MAT 126: Problem Set 1

1. Let a, b, c be positive real numbers greater than 1 . Show that

$$
\log _{a}(b c) \log _{b}(a c) \log _{c}(a b)=\log _{a}(b c)+\log _{b}(a c)+\log _{c}(a b)+2
$$

Hint: Express everything in terms of $A=\log a, B=\log b$, and $C=\log c$.
2. (a) Show that if a and h are positive numbers with $h<a^{2}$, then

$$
\sqrt{a^{2}+h}-a<\frac{h}{2 a}<a-\sqrt{a^{2}-h}
$$

(b) Factor $x^{3}-y^{3}$ and use this to show that if a and h are positive numbers with $h<a^{3}$, then

$$
\sqrt[3]{a^{3}+h}-a<\frac{h}{3 a^{2}}<a-\sqrt[3]{a^{3}-h}
$$

(c) Write $||83-\sqrt{6891}|-|9-\sqrt[3]{726}||$ without using absolute value signs. Use (a) and (b), but do not use a calculator.
3. Let $r \in \mathbb{R}$ and consider the sequence $x_{n}=r^{n}$. How does this sequence behave for different values of r ? For which r does $\lim _{n} r^{n}$ exist?
4. Show that $\lim _{n} \sqrt[n]{2^{n}+5^{n}}$ exists and find its value.
5. Show that $f(x)=x^{2}$ is continuous at every $a \in \mathbb{R}$.

Hint: Recall that f is continuous at a if $\lim _{x \rightarrow a} f(x)=f(a)$.
6. Using Riemann sums, show that the function $f(x)=x^{3}$ is integrable on the interval $[0,1]$ and compute $\int_{0}^{1} f(x) d x$.
7. Using Riemann sums, show that the function

$$
f(x)= \begin{cases}0 & x<1 / 2 \\ 1 & x \geqslant 1 / 2\end{cases}
$$

is integrable on the interval $[0,1]$ and compute $\int_{0}^{1} f(x) d x$.
Hint: Use $P_{n} \equiv\left(0<\frac{1}{2}-\frac{1}{n}<\frac{1}{2}+\frac{1}{n}<1\right)$.
8. (Bonus) Show that $|3 \sin \theta+4 \cos \theta| \leqslant 5$. When does equality hold?

Use trig identities, not calculus, to do this exercise.
Hint: There is an angle α with $\sin \alpha=\frac{3}{5}$ and $\cos \alpha=\frac{4}{5}$.

