In this question, you were not asked to establish anything formally, but I can present several quick semi-formal arguments for this fact:
a) If we accept the formula for the sum of the infinite sum of the geometric series $\sum_{k=0}^{\infty} r^{k}=\frac{1}{1-r}$, then we see in the case that $0 \leqslant r<1$ that we have a sum of infinitely many non-negative terms that converges to a finite number. If these terms were not eventually arbitrarily small, then this could not happen. The terms in the case of $-1<\mathrm{r}<0$ differs only by a sign, and so we can conclude that they are small from the positive case.
b) Again, in the case $0 \leqslant r<1$, we have that r^{n} is a bounded monotonically decreasing sequence. A theorem about sequences then tells us that it must converge to some value L. If $L \neq 0$, then we can we have that the sequence is eventually at most $L \frac{1-r}{1+r}$ away from L. However, if $\left|L-r^{n}\right|<L \frac{1-r}{1+r}$, then $r^{n}<\mathrm{L}+\mathrm{L} \frac{1-r}{1+r}=\mathrm{L} \frac{2}{1+r}$ and thus $\mathrm{r}^{n+1}<\mathrm{L} \frac{2 r}{1+r}$. Now $r^{n+1}-\mathrm{L}<\mathrm{L} \frac{2 r}{1+r}-\mathrm{L}=\mathrm{L} \frac{1-r}{1+r}$. But this says that $\left|\mathrm{L}-\mathrm{r}^{\mathrm{n}+1}\right| \nless \mathrm{L} \frac{1-r}{1+r}$, so this inequality cannot hold eventually. This is a contradiction, so we conclude $L=0$. The case for $-1<r<0$ follows since the terms only differ by a sign.

Now, for $\mathrm{r}=-1$, we see that the sequence alternates between -1 and 1 and thus does not converge to any specific value. Meanwhile, for $r=1$, the sequence is always 1 and thus converges to 1 . Finally, if $|r|>1$, then $\left|r^{n}\right|$ grows like an exponential function. When $r>1$, the sequence diverges to ∞ (which is not a number, so the sequence is not convergent). When $r<-1$, the sequence blows up, but does so with alternating signs (which means that we can't even say $\lim _{n} r^{n}=-\infty$, so it fails to converge in an even worse sense).
4. Show that $\lim _{n} \sqrt[n]{2^{n}+5^{n}}$ exists and find its value.

Solution: This follows by heavy use of limit laws:

$$
\begin{aligned}
\lim _{n} \sqrt[n]{2^{n}+5^{n}} & =\lim _{n} 5 \sqrt[n]{\left(\frac{2}{5}\right)^{n}+1}=5 \sqrt[n]{\lim _{n}\left(\left(\frac{2}{5}\right)^{n}+1\right)} \\
& =5 \sqrt[n]{\lim _{n}\left(\frac{2}{5}\right)^{n}+\lim _{n} 1}=5 \sqrt[n]{0+1}=5
\end{aligned}
$$

Bringing the limit inside the radical is allowed since it was said in class that you may assume continuity of the function $f(x)=\sqrt[n]{x}$. Further, by the previous problem, we know that $\lim _{\mathrm{n}}\left(\frac{2}{5}\right)^{n}=0$.
5. Show that $f(x)=x^{2}$ is continuous at every $a \in \mathbb{R}$.

Solution: Let $a \in \mathbb{R}$. We will show that $\lim _{x \rightarrow a} f(x)=f(a)$. Towards this end, consider:

$$
\left|x^{2}-a^{2}\right|=|x+a| \cdot|x-a| .
$$

If $|x-a|<1$, then $|x+a|<2|a|+1$, and so $\left|x^{2}-a^{2}\right|<(2|a|+1) \cdot|x-a|$.
Now, let $A \in \mathcal{O}\left(a^{2}\right)$. We then have that there is some $a^{2} \in(x, y) \subseteq A$. Let $\epsilon=\min \left\{a^{2}-x, y-a^{2}\right\}$. Then $a^{2} \in\left(a^{2}-\epsilon, a^{2}+\epsilon\right) \subseteq(x, y) \subseteq A$. Now, let $\delta=\min \left\{\frac{\epsilon}{2|a|+1}, 1\right\}$, and $B=(a-\delta, a+\delta)$. If $x \in B$, then $|x-a|<a$, and so

$$
\left|x^{2}-a^{2}\right|<(2|a|+1) \cdot|x-a|<(2|a|+1) \frac{\epsilon}{2|a|+1}=\epsilon
$$

Hence $x^{2} \in\left(a^{2}-\epsilon, a^{2}+\epsilon\right)$, and so $f(x) \in A$. Thus $f[B] \subseteq A$. Hence $\lim _{x \rightarrow a} f(x)=f(a)$, and so f is continuous.
6. Using Riemann sums, show that the function $f(x)=x^{3}$ is integrable on the interval $[0,1]$ and compute $\int_{0}^{1} f(x) d x$.

Solution: Since f is increasing on the interval $[0,1]$, we have, for any $X=$ $[x, y] \subseteq[0,1]$, that $\inf _{X} f=f(x)$ and $\sup _{X} f=f(y)$. Now, let P_{n} be the n-th uniform partition, such that $\mathrm{P}_{\mathrm{n}} \equiv\left(0<\frac{1}{n}<\ldots<\frac{n-1}{n}<\frac{n}{n}\right)$. We then have:

$$
\begin{aligned}
U\left(f, P_{n}\right) & =\sum_{k=1}^{n}\left(\frac{k}{n}-\frac{k-1}{n}\right) \sup _{\left[\frac{k-1}{n}, \frac{k}{n}\right]} f \\
& =\sum_{k=1}^{n} \frac{1}{n}\left(\frac{k}{n}\right)^{3} \\
& =\frac{1}{n^{4}}\left(\sum_{k=1}^{n} k^{3}\right) \\
& =\frac{1}{n^{4}} \frac{n^{2}(n+1)^{2}}{4} \\
& =\frac{\left(1+\frac{1}{n}\right)^{2}}{4}
\end{aligned}
$$

Using the sum of cubes formula given in the notes. We similarly have:

$$
\begin{aligned}
L\left(f, P_{n}\right) & =\sum_{k=1}^{n}\left(\frac{k}{n}-\frac{k-1}{n}\right) \inf _{\left[\frac{k-1}{n}, \frac{k}{n}\right]} f \\
& =\sum_{k=1}^{n} \frac{1}{n}\left(\frac{k-1}{n}\right)^{3} \\
& =\frac{1}{n^{4}}\left(\sum_{k=1}^{n-1} k^{3}\right) \\
& =\frac{1}{n^{4}} \frac{(n-1)^{2} n^{2}}{4} \\
& =\frac{\left(1-\frac{1}{n}\right)^{2}}{4}
\end{aligned}
$$

Using limit laws and the fact that $\lim _{n} \frac{1}{n}=0$, we have

$$
\lim _{n} U\left(f, P_{n}\right)=\lim _{n} L\left(f, P_{n}\right)=\frac{1}{4}
$$

By the definition of an integral, this tells us that $\int_{0}^{1} f(x) d x=\frac{1}{4}$.
7. Using Riemann sums, show that the function

$$
f(x)= \begin{cases}0 & x<1 / 2 \\ 1 & x \geqslant 1 / 2\end{cases}
$$

is integrable on the interval $[0,1]$ and compute $\int_{0}^{1} f(x) d x$.
Solution: Consider $P_{n}=\left(0<\frac{1}{2}-\frac{1}{n}<\frac{1}{2}+\frac{1}{n}<1\right)$ for $n \geqslant 2$. Notice that f is uniformly 0 on $\left[0, \frac{1}{2}-\frac{1}{n}\right]$ and uniformly 1 on $\left[\frac{1}{2}+\frac{1}{n}, 1\right]$. Meanwhile, on the interval $\left[\frac{1}{2}-\frac{1}{n}, \frac{1}{2}+\frac{1}{n}\right]$, f takes on both of the values 0 and 1 . We thus have:

$$
\begin{aligned}
L\left(f, P_{n}\right)= & \left(\left(\frac{1}{2}-\frac{1}{n}\right)-0\right) \cdot 0 \\
& +\left(\left(\frac{1}{2}+\frac{1}{n}\right)-\left(\frac{1}{2}-\frac{1}{n}\right)\right) \cdot 0 \\
& +\left(1-\left(\frac{1}{2}+\frac{1}{n}\right)\right) \cdot 1 \\
= & \frac{1}{2}-\frac{1}{n}
\end{aligned}
$$

Similarly for upper sums:

$$
\begin{aligned}
U\left(f, P_{n}\right)= & \left(\left(\frac{1}{2}-\frac{1}{n}\right)-0\right) \cdot 0 \\
& +\left(\left(\frac{1}{2}+\frac{1}{n}\right)-\left(\frac{1}{2}-\frac{1}{n}\right)\right) \cdot 1 \\
& +\left(1-\left(\frac{1}{2}+\frac{1}{n}\right)\right) \cdot 1 \\
= & \frac{1}{2}+\frac{1}{n}
\end{aligned}
$$

Using limit laws and the fact that $\lim _{n} \frac{1}{n}=0$, we have

$$
\lim _{n} U\left(f, P_{n}\right)=\lim _{n} L\left(f, P_{n}\right)=\frac{1}{2}
$$

By the definition of an integral, this tells us that $\int_{0}^{1} f(x) d x=\frac{1}{2}$.
8. Show that $|3 \sin \theta+4 \cos \theta| \leqslant 5$. When does equality hold?

Solution: Let $\alpha=\arctan \left(\frac{3}{4}\right)$. Then $\sin (\alpha)=\frac{3}{5}$ and $\cos (\alpha)=\frac{4}{5}$. [This may be verified by checking that $\frac{\sin (\alpha)}{\cos (\alpha)}=\frac{3}{4}$ and that the point $\left(\frac{4}{5}, \frac{3}{5}\right)$ lies on the unit circle.] We then have:

$$
3 \sin \theta+4 \cos \theta=5(\sin (\alpha) \sin (\theta)+\cos (\alpha) \cos (\theta))
$$

By the angle subtraction formula for \cos, this is equal to $5 \cos (\theta-\alpha)$. Hence:

$$
|3 \sin \theta+4 \cos \theta|=5|\cos (\theta-\alpha)| \leqslant 5
$$

since \cos ranges in values from -1 to 1 .
We have equality precisely when $\cos (\theta-\alpha)= \pm 1$. This occurs when $\theta-\alpha=$ $2 \mathrm{k} \pi$ or when $\theta-\alpha=\pi+2 \mathrm{k} \pi$. In other words, we have equality precisely at the points:

$$
\left\{\arctan \left(\frac{3}{4}\right)+2 k \pi: k \in \mathbb{Z}\right\} \cup\left\{\arctan \left(\frac{3}{4}\right)+2(k+1) \pi: k \in \mathbb{Z}\right\}
$$

