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1 Introduction

Similar to the history of how Galois groups were introduced to study polynomial equations p(x) = 0
and symmetries that act on the roots of polynomials, Lie groups were introduced to study differential
equations. The idea is that sometimes, there are “symmetries” appearing which give additional
solutions. For example, if f : R → R satisfies the equation f ′ − f = 0, so does f(x − c) for any
c ∈ R. Thus, this equation exhibits translational symmetry.

However, Lie theory has since developed into a subject in its own right, with deep connections
to different parts of math and physics. In this note, we will briefly survey some important themes
by studying the concrete example of the Lie group SU(2).

2 SU(2) and its Significance

SU(2) can firstly be viewed as the set of 2 × 2 unitary matrices with determinant equal to 1; i.e.
2× 2 complex matrices satisfying A∗A = I and detA = 1. One can check that if A,B are matrices
satisfying these equations, then so does their product AB and their inverses A−1, B−1. Hence,
under matrix multiplication, SU(2) has the structure of a group.

An alternative but equivalent view is to study quaternions. These are a natural extension of
the complex numbers but instead of introducing only one number i which satisfies i2 = −1, we
introduce three imaginary units: i, j, k which satisfy some simple relations: i2 = j2 = k2 = −1 and
ij = k, jk = i, ki = j. Thus, quaternions are modeled on the vector space R4 = R⊕R〈i〉⊕R〈j〉⊕R〈k〉
but also have a multiplicative structure.

As a space, the unit length quaternions form the 3-dimensional sphere S3 ⊂ R4. So these unit
quaternions not only form a group, they also have the structure of a smooth manifold which is
compatible with the group structure. These are the conditions needed to make S3 a Lie group.
Intuitively, these properties mean that we have a space on which we can do calculus, such as
defining differentiable and integrable objects on S3. Moreover, the group multiplication is also
a differentiable operation. It turns out that there is a Lie group isomorphism S3 → SU(2);
practically speaking, this is what formalizes the idea that S3 and SU(2) describe the same object.

Before focusing on the properties of SU(2), it is worth stating that it has quite the role in the
Standard Model of Particle Physics. In coarse terms, it was discovered that various elementary
particles display a property known as spin and that SU(2) governs the spin behavior of some
of these particles. The formal way to study this is via the representations of SU(2) which
describe ways that SU(2) acts linearly on vector spaces representing particle spin states. This
action respects the group operation of SU(2). Moreover, even beyond particle physics, S3 ∼= SU(2)
is used to compute the rotation of objects in space. For instance, a video game designer might want
to change the camera angle which involves a rotation of the scenery. Or astronauts may analyze
the rotation of, say, the ISS during docking procedures.
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3 Properties of SU(2)

As a topological space, SU(2) is compact, connected, and simply connected. Moreover, there is a
relationship between SU(2) and SO(3) which is the group of orientation-preserving isometries on
R3; these are rotations that fix the origin. A rotation of R3 is determined by an axis and an angle
but there is some ambiguity between clockwise and counter-clockwise rotation. That is, one can
rotate about the vector v by an angle θ but the same rotation is also described by −v and −θ.

SU(2) clarifies this ambiguity. More formally, when we use the quaternionic view, we can view
R3 = R〈i〉 ⊕ R〈j〉 ⊕ R〈k〉 as the purely imaginary quaternions. Then, taking t ∈ S3, q ∈ R3, the
conjugation map q 7→ t−1qt is interpreted as a rotation because t−1qt lands back in the imaginary
quaternions and its length is preserved. Hence, we have an isometry. Moreover, morally, this is an
orientation-preserving isometry because S3 being connected means we can find a path from 1 to
t. 1 gives the identity isometry and is orientation-preserving. Because of continuity, all along the
path, the corresponding isometries must also be orientation-preserving.

Note that −t gives the same rotation but t 6= −t. Therefore, we obtain a 2-to-1 Lie group
morphism SU(2) → SO(3) which says that locally, these Lie groups are equivalent. This map
has many elegant topological, differentiable, and algebraic properties and also plays a role in the
Standard Model. Once again, in coarse detail, the irreducible representations of compact Lie
groups often arise in physics. In this case, the irreducible representations of SO(3) are called n-spin
representations while those of SU(2) are called n

2 -spin representations; n is related to the dimension
of the associated vector space of particle states and SU(2) has “twice” as many representations
as SO(3). The SO(3) representations are enough to study the emission spectrum of the hydrogen
atom, for instance, but not enough to study the quantum properties of, say, electrons. For that,
one needs to upgrade to SU(2).

This discussion is also related to some of the algebraic properties of SU(2). Since matrix
multiplication in SU(2) is not commutative, SU(2) is, by definition, nonabelian. One consequence
of this is that its irreducible representations have dimension greater than one. This confirms that
indeed, it makes sense to have n

2 -spin representations where n can be any positive integer. Also,
since the covering map sends ±t to the same rotation, the map has {±I} as kernel which shows
that SU(2) is not a simple Lie group.

4 The Lie Algebra su(2)

An important concept introduced in calculus is that given a differentiable function f : R → R,
we can find the tangent line to the graph of f at any given point. More generally, for smooth
manifolds, we can define a tangent space at each point on the manifold which all have many
useful features. For instance, the tangent line represents a linear and “infinitesimal” approximation
of the graph and the same can be said of the tangent space of a manifold. Concretely, the tangent
space at a point is a vector space with the same dimension as the underlying manifold.

However, when studying the tangent space at the identity element of a Lie group, we have even
more structure than that of a vector space. There is an operator called the Lie bracket that is
inherited from the Lie group.

In the case of SU(2), its Lie algebra su(2) is a real 3-dim vector space which can be viewed
as the vector space of 2 × 2 complex matrices that are skew-Hermitian and traceless. That is,
A∗ = −A and the sum of the diagonal elements is zero. Here is a standard basis.

X =

(
i 0
0 −i

)
, Y =

(
0 1
−1 0

)
, Z =

(
0 i
i 0

)
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For general matrix Lie algebras such as this, it is important to remember that the product of
two matrices might not be in the vector space. However, the commutator is: if A,B are in the
Lie algebra, then [A,B] := AB − BA is in the Lie algebra. This [·, ·] is the Lie bracket mentioned
earlier and it gives extra structure which enriches the object. For example, one can now study
Lie algebra representations which describes how a Lie algebra acts linearly on a vector space; the
action respects the Lie bracket.

There is quite an important relationship between a Lie group G and its Lie algebra g. In
general, there is an exponential map exp : g→ G and in the case that G is compact and connected,
this map is surjective. When G is additionally simply connected and semisimple, there is a 1-1
correspondence between the representations of the Lie algebra and the Lie group. This is extremely
useful since a Lie algebra is a vector space and hence, a study of its representations tends to be
more tractable than a study of the representations of the Lie group. Put another way, it is amazing
that something linear which serves as an infinitesimal approximation can capture so much about
the underlying curved Lie group. This is illustrated in the case of SU(2) and su(2) where the
exponential map is surjective and gives a way of relating their representations. Moreover, it is easy
to define the exponential of matrices. For example, when t ∈ R,

exp(tX) = I + tX +
t2

2!
X2 +

t3

3!
X3 + ... =

(
eit 0
0 e−it

)
∈ SU(2).

As a final demonstration, we can even use Lie algebras to say something about the topology of
the underlying Lie groups. Since, the Lie algebra is a local approximations of the Lie group, the
covering map SU(2)→ SO(3) from earlier tells us that su(2) ∼= so(3) are isomorphic. On the other
hand, since the representations of SU(2) and SO(3) are not in 1-1 correspondence and we know
SU(2) is simply connected, we conclude that SO(3) is not simply connected.

5 Concluding Remarks

There is much more that can be said about Lie theory but hopefully, this note demonstrates that it
is an area of math that sees the fruitful interplay of many subjects: calculus, linear algebra, group
theory, representation theory, and topology, to name a few. The general theory is very rich but
even understanding one example, such as SU(2) and its Lie algebra su(2), provides much insight.

Indeed, one can actually classify all semisimple Lie algebras over fields of characteristic zero by
studying their finite dimensional complex representations. The traditional starting point for this is
to study the Lie algebra sl(2,C) which arises as a basic building block or at least, as an illustration
of general patterns for all the semisimple Lie algebras. And it turns out, sl(2,C) is Lie algebra
isomorphic to the complexification of su(2); i.e. sl(2,C) ∼= su(2)⊗ C.

3


