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Suppose we have a closed almost complex 4-manifold (X, .J). This means we have a lifting
of the frame bundle F' on the tangent bundle, a SO(4)-bundle, to a U(2)-bundle. However,
the natural injective morphism of U(2) — SO(4) = (SU(2) x SU(2))/{xid} factors through
Spin©(4) = (SU(2) x SU(2)) xz, U(1); i.e. we get the natural morphism is a composition
U(2) — Spin¢(4) — SO(4). call the first map h. Thus, having a lifting F' to a U(2)-bundle
automatically gives a Spin® lifting as well. Call this lift P.

Now, we have a commutative diagram:

U(2) —— Spinc(4)

detl A

U(1).

This tells us that the determinant map is compatible with h. We can conclude then that
the determinant line bundle of (X, J), that is, Ky = A?(T*)'X is dual to the determinant line
bundle of P but they’ll have the same 1st Chern class. Recall that det P can be constructed
using classifying spaces: let g : Spin{V) — S be the morphism that has Spin(V) as kernel
and g : BSpin® — BS' be the induced map. Let f : X — BSpin® be a map representing its
homotopy class such that f*ESpin® = P. Then det P = (go f)*ES!. Thus, Kx = det P and
so they have the same 1st Chern class. Thus, let’s see what ¢}(Ky) is.

Lemma 0.1. The first Pontrjagin number p; = ¢ — 2cy.

Proof. Let E be a real vector bundle over a 4k manifold. We define the Pontrjagin classes
using Chern classes in the following way: p;(E) = (—1)‘c;(E ® C). The total Pontrjagin class
iSpE)=14+pi(E)+pE)+.=c(FR®C) =14+ (E®C)+ (EF®C) + ...

When E is already a C-vector bundle, then ¢(E ® C) = ¢(E @ E). Then in this case,
p(E)=c(E®E)=(1+c(E)+c(E)+c3(E)+..)(1 —ci(E) + c2(E) — c3(E) + ...) Now,
p1(F) = —co(E ® C) which only requires us to look at rank 4 terms in the above. So let’s focus
our attention to (1+c¢; +co)(1 —c1+c) =1—c; +co+c1 — 3 +cico+ o — ciep + 3. Taking
only the rank 4 terms, we get p; = —(2co — ). O

Fact: For a 4-manifold, p; = 30 (signature). Also, for a manifold of complex dimension 2,
¢s = x (Euler characteristic). Putting this together, ¢?(Kx) = 2x(X) + 20(X).

With this observation, one sees that for such a Spin¢ structure coming from ACS J, the
dimension of the moduli space of Seiberg-Witten solutions is actually 0. Let’s call the line
bundle of the Spin® structure arising from .J, the standard one S. If we twist the Spin®
structure giving rise to .S, we tensor it by a line bundle L and ¢;(S ® L) = ¢1(S) + 2¢1(L) (the
2 comes from the fact that the determinant map is like squaring). Thus, we can compute the
1st Chern classes of all other Spin® structures if we know about the bundle we twist by. This is
true even if we’re not on an almost complex manifold but then there is no canonical reference.
Also note, when we reduce mod 2, the 2¢;(L) part vanishes and so we still have ¢;(S ® L)
mod 2 = wy(X)



