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We give an outline of ch. 9 of Morse Theory and Floer Homology.
The goal of Floer theory is to create the Floer chain complex and define a homology theory.

Much like in Morse theory, for a nondegenerate Hamiltonian H on our compact symplectic
manifold (M,ω), we consider the space of trajectories of finite energy M. A theorem of ch.
6 shows that M is the union of M(x, y): finite-energy trajectories connecting periodic orbits.
Therefore, we define Ck(H) to be the Z2 vector space generated by periodic orbits of Maslov
index k. The nondegeneracy condition guarantees finitely many critical points of AH . The
differential ∂ : Ck(H)→ Ck−1(H) is defined by

∂x =
∑

y∈Ck−1

n(x, y)y.

Here n(x, y) is the number of trajectories connecting x and y, mod 2. Again, these trajectories
are the finite energy contractible solutions of the Floer equation connecting x and y.

For this differential to make sense, we need to show that counting trajectories makes sense:
if µ(x) = µ(y) + 1, then L(x, y) = M(x, y)/R should be a 0-dim manifold with finitely many
points. When µ(x) = µ(y) + 2, then L(x, y) is a 1-manifold and if we compactify it, it will be
a 1-manifold with an even number of boundary points.

It is not hard to show that when the indices differ by two, that L(x, y) is a 1-manifold and
that L(x, y), is compact. What is hard is showing L(x, y) is a 1-manifold with boundary. The
majority of ch. 9 is dedicated to this. For general indices, L(x, y) is a manifold with corners.

0 A General Outline

Let me reiterate the goal. We want to define the differential ∂ and in the case that the indices
differ by 2, the moduli spaces we’re looking at are open 1-manifolds. It is feasible that the
1-manifold looks like three open intervals arranged so that if we added in a single point (û, v̂),
then we connect the three intervals into a sort of triangular looking thing. Compactifying such
a thing adds in four points but this would no longer be a 1-manifold. Moreover, it would have
three boundary points and so ∂2 6= 0. Thus, we want to rule out such situations.
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We want to rule out such pre-compact moduli spaces

To rule this out, we need to show that there is only one way to approach (û, v̂) in a sequence
as opposed to three ways in the example above or any other number of ways greater than one.
This is what we mean by “uniqueness of the gluing.” There is exactly one approach.
Note that in the picture above, there’s a circle with a point removed. Certainly it is possible
that the compactified moduli space has circles in it but the uniqueness result implies that prior
to compactifying, the moduli space already had a circle. We wouldn’t be adding in a point to
form a circle.

To show uniqueness, we first show that if we have a sequence `n very close to (û, v̂), they
start to take on a very particular form up to a parameter ρ: they coincide with u(s + ρ, t)
and v(s − ρ, t) when s ≤ −1 and s ≥ 1, resp. On [−1, 1], they essentially look like some
smooth patching together of exponentials expY and expZ for some vectors Y, Z. This smooth
patching is not from arbitrary vectors Y and Z; the vectors have some particular properties
related to the trajectories. This is quite a powerful statement: all trajectories converging
to a broken trajectory eventually have a very specific form.

The next step is to show that elements of this very particular form, called pregluings wρ
converge in a unique fashion; we can’t approach (û, v̂) from more than one direction. Another
way to put it is that eventually, the `n are in the image of an embedding ψ̂.

There is a caveat however. Above, I said that near (û, v̂), things start to look like u(s+ρ, t)
and v(s − ρ, t). However, they can have a somewhat more general form. We could replace ρ
with ν(ρ) where ν : R+ → R+ is a function increasing to +∞. In such a case, we would get an
embedding ψ̂ν with all the same properties as if we had taken ν = id. We need to show that
ultimately, this choice of ν doesn’t make a difference.

1 The Space of Trajectories

Let L(x, y) =M(x, y)/R be give the quotient topology. Here is a proposition:

Proposition 1.1. Let x and y be two distinct critical points of AH and let un ∈M(x, y), sn, σn ∈
R. Suppose further that:

limun(sn + s, ·) = u ∈M(x, z) and limun(σn + s, ·) = v ∈M(x,w)

for two critical points z, w distinct from x. Then z = w and u and v coincide up to action by
R. In other words, there exists s∗ such that u(s∗ + s, t) = v(s, t).

This proposition says that however we translate the un, the limit of un · sn and un · σn coincide
up to R action. So they both converge to some trajectory between x and z = w. This gives
uniqueness of limits and thus, L(x, y) is Hausdorff.

The next theorem will let us define a compactification of L(x, y).
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Theorem 1.2. Let (un) be a sequence of elements of M(x, y). There exists:

• A subsequence of (un); continue calling it (un)

• critical points x0 = x, x1, ..., xl, xl+1 = y

• Sequences (skn) ∈ R for 0 ≤ k ≤ l.

• elements uk ∈M(xk, xk+1)

Such that for every k = 0, ..., l,
lim
n→∞

un · skn = uk.

This theorem says that by translating a subsequence (un) with carefully chosen values skn, the
limit goes to some uk ∈ M(xk, xk+1). This may seem weird because given some u ∈ M,
translation by s0 gives another solution u · s0 which has the same image as u in M . However,
the topology of M is that of C∞loc. Recall the following example which is a modification of the
sliding block example for L1

loc:

Example 1.3. [Sliding Block] Fix τ ∈ R. Let β[τ,∞) be a smooth bump function which is 1
on [τ,∞) and 0 on (−∞, τ − 1]. Then translation by a positive sequence tk → ∞ pushes the
positive part of β to +∞. So then βtk = β · tk converges to 0. But if tk → −∞, then βtk
converges to the constant function 1. And we can let tk converge to some constant c to have
the bump functions converge a bump starting at τ + c.

This example shows that in C∞loc, translating differently does indeed give a different limit.
Thus, in our theorem above, depending on how we translate via skn, we get the un converging
to different uk. Large “chunks” of un are pushed to ±∞ and thus the uk themselves converge
to xk(t) and xk+1(t) as s→ ±∞.

Translation of Floer Solutions

Part of the proof of this theorem is analogous to the Morse theory result. It also involves
covering the critical points with balls of radius ε where ε is small enough that all the balls are
disjoint. One then uses these balls to detect and mark when a trajectory enters or exits; this
information allows one to say whether a trajectory converges to a critical point or not.
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2 Gluing

The main goal of this section is to prove the gluing theorem:

Theorem 2.1 (Gluing). Let x, y, z be critical points with consecutive indices (x has the highest).
Let (u, v) ∈M(x, y)×M(y, z) represent trajectories (û, v̂) ∈ L(x, y)×L(y, z). We then have:

• a differentiable map ψ : [ρ0,∞) → M(x, z) for some ρ > 0, such that ψ̂ = π ◦ ψ :
[ρ0,∞)→ L(x, z) is an embedding, satisfying

lim
p→∞

ψ̂(ρ) = (û, v̂) ∈ L(x, z).

• Moreover, if `n ∈ L(x, z) is a sequence that tends to (û, v̂), then `n ∈ Im (ψ̂) for n
sufficiently large.

First, a note. The ρ0 here is chosen to be large enough. The phrase “ρ sufficiently large” will
be equivalent to the phrase “ρ ≥ ρ0.” The purpose of this theorem is to establish that in the
Floer chain complex, ∂2 = 0 because we’ll be counting boundary points of L(x, z) taken mod 2.
When the difference in index is 2, we get a 1-manifold with boundary and there is only one way
to smooth it. But in general, there is no canonical smoothing of these topological manifolds
with corners. The notion of log-smooth is sometimes used to study these spaces.
An outline of the proof:

1. Pre-Gluing: we construct an interpolation wρ between u and v which depends on the
parameter ρ. This wρ is an approximate solution in the sense that F(wρ) = 0 on |s| ≥ 1.

2. This approximate solution will be used to construct ψ which we write as ψ(ρ) = expwρ(γ(ρ))

for some γ(ρ) ∈ W 1,p(w∗ρTM) = TwρP(x, z). We want ψ(ρ) to be a true solution of the
Floer equation. The way to obtain this γ(ρ) is to use the Newton-Picard method. Recall
that if f : R→ R is a differentiable function, then we can look for solutions f(x) = 0 by
letting x0 be a approximate solution and then taking

xn+1 = xn −
f(xn)

f ′(xn)
.

As n→∞, we get our solution. However, there is a useful variant of this method; instead
of computing 1/f ′(xn) each time, we can compute just 1/f ′(x0) and let xn+1 be defined
by:

xn+1 = xn −
f(xn)

f ′(x0)
.

In the same way, Picard generalized Newton’s method to maps on Banach manifolds,
F : X → Y . We only need to compute (dF)−1wρ in order to get a unique solution γ(ρ).

In certain literature, we have a Newton-Picard theorem for families, parametrized over ρ.
Then as long as the function F : X × R → Y is smooth and the approximate solutions
vary smoothly, then the true solutions vary smoothly.

3. Verify the three properties of ψ̂ from above.
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2.1 Pre-Gluing

Let us fix a bump function β+ : R → [0, 1] which is 1 for s ≥ 1 and 0 for s ≤ ε. Let
β−(s) = β+(−s).

Our interpolation wρ is defined by

wρ(s, t) =


u(s+ ρ, t) s ≤ −1

expy(t)
(
β−(s) exp−1y(t)(u(s+ ρ, t))) + (β+(s) exp−1y(t)(v(s− ρ, t))

)
s ∈ [−1, 1]

v(s− ρ, t) s ≥ 1

Indeed, this is a well-defined interpolation for sufficiently large ρ. Outside [−1, 1] × S1, it
matches u and v. The bump functions do some scaling on [−1, 1]. In fact, it equals y(t) on
[−ε, ε]. Here are some other properties:

1. wρ ∈ C∞(x, z) and for large ρ, it is in C∞↘(x, z) due to the exponential decay of ch. 8.9.

2. For s ≤ ρ− 1, we have wρ(s− ρ, t) = u(s, t). In particular, we have convergence in C∞loc:

lim
ρ→+∞

wρ(s− ρ, t) = u(s, t)

We have the same analogously for v.

3. wρ is differentiable in ρ.

4. wρ(s, t) tends to y(t) in C∞loc when ρ tends to +∞.

We might also view this construction as a “connect sum” wρ = u#ρv. In this way, we then
have a map

#ρ : C∞(x, y)× C∞(y, z)→ C∞(x, z)

and we may consider its differential:

T(u,v)#ρ) : TuP(x, y)× TvP(y, z)→ TwρP(x, z)

This map is exactly as one expects:

Y#ρZ(s, t)) =


Y (s+ ρ, t) s ≤ −1

T expy(t)
(
β−(s)Tu(s+ρ,t) exp−1y(t)(Y (s+ ρ, t))

+β+(s)Tv(s−ρ,t) exp−1y(t)(Z(s− ρ, t))
)

s ∈ [−1, 1]

Z(s− ρ, t) s ≥ 1

Here are some properties of Y#ρZ ∈ TwρP(x, z):

1. Y#ρZ is an element of W 1,p and thus, is continuous.

2. For s ∈ [−ε, ε], Y#ρZ = 0.

3. limρ→+∞ Y#ρZ = 0 in C0
loc. This convergence is of C∞loc if Y, Z are smooth.
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2.2 Construction of ψ

For this construction, we want to find some γ(ρ) such that ψ(ρ) = expwρ(γ(ρ)) is a solution of
the Floer equation. Indeed, it is enough to verify that F(ψρ) = 0 in the weak sense (satisfies
an equation in terms of distributions). Since ψρ is continuous as γ(ρ) will be continuous, it is
automatically a strong solution of C∞ class due to elliptic regularity.

Part of the construction also involves taking various trivializations, some unitary and others
just orthonormal. These are generally denoted (Zi)i=1,...,2n. Details of this are on pp. 316-7.

Let us define Fρ = F ◦ expwρ in the basis (Zi). It’s clear that Fρ(0) = F(wρ). It is not a

linear map as Fρ(0) 6= 0. However, it does equal 0 outside [−1, 1]× S1 and it converges to 0 as
ρ → +∞ in Lp and C∞ topology. Taking this approximate solution (0 for Fρ ⇐⇒ wρ for F),
we use the Newton-Picard method to find a true solution.

Before doing that, let Lρ = (dFρ)0. Then, in our trivializations,

Lρ(Y ) =
∂Y

∂s
+ J0

∂Y

∂t
+ Sρ(s, t)Y

where Sρ : R × S1 → M2n(R) is a map into matrices and converges to all the right matrices.
The point is that we can conclude that Lρ is a Fredholm operator with index 2. This is a
problem because only index 0 Fredholm maps are invertible. If we wish to produce something
analogous to the 1/f ′(x0) in the Newton method, we’ll need invertibility.

What we do instead is produce a closed complement W⊥
ρ of kerLρ such that Lρ restricted

to W⊥
ρ is invertible; i.e. there is a right inverse. It makes sense that we use such a subspace

W⊥
ρ : M(x, z) is a dim 2 manifold and so we want γ ∈ exp−1M(x, z). We can then intersect

exp−1M(x, z) with our codim 2 subspace W⊥
ρ ; the resulting space is 0-dim. We then produce

our γ for each fixed ρ.

Lemma 2.2 (Newton-Picard Method). Let X, Y be Banach spaces and let F : X → Y be a
continuous map. We write F (x) = F (0) +L(x) +N(x) where L(x) = (dF )0(x) and we suppose
that there exist a continuous G : Y → X such that:

1. L ◦G = id

2. ‖GNx−GNy‖ ≤ C(‖x‖+ ‖y‖)‖x− y‖ for all x, y ∈ B(0, r).

3. ‖GF (0‖ ≤ ε/2 where ε = min(r, 1/5C).

Then there exists a unique α ∈ Im(G)∩B(0, ε) such that Fα = 0. Moreover, ‖α‖ ≤ 2‖GF (0)‖.

Writing F (x) = F (0)+L(x)+N(x) is basically a Taylor expansion where N is some “higher
terms.” Condition (2) basically asks for ‖GNx−GNy‖ to be bounded by some quadratic term
when x, y are nearby to 0. We want this because N has at least quadratic terms.

Let us define Wρ. Let Lu, Lv be the differentials (dF)u, (dF)v, respectively. Then

Wρ := {α#ρβ : α ∈ kerLu, β ∈ kerLv}

and

W⊥
ρ :=

{
Y ∈ W 1,p(R× S1,R2n) :

∫
R×S1

〈Y, α#ρβ〉 ds dt = 0, ∀α ∈ kerLu,∀β ∈ kerLv
}

Remarks:
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1. Since we’re taking a regular pair (H, J), Lu and Lv are surjective because u, v are solutions.
They each have Fredholm index 1 so they have dim 1 kernels. Thus, since we know that
Lu(∂u

∂s
) = 0 and similarly for v, then

kerLu = R · ∂u
∂s
, kerLv = R · ∂v

∂s

2. By exponential decay,

sup

(∣∣∣∣∂u∂s
∣∣∣∣ , ∣∣∣∣∂v∂s

∣∣∣∣) ≤ Ke−δ|s|,

so we know vectors ∂u/∂s, ∂v/∂s are in Lq for every q ≥ 1. Then, for all Y ∈ W 1,p, α ∈
kerLu, β ∈ kerLv, 〈Y, α#ρβ〉 ∈ L1 (by Cauchy-Schwarz).

3. The space W 1,p = Wρ ⊕W⊥
ρ . It follows from a general fact:

Lemma 2.3. Let 1/p + 1/q = 1. Let E be a finite dimensional subspace of W 1,p ∩ Lq.
Then W 1,p = E ⊕ E⊥.

Proof. It’s clear that the two subspaces meet only at 0. By Hölder’s inequality, since
E ⊂ Lp ∩ Lq, if f ∈ E, then ‖f‖22 = ‖f 2‖1 ≤ ‖f‖p‖f‖q < ∞. So E ⊂ L2 which is
a Hilbert space. So we can choose an ONB {e1, ..., er} of E. Every element Z ∈ W 1,p

satisfies Z −
∑r

i 〈ei, Z〉ei ∈ E⊥.

The next proposition is important. It allows us to define Gρ and verify the conditions of the
lemma.

Proposition 2.4. There exists C > 0 such that for ρ ≥ ρ0, we have

∀Y ∈ W⊥
ρ , ‖Lρ(Y )‖p ≥ C‖Y ‖1,p.

We begin by giving a list of consequences of this proposition. For its proof, see pp. 325-9.

1. Clearly, kerLρ ∩W⊥
ρ = 0.

2. Above, we said that Ind(Lρ) = 2. So dim kerLρ ≥ 2. Also, codim W⊥
ρ = dimWρ ≤

dim(kerLu × kerLv) = 2. Important point: This dimension equals 2 because we have
transversality. The first property makes it so that dim kerLρ = 2. This means that Lρ
is surjective. Then W 1,p = kerLρ ⊕W⊥

ρ . Intuitively, we say that ker(dF)u#ρv is close to
ker(dF)u#ρ(dF)v when ρ is sufficiently large.

3. Consequently,
Lρ : W⊥

ρ
∼= W 1,p/ kerLρ → Lp = Im Lρ

is bijective. Let Gρ be the right inverse.

4. Gρ is continuous because the proposition asserts:

‖Gρ(Y )‖1,p ≤ C−1‖LρGρ(Y )‖p = C−1‖Y ‖p.

5. This proposition also gives us conditions (2) and (3) for the Newton-Picard Method. See
pp. 324-5 for details proving this claim.
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We then get a series of lemmas which help us to prove the continuity of γ and also its
differentiability with respect to ρ. A heuristic argument for this is, consider the parametrized
Newton-Picard method. Then as long as the family varies smoothly and our approximations
vary smoothly, then the solutions vary smoothly as well.

We can also prove that

lim
ρ→+∞

‖γ(ρ)‖1,p = lim
ρ→+∞

∥∥∥∥∂γ∂ρ
∥∥∥∥
1,p

= 0

This fact is useful in the proof to show that

lim
ρ→+∞

ψ̂(ρ) = (û, v̂) ∈ L(x, z).

2.3 ψ̂ is an Immersion

The last fact we stated above (Lemma 9.4.17) gives us that ψ̂ is a proper map. For ifK ⊂ L(x, z)
is a compact set, then it is closed in particular and ψ̂−1(K) must be closed (also, assume this
to be connected for the moment). However, the limit of ψ̂(ρ) lies in the boundary and thus,
there is a ρ1 such that [ρ0, ρ1] = ψ̂−1(K) which is compact. If the preimage is not connected,
it must be a finite union of closed intervals which is still compact.

Furthermore, the image is closed. It is a result that an embedding with a closed image is
precisely a proper injective immersion. Thus, we only need to show ψ̂ is an injective immersion.
To show that it’s an immersion, we need to show that ∂ψ/∂ρ is not in the kernel of dπ. The
kernel of (dπ)ψ is generated by ∂ψ/∂s as it is along R that we take the quotient. The picture
is that we want ψ to be transverse to the fibers of π.

Supposing that ψ is not an immersion is equivalent to supposing there are sequences (ρn)
and (αn) such that

∂ψ

∂ρ
(ρn) = αn

∂ψ

∂s
(ρn).

Because ψ(ρ) is close to wρ, we can deduce the following lemma:

Lemma 2.5. The sequence (αn) is bounded and we have

lim
n→+∞

∥∥∥∥∥
(
∂wρ
∂ρ
− αn

∂wρ
∂s

)
ρn

∥∥∥∥∥
p

= 0

Then, for s ≤ −1, wρ(s, t) = u(s+ ρ, t), hence

∂wρ
∂ρ

=
∂u

∂s
(s+ ρ).

The lemma implies then that

lim
n→+∞

∥∥∥∥∂u∂s (s+ ρn, t)− αn
∂u

∂s
(s+ ρn, t)

∥∥∥∥
Lp((−∞,−1]×S1)

= 0.

This means that αn → 1. But if we consider the values for s ≥ 1, we get

lim
n→+∞

∥∥∥∥−∂v∂s (s− ρn, t)− αn
∂v

∂s
(s− ρn, t)

∥∥∥∥
Lp([1,∞)×S1)

= 0

which implies that αn → −1. This is the contradiction we need. Therefore, ψ̂ is an immersion
for large ρ.
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It is also injective: its image is contained in a connected component of the manifold L(x, z)
(dim = 1) which is not compact. This component is diffeomorphic to an open interval I ∼= R.
By Rolle’s Theorem, if ψ̂ : R → R is not injective, then ∂ψ̂/∂ρ = 0 for some ρ. But ψ̂ is an
immersion so this never happens.

2.4 Uniqueness of the Gluing

In the previous construction of ψ̂, we used an approximate solution (aka pre-gluing) wρ which
equaled, for s ≥ 1, v(s − ρ, t). However, we could replace this expression with v(s − ν(ρ), t)
where ν : R+ → R+ is a smooth function increasing to +∞. We can show that if construct a
pre-gluing wν,ρ and an associated ψ̂ν : [ρν ,∞)→ L(x, z), it will also be an injective immersion

and lim ψ̂ν = (û, v̂). That is, it has the same relevant properties as when ν = id. Naturally, we
ask: “Does the gluing depend on ν?”

We would ultimately like to show that if `n is a sequence converging to the broken trajectory
(û, v̂), then for large n, it will be contained in Im ψ̂. It turns out that we can realize the `n as
arising from a pre-gluing wν,ρ and we’re able to then show that for large n, the `n are contained

in Im ψ̂ν .
If we also know that for some large enough ρν , Im ψ̂ν ⊂ Im ψ̂, we’re able to conclude that

the `n are eventually contained in Im ψ̂ and thus, there is uniqueness in gluing. The authors
take these in steps, starting with what we just stated.

1. Prove that if ν : R+ → R+ has the properties mentioned above, then there is some ρν
such that for ρ ≥ ρν , Im ψ̂ν ⊂ Im ψ̂.

2. Suppose that `n → (û, v̂) in L(x, z). We wish to prove the following proposition:

Proposition 2.6 (9.4.3). There exists a lift ˜̀
n ∈M(x, z) of `n and a smooth increasing

function ν : R+ → R+ such that for all (s, t) ∈ R × S1, ˜̀
n(s, t) = expwν,ρn (s,t) Yn(s, t),

where ρn → +∞ and Yn ∈ w∗ν,ρnTM satisfies limn→∞ ‖Yn‖∞ = 0.

Observe that this result is saying that for any `n → (û, v̂), there are lifts constructed
using ν, a function with nice properties. I found the proofs in this step to be rather
technical, even if the theory wasn’t hard: mostly playing around with sequences as in a
real analysis class.

3. Next, we prove that the Yn from above satisfy Yn ∈ W 1,p(w∗ν,ρnTM) for all p > 2 and also

lim ‖Yn‖1,p = 0. Since these ˜̀
n = expYn are solutions of the Floer equation with finite

energy, they satisfy an exponential decay property. Then, we can use some results from
ch. 8 concerning exponential decay of C2 solutions to the linearized Floer equation along
a solution. The exponential decay results will allow us to conclude Lemma 9.6.13: for all
(s, t) ∈ R× S1

max

{
‖Yn(s, t)‖,

∥∥∥∥∂Yn∂s (s, t)

∥∥∥∥ , ∥∥∥∥∂Yn∂t (s, t)

∥∥∥∥} ≤ Ke−δ|s|.

From this, we can conclude that Yn ∈ W 1,p because

Kp

∫ ∞
−∞

e−δp|s| ds = 2Kp

∫ ∞
0

e−δps ds =
2Kp

δp
<∞.

To obtain the result that ‖Yn‖1,p → 0, the authors use some technical lemmas whose
proofs are saved for ch. 13.
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4. So we have a sequence ˜̀
n of the same form as solutions produced by the Newton-Picard

method. We would like to see that for n large enough, that the Yn in fact, are identical
with solutions produced by Newton-Picard. To do this, we will need to generalize the
method slightly to work when we vary n.

Let F = F ◦ exp and L = dF . Recall that before, we gave a decomposition W 1,p =
kerL ⊕ W⊥

ρn and looked for a solution in a slice. We’ll do the same here by giving
a decomposition and then use a contracting map ϕn : hn + W⊥

ρn → hn + W⊥
ρn where

hn ∈ B(0, ε0) ∩ kerL. The contracting map will have a unique fixed point γn(h) which is
a solution in the sense that Fγn(h) = 0; so expwν ,ρn γh(h) ∈M(x, z).

As promised, for large n, Yn = γh(h); the proof of this claim relies on knowing that
lim ‖Yn‖1,p = 0. With this knowledge in mind, we’re able to say more about our solutions
Yn. What is most germane is that the map h 7→ γn(h) is continuous. Having continuity
of this map, we can form a connectedness argument to finally conclude that for large n,
`n = π ◦ ˜̀

n ∈ Im ψ̂ν . By step 1, then for larger n, `n ∈ Im ψ̂.

Remark: The proof for continuity of h 7→ γn(h) is fun. Let F : kerL ⊕W⊥ → Lp, defined by
F (h,w) = F (h+w). Then F (h, γn(h)− h) = 0 because Fγn(h) = 0. Showing that (dF )γn(h) is
invertible will allow us to apply the Implicit Function Theorem to conclude that h 7→ γn(h)−h
is a continuous map and therefore, so is h 7→ γn(h). As a reminder, we’ll state the Implicit
Function Theorem from multivariate calculus but applies for manifolds and Banach spaces.

Theorem 2.7 (Implicit Function Theorem). Let f : Rn ⊕ Rm → Rm be smooth. Suppose
that f(x0, y0) = 0 where x0 ∈ Rn, y0 ∈ Rm. Then, if (df)(x0,y0) is invertible, there exists a
neighborhood of (x0, y0), call it U ⊂ Rn, and a continuous map g : U → Rm, such that
g(x0) = y0 and for x ∈ U , f(x, g(x)) = 0.
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