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This is a note concerning periodic orbits of time-dependent Hamiltonians, as discussed in
ch. 5 and 6 of Morse Theory and Floer Homology. Any “proofs” are really sketches.

1 Hamiltonians and Orbits

Recall that for a Hamiltonian H : M ×R→ R on a symplectic manifold (M,ω), we can define
a family of diffeomorphisms ϕt which are almost like flows but lacking the group law.

To do this, we define Xt by requiring ιXtω = dHt; because of the nondegeneracy of ω, the
map X 7→ ιXω is an isomorphism between sections of TM and sections of T ∗M ; i.e. between
vector fields and 1-forms. In this case, we’re requesting Xt to be such that they map to the
exact 1-forms Ht.

Recall that the usual definition of the flow of a vector field X on M is a map ϕt : M →M
satisfying d

dt
ϕt(p) = X(ϕt(p)). We can adapt this to our situation where Xt change depending

on t: d
dt
ψt(p) = Xt(ψt(p)). Lastly, a periodic orbit is defined to be a map x : R → M satisfies

the same ODE: ẋ(t) = Xt(x(t)).

It’s not too hard to show that these periodic orbits x correspond to fixed points of ϕ1.
Let y be a fixed point of ϕ1. Then define x(t) := ϕt(y). Observe that x(0) = id(y) = y and
x(1) = ϕ1(y) = y. So x(0) = x(1). Also, ẋ(t) = ϕ̇t(y) = Xt(ϕt(y)) = Xt(x(t)).

However, observe that in this definition, the periodic orbits might not actually be closed
orbits. Depending on the ϕt, we might get a “loop-the-loop” situation like in the image:

Making a Periodic Hamiltonian

In our picture, we see that this periodic orbit may in fact have several loops and thus, have
multiple fixed points of ϕ1. So the claim isn’t that the fixed points always come from periodic
orbits, only that a periodic orbit may arise from a fixed point. However, could we modify our
situation so that fixed points do come from periodic orbits?
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Yes, if we have that the Hamiltonian itself is periodic, i.e. is a function H : M × S1 → R,
then this is true. How do we get a periodic Hamiltonian K from a non-periodic Hamiltonian
H?

2 Periodic Hamiltonians

Suppose we have ϕt coming from a Hamiltonian Ht. We aim to create a periodic Hamiltonian
Kt from Ht such that ϕ1 of Ht and the time 1 “flow” of Kt have the same fixed points. We
replace ϕt by ϕα(t) where α : [0, 1]→ [0, 1] is smooth. Then

d

dt
ϕα(t)(p) =

dα

dt
XHα(t)(ϕα(t)(p)) = Xα′(t)Hα(t)(ϕα(t)(p)).

The map t 7→ ϕα(t) is the flow of the Hamiltonian vector field associated with the function
Kt = α′(t)Hα(t). If we let α be 0 (and flat) near 0 and equal to 1 (and flat) near 1, then
ϕα(1) = ϕ1. So the two have the same fixed points. Moreover, Kt can then be extended
1-periodically as it vanishes near the end points of [0, 1].

This procedure essentially cuts off the pieces of the orbit which are outside of the time
interval [0, 1]. The fact that α is flat near the end points smooths out our cutting. Though the
image shows an image which has a corner, as we approach approach the corner, the derivative
becomes zero. So it is in fact, smooth. cf. the cuspidal cubic {x2 = y3} is smoothly embedded
in R2.

Note that in this modification, if we have a multi-loop-the-loop situation as in the picture,
we will lose some of the fixed points when we cut off the “extra” parts. However, Arnold’s
conjecture gives a lower bound; adding back in those pieces will increase the number of fixed
points of ϕ1 and so doesn’t affect the lower bound.

3 Nondegeneracy

A periodic orbit x of the Hamiltonian is said to be nondegenerate if the differential of ϕ1

does not have eigenvalue 1. That is, det(id−dx(0)ϕ1) 6= 0. A Hamiltonian is nondegenerate if
all of its periodic orbits satisfy this property.

The purpose of this condition is to ensure that the fixed points of ϕ1 are isolated. Then
when M2n is compact, we can consider the diagonal ∆ ⊂M×M and the graph Γ(ϕ1). Both are
submanifolds as ∆ = Γ(id) and both id and ϕ1 are diffeomorphisms. Where the two intersect
are the fixed points of ϕ1. dϕ not having eigenvalue 1 at these points precisely means that ∆
and Γ(ϕ1) intersect transversally. Then the codim of the intersection is 4n; i.e. it is a 0-dim
manifold. As M ×M is also compact, then there are finitely many fixed points of ϕ1.

We ask ourselves, “Does the procedure of turning a Hamiltonian above into a periodic
Hamiltonian preserve nondegeneracy?”

Yes, for if we let Φ : M×R→ R represent the “flows”, then precomposing with (id, α(t)), we
will obtain a Φα : M ×R→ R and our ϕα(t). So the differential of Φα is dΦα = dΦ ◦ (id, α′(t)).
Then dϕα(t) = α′(t)dϕt. Considering t = 1, we have dϕα(1) = α′(1)dϕ1 = 0 since α is flat near
1. Then, det(id−dx(0)ϕα(1)) = 1 6= 0. So our procedure preserves nondegeneracy.

Fact: The procedure above is such that H is nondegenerate if and only if K is nondegenerate.
This is simply because, if ϕ1 is the time 1 flow of H and ψ1 is the time 1 flow of K, their
differentials have the same eigenvalues.
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However, if we have a periodic Hamiltonian, note that it isn’t necessarily nondegenerate. If
we look at the height function on S2 embedded into R3 in the standard way, it gives rise to
periodic orbits which are actual circles (of latitude) on S2. If we scale in the right way, we can
make it so that ϕ1 essentially rotates S2 on the z-axis by 2π; i.e. ϕ1 = id. Then every point is
a fixed point and this is clearly a degenerate case.

4 Generating New Hamiltonians

Suppose that H,K : M × R → R are two Hamiltonians with isotopies ϕt and ψt respectively.
Let Gt = Ht + Kt ◦ ϕ−1t . Exercise 7 in Audin and Damien shows that the Hamiltonian vector
field of Gt is

XGt(x) = XHt(x) + (Tϕ−1
t (x)ϕt)(XKt ◦ ϕ−1t (x)).

We may deduce from this that ϕt◦ψt is the Hamiltonian isotopy generated by Gt. An interesting
fact is that even if H and K are both autonomous, the composed Hamiltonian isotopy might
not come from an autonomous Hamiltonian.
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