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1 Morse Theory

In Morse theory, if f : M → R is a Morse function, then we define a pseudo-gradient field using
df and we also may think of the nondegenerate critical points of f through the viewpoint of
df being transverse to the zero section of T ∗M . It is then a natural question to ask: “Can we
extend these notions to closed 1-forms?”

Consider the simple but instructive example of the circle. There is a closed but not exact
form on S1 which is often, misleadingly called dθ; it is a volume form. But of course∫

S1

dθ = 2π.

In general, let V be a closed connected manifold with closed 1-form α. Being closed, we get a
well defined homomorphism ϕα : π1(V ) → R defined by [γ] 7→

∫
γ
α. That is because, if η and

γ are homotopic loops, say, given by homotopy F : S1 × I, then

0 =

∫
S1×I

F ∗dα =

∫
S1

γ∗α−
∫
S1

η∗α.

Then, there is a connected covering space π : Ṽ → V associated to kerϕα. That is, the group
of deck transformations of π : Ṽ → V is isomorphic to π1(V )/ kerϕα and π1(Ṽ ) ∼= kerϕα.

Moreover, for every [γ̃] ∈ π1(Ṽ ), we have that

ϕπ∗α[γ̃] =

∫
γ̃

π∗α =

∫
π(γ̃)

α = 0.

But this precisely means that 〈π∗α,A〉 = 0 for each A ∈ H1(V,R) (H1 is the abelianization of
π1 and so if the pairing vanishes on π1, it certainly vanishes on H1). Hence, π∗α is an exact

1-form. We can define a primitive function f̃ for π∗α as follows. Choose a base point y0 ∈ Ṽ
and set

f̃(y) =

∫ y

y0

π∗α.

This is well-defined since π∗α is closed. df̃ = π∗α.
This cover π : Ṽ → V is the smallest cover which makes π∗α exact; it is called the integra-

tion cover. If we consider the critical points of f̃ , that means we’re asking, “For which values
y is (df̃)y ≡ 0?” Well, (df̃)y = (π∗α)y ≡ 0 if and only if απ(y) ≡ 0. We’ll define what it means

to for α to be nondegenerate and also the index of the critical points of α via f̃ . We can also
define a pseudo-gradient field for α in the same way. If we have a Riemannian metric g on V ,
then the gradient of a function f is defined by g(∇f, Y ) = df(Y ). Here, we instead define it as
g(∇α, Y ) = α(Y ). From there, it makes sense to define a pseudo-gradient field of α.
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A pseudo gradient field of α lifts to a pseudo-gradient field of f̃ . In the example of S1, the
integration cover is exp : R → S1. Note that if we take the closed but not exact 1-form dθ (a
misleading name), it does not have any critical points and so its trajectories just wind around
infinitely. Then, lifting dθ, we obtain the exact 1-form dt; its gradient (with respect to the
standard metric) should just be ∂t and the lifted trajectory is simply a path along all of R.

We may also try constructing a Morse theory with the critical points of α. The main
difference is that Ṽ will not be compact if α is closed but not exact. What sort of a difference
does this lead to? Well, a trajectory between c, d, two critical points of α, lifts to a trajectory
between π−1(c) and π−1(d). There are infinitely many points in these fibers but after choosing
a point c0 in the cover, the path lifting lemma gives us a unique lift of the trajectory. However,
we may potentially have infinitely many trajectories to lift with diverging energy because we’re
dealing with closed 1-forms now. Thus, we should introduce a different coefficient system,
namely a Novikov ring. For more details, one can consult Novikov’s original papers.

2 Floer Theory

The above serves as a toy example for why Novikov fields appear in Floer theory. Suppose we
wish to relax our conditions on a symplectic manifold (M,ω) so that π2(ω) needn’t be 0. We
can still do Hamiltonian Floer theory but we’ll need to do it on some covering space of the loop
space.

Let αH be the 1-form defined on the space of contractible loops LM by

(αH)x(Y ) =

∫ 1

0

ω(ẋ(t)−Xt(x(t)), Y (t)) dt.

If π2(ω) = 0, then αH is exact and has a primitive which is the usual action functional. But if
we don’t have this assumption, we will instead consider the space

DM = {(x, u) : x ∈ LM ;u : D2 →M is an extension to the disk}.

We have the equivalence relation: (x, u) ∼ (x, v) if∫
D2

u∗ω =

∫
D2

v∗ω.

Let L̃M = DM/ ∼. It has a projection π : L̃M → LM which comes from just forgetting the
disk u. This is a cover of the group kerϕω where ϕω : π2(M)→ R is defined by [f ] 7→

∫
S2 f

∗ω.
The expression

AH(x, u) = −
∫
D2

u∗ω +

∫ 1

0

Ht(x(t)) dt

is an action functional on L̃M and satisfies π∗αH = dAH . π : L̃M → LM is the integration
cover for AH .
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