Outline of Ch. 9: Space of Trajectories and Gluing

Sam Auyeung

September 4, 2019

We give an outline of ch. 9 of Morse Theory and Floer Homology.

The goal of Floer theory is to create the Floer chain complex and define a homology theory. Much like in Morse theory, for a nondegenerate Hamiltonian H on our compact symplectic manifold (M, ω) , we consider the space of trajectories of finite energy \mathcal{M} . A theorem of ch. 6 shows that \mathcal{M} is the union of $\mathcal{M}(x, y)$: finite-energy trajectories connecting periodic orbits. Therefore, we define $C_k(H)$ to be the \mathbb{Z}_2 vector space generated by periodic orbits of Maslov index k. The nondegeneracy condition guarantees finitely many critical points of \mathcal{A}_H . The differential $\partial : C_k(H) \to C_{k-1}(H)$ is defined by

$$\partial x = \sum_{y \in C_{k-1}} n(x, y)y.$$

Here n(x, y) is the number of trajectories connecting x and y, mod 2. Again, these trajectories are the finite energy contractible solutions of the Floer equation connecting x and y.

For this differential to make sense, we need to show that counting trajectories makes sense: if $\mu(x) = \mu(y) + 1$, then $\mathcal{L}(x, y) = \mathcal{M}(x, y)/\mathbb{R}$ should be a 0-dim manifold with finitely many points. When $\mu(x) = \mu(y) + 2$, then $\mathcal{L}(x, y)$ is a 1-manifold and if we compactify it, it will be a 1-manifold with an even number of boundary points.

It is not hard to show that when the indices differ by two, that $\mathcal{L}(x, y)$ is a 1-manifold and that $\overline{\mathcal{L}}(x, y)$, is compact. What is hard is showing $\overline{\mathcal{L}}(x, y)$ is a 1-manifold with boundary. The majority of ch. 9 is dedicated to this. For general indices, $\overline{\mathcal{L}}(x, y)$ is a manifold with *corners*.

0 A General Outline

Let me reiterate the goal. We want to define the differential ∂ and in the case that the indices differ by 2, the moduli spaces we're looking at are open 1-manifolds. It is feasible that the 1-manifold looks like three open intervals arranged so that if we added in a single point (\hat{u}, \hat{v}) , then we connect the three intervals into a sort of triangular looking thing. Compactifying such a thing adds in four points but this would no longer be a 1-manifold. Moreover, it would have three boundary points and so $\partial^2 \neq 0$. Thus, we want to rule out such situations.

We want to rule out such pre-compact moduli spaces

To rule this out, we need to show that there is only one way to approach (\hat{u}, \hat{v}) in a sequence as opposed to three ways in the example above or any other number of ways greater than one. **This is what we mean by "uniqueness of the gluing."** There is exactly one approach. Note that in the picture above, there's a circle with a point removed. Certainly it is possible that the compactified moduli space has circles in it but the uniqueness result implies that prior to compactifying, the moduli space already had a circle. We wouldn't be adding in a point to form a circle.

To show uniqueness, we first show that if we have a sequence ℓ_n very close to (\hat{u}, \hat{v}) , they start to take on a very particular form up to a parameter ρ : they coincide with $u(s + \rho, t)$ and $v(s - \rho, t)$ when $s \leq -1$ and $s \geq 1$, resp. On [-1, 1], they essentially look like some smooth patching together of exponentials exp Y and exp Z for some vectors Y, Z. This smooth patching is not from arbitrary vectors Y and Z; the vectors have some particular properties related to the trajectories. This is quite a powerful statement: all trajectories converging to a broken trajectory eventually have a very specific form.

The next step is to show that elements of this very particular form, called **pregluings** w_{ρ} converge in a unique fashion; we can't approach (\hat{u}, \hat{v}) from more than one direction. Another way to put it is that eventually, the ℓ_n are in the image of an embedding $\hat{\psi}$.

There is a caveat however. Above, I said that near (\hat{u}, \hat{v}) , things start to look like $u(s + \rho, t)$ and $v(s - \rho, t)$. However, they can have a somewhat more general form. We could replace ρ with $\nu(\rho)$ where $\nu : \mathbb{R}_+ \to \mathbb{R}_+$ is a function increasing to $+\infty$. In such a case, we would get an embedding $\hat{\psi}_{\nu}$ with all the same properties as if we had taken $\nu = id$. We need to show that ultimately, this choice of ν doesn't make a difference.

1 The Space of Trajectories

Let $\mathcal{L}(x,y) = \mathcal{M}(x,y)/\mathbb{R}$ be give the quotient topology. Here is a proposition:

Proposition 1.1. Let x and y be two distinct critical points of \mathcal{A}_H and let $u_n \in \mathcal{M}(x, y), s_n, \sigma_n \in \mathbb{R}$. Suppose further that:

 $\lim u_n(s_n + s, \cdot) = u \in \mathcal{M}(x, z) \quad and \quad \lim u_n(\sigma_n + s, \cdot) = v \in \mathcal{M}(x, w)$

for two critical points z, w distinct from x. Then z = w and u and v coincide up to action by \mathbb{R} . In other words, there exists s^* such that $u(s^* + s, t) = v(s, t)$.

This proposition says that however we translate the u_n , the limit of $u_n \cdot s_n$ and $u_n \cdot \sigma_n$ coincide up to \mathbb{R} action. So they both converge to some trajectory between x and z = w. This gives uniqueness of limits and thus, $\mathcal{L}(x, y)$ is **Hausdorff**.

The next theorem will let us define a compactification of $\mathcal{L}(x, y)$.

Theorem 1.2. Let (u_n) be a sequence of elements of $\mathcal{M}(x, y)$. There exists:

- A subsequence of (u_n) ; continue calling it (u_n)
- critical points $x_0 = x, x_1, ..., x_l, x_{l+1} = y$
- Sequences $(s_n^k) \in \mathbb{R}$ for $0 \le k \le l$.
- elements $u^k \in \mathcal{M}(x_k, x_{k+1})$

Such that for every k = 0, ..., l,

$$\lim_{n \to \infty} u_n \cdot s_n^k = u^k.$$

This theorem says that by translating a subsequence (u_n) with carefully chosen values s_n^k , the limit goes to some $u^k \in \mathcal{M}(x_k, x_{k+1})$. This may seem weird because given some $u \in \mathcal{M}$, translation by s_0 gives another solution $u \cdot s_0$ which has the same image as u in \mathcal{M} . However, the topology of \mathcal{M} is that of C_{loc}^{∞} . Recall the following example which is a modification of the sliding block example for L_{loc}^1 :

Example 1.3. [Sliding Block] Fix $\tau \in \mathbb{R}$. Let $\beta_{[\tau,\infty)}$ be a smooth bump function which is 1 on $[\tau,\infty)$ and 0 on $(-\infty, \tau - 1]$. Then translation by a positive sequence $t_k \to \infty$ pushes the positive part of β to $+\infty$. So then $\beta_{t_k} = \beta \cdot t_k$ converges to 0. But if $t_k \to -\infty$, then β_{t_k} converges to the constant function 1. And we can let t_k converge to some constant c to have the bump functions converge a bump starting at $\tau + c$.

This example shows that in C_{loc}^{∞} , translating differently does indeed give a different limit. Thus, in our theorem above, depending on how we translate via s_n^k , we get the u_n converging to different u^k . Large "chunks" of u_n are pushed to $\pm \infty$ and thus the u^k themselves converge to $x_k(t)$ and $x_{k+1}(t)$ as $s \to \pm \infty$.

Translation of Floer Solutions

Part of the proof of this theorem is analogous to the Morse theory result. It also involves covering the critical points with balls of radius ϵ where ϵ is small enough that all the balls are disjoint. One then uses these balls to detect and mark when a trajectory enters or exits; this information allows one to say whether a trajectory converges to a critical point or not.

2 Gluing

The main goal of this section is to prove the gluing theorem:

Theorem 2.1 (Gluing). Let x, y, z be critical points with consecutive indices (x has the highest). Let $(u, v) \in \mathcal{M}(x, y) \times \mathcal{M}(y, z)$ represent trajectories $(\hat{u}, \hat{v}) \in \mathcal{L}(x, y) \times \mathcal{L}(y, z)$. We then have:

• a differentiable map $\psi : [\rho_0, \infty) \to \mathcal{M}(x, z)$ for some $\rho > 0$, such that $\hat{\psi} = \pi \circ \psi : [\rho_0, \infty) \to \mathcal{L}(x, z)$ is an embedding, satisfying

$$\lim_{p \to \infty} \hat{\psi}(\rho) = (\hat{u}, \hat{v}) \in \overline{\mathcal{L}}(x, z).$$

• Moreover, if $\ell_n \in \mathcal{L}(x,z)$ is a sequence that tends to (\hat{u}, \hat{v}) , then $\ell_n \in Im(\hat{\psi})$ for n sufficiently large.

First, a note. The ρ_0 here is chosen to be large enough. The phrase " ρ sufficiently large" will be equivalent to the phrase " $\rho \ge \rho_0$." The purpose of this theorem is to establish that in the Floer chain complex, $\partial^2 = 0$ because we'll be counting boundary points of $\mathcal{L}(x, z)$ taken mod 2. When the difference in index is 2, we get a 1-manifold with boundary and there is only one way to smooth it. But in general, there is no canonical smoothing of these topological manifolds with corners. The notion of log-smooth is sometimes used to study these spaces. An outline of the proof:

- 1. Pre-Gluing: we construct an interpolation w_{ρ} between u and v which depends on the parameter ρ . This w_{ρ} is an approximate solution in the sense that $\mathcal{F}(w_{\rho}) = 0$ on $|s| \ge 1$.
- 2. This approximate solution will be used to construct ψ which we write as $\psi(\rho) = \exp_{w_{\rho}}(\gamma(\rho))$ for some $\gamma(\rho) \in W^{1,p}(w_{\rho}^*TM) = T_{w_{\rho}}\mathcal{P}(x,z)$. We want $\psi(\rho)$ to be a true solution of the Floer equation. The way to obtain this $\gamma(\rho)$ is to use the Newton-Picard method. Recall that if $f : \mathbb{R} \to \mathbb{R}$ is a differentiable function, then we can look for solutions f(x) = 0 by letting x_0 be a approximate solution and then taking

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

As $n \to \infty$, we get our solution. However, there is a useful variant of this method; instead of computing $1/f'(x_n)$ each time, we can compute just $1/f'(x_0)$ and let x_{n+1} be defined by:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}$$

In the same way, Picard generalized Newton's method to maps on Banach manifolds, $F: X \to Y$. We only need to compute $(d\mathcal{F})_{w_{\rho}}^{-1}$ in order to get a unique solution $\gamma(\rho)$.

In certain literature, we have a Newton-Picard theorem for families, parametrized over ρ . Then as long as the function $F: X \times \mathbb{R} \to Y$ is smooth and the approximate solutions vary smoothly, then the true solutions vary smoothly.

3. Verify the three properties of $\hat{\psi}$ from above.

2.1 Pre-Gluing

Let us fix a bump function $\beta^+ : \mathbb{R} \to [0,1]$ which is 1 for $s \ge 1$ and 0 for $s \le \epsilon$. Let $\beta^-(s) = \beta^+(-s)$.

Our interpolation w_{ρ} is defined by

$$w_{\rho}(s,t) = \begin{cases} u(s+\rho,t) & s \leq -1\\ \exp_{y(t)} \left(\beta^{-}(s) \exp_{y(t)}^{-1}(u(s+\rho,t))\right) + \left(\beta^{+}(s) \exp_{y(t)}^{-1}(v(s-\rho,t))\right) & s \in [-1,1]\\ v(s-\rho,t) & s \geq 1 \end{cases}$$

Indeed, this is a well-defined interpolation for sufficiently large ρ . Outside $[-1, 1] \times S^1$, it matches u and v. The bump functions do some scaling on [-1, 1]. In fact, it equals y(t) on $[-\epsilon, \epsilon]$. Here are some other properties:

- 1. $w_{\rho} \in C^{\infty}(x, z)$ and for large ρ , it is in $C^{\infty}_{\searrow}(x, z)$ due to the exponential decay of ch. 8.9.
- 2. For $s \leq \rho 1$, we have $w_{\rho}(s \rho, t) = u(s, t)$. In particular, we have convergence in C_{loc}^{∞} :

$$\lim_{\rho \to +\infty} w_{\rho}(s - \rho, t) = u(s, t)$$

We have the same analogously for v.

- 3. w_{ρ} is differentiable in ρ .
- 4. $w_{\rho}(s,t)$ tends to y(t) in C_{loc}^{∞} when ρ tends to $+\infty$.

We might also view this construction as a "connect sum" $w_{\rho} = u \#_{\rho} v$. In this way, we then have a map

$$\#_{\rho}: C^{\infty}(x, y) \times C^{\infty}(y, z) \to C^{\infty}(x, z)$$

and we may consider its differential:

$$T_{(u,v)} \#_{\rho}$$
: $T_u \mathcal{P}(x, y) \times T_v \mathcal{P}(y, z) \to T_{w_{\rho}} \mathcal{P}(x, z)$

This map is exactly as one expects:

$$Y \#_{\rho} Z(s,t)) = \begin{cases} Y(s+\rho,t) & s \leq -1\\ T \exp_{y(t)} \left(\beta^{-}(s) T_{u(s+\rho,t)} \exp_{y(t)}^{-1}(Y(s+\rho,t)) \\ +\beta^{+}(s) T_{v(s-\rho,t)} \exp_{y(t)}^{-1}(Z(s-\rho,t)) \right) & s \in [-1,1]\\ Z(s-\rho,t) & s \geq 1 \end{cases}$$

Here are some properties of $Y \#_{\rho} Z \in T_{w_{\rho}} \mathcal{P}(x, z)$:

- 1. $Y \#_{\rho} Z$ is an element of $W^{1,p}$ and thus, is continuous.
- 2. For $s \in [-\epsilon, \epsilon]$, $Y \#_{\rho} Z = 0$.
- 3. $\lim_{\rho \to +\infty} Y \#_{\rho} Z = 0$ in C^0_{loc} . This convergence is of C^{∞}_{loc} if Y, Z are smooth.

2.2 Construction of ψ

For this construction, we want to find some $\gamma(\rho)$ such that $\psi(\rho) = \exp_{w_{\rho}}(\gamma(\rho))$ is a solution of the Floer equation. Indeed, it is enough to verify that $\mathcal{F}(\psi_{\rho}) = 0$ in the weak sense (satisfies an equation in terms of distributions). Since ψ_{ρ} is continuous as $\gamma(\rho)$ will be continuous, it is automatically a strong solution of C^{∞} class due to elliptic regularity.

Part of the construction also involves taking various trivializations, some unitary and others just orthonormal. These are generally denoted $(Z_i)_{i=1,\dots,2n}$. Details of this are on pp. 316-7.

Let us define $\mathcal{F}_{\rho} = \mathcal{F} \circ \exp_{w_{\rho}}$ in the basis (Z_i) . It's clear that $\mathcal{F}_{\rho}(0) = \mathcal{F}(w_{\rho})$. It is not a linear map as $\mathcal{F}_{\rho}(0) \neq 0$. However, it does equal 0 outside $[-1,1] \times S^1$ and it converges to 0 as $\rho \to +\infty$ in L^p and C^{∞} topology. Taking this approximate solution (0 for $\mathcal{F}_{\rho} \iff w_{\rho}$ for \mathcal{F}), we use the Newton-Picard method to find a true solution.

Before doing that, let $L_{\rho} = (d\mathcal{F}_{\rho})_0$. Then, in our trivializations,

$$L_{\rho}(Y) = \frac{\partial Y}{\partial s} + J_0 \frac{\partial Y}{\partial t} + S_{\rho}(s, t)Y$$

where $S_{\rho} : \mathbb{R} \times S^1 \to M_{2n}(\mathbb{R})$ is a map into matrices and converges to all the right matrices. The point is that we can conclude that L_{ρ} is a Fredholm operator with index 2. This is a problem because only index 0 Fredholm maps are invertible. If we wish to produce something analogous to the $1/f'(x_0)$ in the Newton method, we'll need invertibility.

What we do instead is produce a closed complement W_{ρ}^{\perp} of ker L_{ρ} such that L_{ρ} restricted to W_{ρ}^{\perp} is invertible; i.e. there is a right inverse. It makes sense that we use such a subspace W_{ρ}^{\perp} : $\mathcal{M}(x, z)$ is a dim 2 manifold and so we want $\gamma \in \exp^{-1} \mathcal{M}(x, z)$. We can then intersect $\exp^{-1} \mathcal{M}(x, z)$ with our codim 2 subspace W_{ρ}^{\perp} ; the resulting space is 0-dim. We then produce our γ for each fixed ρ .

Lemma 2.2 (Newton-Picard Method). Let X, Y be Banach spaces and let $F : X \to Y$ be a continuous map. We write F(x) = F(0) + L(x) + N(x) where $L(x) = (dF)_0(x)$ and we suppose that there exist a continuous $G : Y \to X$ such that:

- 1. $L \circ G = \mathrm{id}$
- 2. $||GNx GNy|| \le C(||x|| + ||y||) ||x y||$ for all $x, y \in B(0, r)$.
- 3. $||GF(0)|| \le \epsilon/2$ where $\epsilon = \min(r, 1/5C)$.

Then there exists a unique $\alpha \in Im(G) \cap B(0, \epsilon)$ such that $F\alpha = 0$. Moreover, $\|\alpha\| \leq 2\|GF(0)\|$.

Writing F(x) = F(0) + L(x) + N(x) is basically a Taylor expansion where N is some "higher terms." Condition (2) basically asks for ||GNx - GNy|| to be bounded by some quadratic term when x, y are nearby to 0. We want this because N has at least quadratic terms.

Let us define W_{ρ} . Let L^{u}, L^{v} be the differentials $(d\mathcal{F})_{u}, (d\mathcal{F})_{v}$, respectively. Then

$$W_{\rho} := \{ \alpha \#_{\rho} \beta : \alpha \in \ker L^{u}, \beta \in \ker L^{v} \}$$

and

$$W_{\rho}^{\perp} := \left\{ Y \in W^{1,p}(\mathbb{R} \times S^{1}, \mathbb{R}^{2n}) : \int_{\mathbb{R} \times S^{1}} \langle Y, \alpha \#_{\rho} \beta \rangle \, ds \, dt = 0, \forall \alpha \in \ker L^{u}, \forall \beta \in \ker L^{v} \right\}$$

Remarks:

1. Since we're taking a regular pair (H, J), L^u and L^v are surjective because u, v are solutions. They each have Fredholm index 1 so they have dim 1 kernels. Thus, since we know that $L^u(\frac{\partial u}{\partial s}) = 0$ and similarly for v, then

$$\ker L^u = \mathbb{R} \cdot \frac{\partial u}{\partial s}, \ker L^v = \mathbb{R} \cdot \frac{\partial v}{\partial s}$$

2. By exponential decay,

$$\sup\left(\left|\frac{\partial u}{\partial s}\right|, \left|\frac{\partial v}{\partial s}\right|\right) \le Ke^{-\delta|s|},$$

so we know vectors $\partial u/\partial s$, $\partial v/\partial s$ are in L^q for every $q \ge 1$. Then, for all $Y \in W^{1,p}$, $\alpha \in \ker L^u$, $\beta \in \ker L^v$, $\langle Y, \alpha \#_\rho \beta \rangle \in L^1$ (by Cauchy-Schwarz).

3. The space $W^{1,p} = W_{\rho} \oplus W_{\rho}^{\perp}$. It follows from a general fact:

Lemma 2.3. Let 1/p + 1/q = 1. Let E be a finite dimensional subspace of $W^{1,p} \cap L^q$. Then $W^{1,p} = E \oplus E^{\perp}$.

Proof. It's clear that the two subspaces meet only at 0. By Hölder's inequality, since $E \subset L^p \cap L^q$, if $f \in E$, then $||f||_2^2 = ||f^2||_1 \leq ||f||_p ||f||_q < \infty$. So $E \subset L^2$ which is a Hilbert space. So we can choose an ONB $\{e_1, ..., e_r\}$ of E. Every element $Z \in W^{1,p}$ satisfies $Z - \sum_i^r \langle e_i, Z \rangle e_i \in E^{\perp}$.

The next proposition is important. It allows us to define G_{ρ} and verify the conditions of the lemma.

Proposition 2.4. There exists C > 0 such that for $\rho \ge \rho_0$, we have

$$\forall Y \in W_{\rho}^{\perp}, \|L_{\rho}(Y)\|_{p} \ge C \|Y\|_{1,p}.$$

We begin by giving a list of consequences of this proposition. For its proof, see pp. 325-9.

- 1. Clearly, ker $L_{\rho} \cap W_{\rho}^{\perp} = 0$.
- 2. Above, we said that $\operatorname{Ind}(L_{\rho}) = 2$. So dim ker $L_{\rho} \geq 2$. Also, codim $W_{\rho}^{\perp} = \dim W_{\rho} \leq \dim(\ker L^u \times \ker L^v) = 2$. **Important point:** This dimension equals 2 because we have **transversality**. The first property makes it so that dim ker $L_{\rho} = 2$. This means that L_{ρ} is surjective. Then $W^{1,p} = \ker L_{\rho} \oplus W_{\rho}^{\perp}$. Intuitively, we say that $\ker(d\mathcal{F})_{u \#_{\rho} v}$ is close to $\ker(d\mathcal{F})_u \#_{\rho}(d\mathcal{F})_v$ when ρ is sufficiently large.
- 3. Consequently,

$$L_{\rho}: W_{\rho}^{\perp} \cong W^{1,p} / \ker L_{\rho} \to L^{p} = \operatorname{Im} L_{\rho}$$

is bijective. Let G_{ρ} be the right inverse.

4. G_{ρ} is continuous because the proposition asserts:

$$||G_{\rho}(Y)||_{1,p} \le C^{-1} ||L_{\rho}G_{\rho}(Y)||_{p} = C^{-1} ||Y||_{p}.$$

5. This proposition also gives us conditions (2) and (3) for the Newton-Picard Method. See pp. 324-5 for details proving this claim.

We then get a series of lemmas which help us to prove the continuity of γ and also its differentiability with respect to ρ . A heuristic argument for this is, consider the parametrized Newton-Picard method. Then as long as the family varies smoothly and our approximations vary smoothly, then the solutions vary smoothly as well.

We can also prove that

$$\lim_{\rho \to +\infty} \|\gamma(\rho)\|_{1,p} = \lim_{\rho \to +\infty} \left\| \frac{\partial \gamma}{\partial \rho} \right\|_{1,p} = 0$$

This fact is useful in the proof to show that

$$\lim_{\rho \to +\infty} \hat{\psi}(\rho) = (\hat{u}, \hat{v}) \in \overline{\mathcal{L}}(x, z)$$

2.3 $\hat{\psi}$ is an Immersion

The last fact we stated above (Lemma 9.4.17) gives us that $\hat{\psi}$ is a proper map. For if $K \subset \mathcal{L}(x, z)$ is a compact set, then it is closed in particular and $\hat{\psi}^{-1}(K)$ must be closed (also, assume this to be connected for the moment). However, the limit of $\hat{\psi}(\rho)$ lies in the boundary and thus, there is a ρ_1 such that $[\rho_0, \rho_1] = \hat{\psi}^{-1}(K)$ which is compact. If the preimage is not connected, it must be a finite union of closed intervals which is still compact.

Furthermore, the image is closed. It is a result that an embedding with a closed image is precisely a proper injective immersion. Thus, we only need to show $\hat{\psi}$ is an injective immersion. To show that it's an immersion, we need to show that $\partial \psi / \partial \rho$ is not in the kernel of $d\pi$. The kernel of $(d\pi)_{\psi}$ is generated by $\partial \psi / \partial s$ as it is along \mathbb{R} that we take the quotient. The picture is that we want ψ to be transverse to the fibers of π .

Supposing that ψ is not an immersion is equivalent to supposing there are sequences (ρ_n) and (α_n) such that

$$\frac{\partial \psi}{\partial \rho}(\rho_n) = \alpha_n \frac{\partial \psi}{\partial s}(\rho_n).$$

Because $\psi(\rho)$ is close to w_{ρ} , we can deduce the following lemma:

Lemma 2.5. The sequence (α_n) is bounded and we have

$$\lim_{n \to +\infty} \left\| \left(\frac{\partial w_{\rho}}{\partial \rho} - \alpha_n \frac{\partial w_{\rho}}{\partial s} \right)_{\rho_n} \right\|_p = 0$$

Then, for $s \leq -1$, $w_{\rho}(s,t) = u(s+\rho,t)$, hence

$$\frac{\partial w_{\rho}}{\partial \rho} = \frac{\partial u}{\partial s}(s+\rho).$$

The lemma implies then that

$$\lim_{n \to +\infty} \left\| \frac{\partial u}{\partial s}(s+\rho_n,t) - \alpha_n \frac{\partial u}{\partial s}(s+\rho_n,t) \right\|_{L^p((-\infty,-1]\times S^1)} = 0.$$

This means that $\alpha_n \to 1$. But if we consider the values for $s \ge 1$, we get

$$\lim_{n \to +\infty} \left\| -\frac{\partial v}{\partial s}(s-\rho_n,t) - \alpha_n \frac{\partial v}{\partial s}(s-\rho_n,t) \right\|_{L^p([1,\infty) \times S^1)} = 0$$

which implies that $\alpha_n \to -1$. This is the contradiction we need. Therefore, $\hat{\psi}$ is an immersion for large ρ .

It is also injective: its image is contained in a connected component of the manifold $\mathcal{L}(x, z)$ (dim = 1) which is not compact. This component is diffeomorphic to an open interval $I \cong \mathbb{R}$. By Rolle's Theorem, if $\hat{\psi} : \mathbb{R} \to \mathbb{R}$ is not injective, then $\partial \hat{\psi} / \partial \rho = 0$ for some ρ . But $\hat{\psi}$ is an immersion so this never happens.

2.4 Uniqueness of the Gluing

In the previous construction of $\hat{\psi}$, we used an approximate solution (aka pre-gluing) w_{ρ} which equaled, for $s \geq 1$, $v(s - \rho, t)$. However, we could replace this expression with $v(s - \nu(\rho), t)$ where $\nu : \mathbb{R}_+ \to \mathbb{R}_+$ is a smooth function increasing to $+\infty$. We can show that if construct a pre-gluing $w_{\nu,\rho}$ and an associated $\hat{\psi}_{\nu} : [\rho_{\nu}, \infty) \to \mathcal{L}(x, z)$, it will also be an injective immersion and $\lim \hat{\psi}_{\nu} = (\hat{u}, \hat{v})$. That is, it has the same relevant properties as when $\nu = id$. Naturally, we ask: "Does the gluing depend on ν ?"

We would ultimately like to show that if ℓ_n is a sequence converging to the broken trajectory (\hat{u}, \hat{v}) , then for large n, it will be contained in Im $\hat{\psi}$. It turns out that we can realize the ℓ_n as arising from a pre-gluing $w_{\nu,\rho}$ and we're able to then show that for large n, the ℓ_n are contained in Im $\hat{\psi}_{\nu}$.

If we also know that for some large enough ρ_{ν} , Im $\hat{\psi}_{\nu} \subset \text{Im } \hat{\psi}$, we're able to conclude that the ℓ_n are eventually contained in Im $\hat{\psi}$ and thus, there is uniqueness in gluing. The authors take these in steps, starting with what we just stated.

- 1. Prove that if $\nu : \mathbb{R}_+ \to \mathbb{R}_+$ has the properties mentioned above, then there is some ρ_{ν} such that for $\rho \ge \rho_{\nu}$, Im $\hat{\psi}_{\nu} \subset \text{Im } \hat{\psi}$.
- 2. Suppose that $\ell_n \to (\hat{u}, \hat{v})$ in $\overline{\mathcal{L}}(x, z)$. We wish to prove the following proposition:

Proposition 2.6 (9.4.3). There exists a lift $\tilde{\ell}_n \in \mathcal{M}(x, z)$ of ℓ_n and a smooth increasing function $\nu : \mathbb{R}_+ \to \mathbb{R}_+$ such that for all $(s, t) \in \mathbb{R} \times S^1$, $\tilde{\ell}_n(s, t) = \exp_{w_{\nu,\rho_n}(s,t)} Y_n(s, t)$, where $\rho_n \to +\infty$ and $Y_n \in w_{\nu,\rho_n}^*TM$ satisfies $\lim_{n\to\infty} ||Y_n||_{\infty} = 0$.

Observe that this result is saying that for **any** $\ell_n \to (\hat{u}, \hat{v})$, there are lifts constructed using ν , a function with nice properties. I found the proofs in this step to be rather technical, even if the theory wasn't hard: mostly playing around with sequences as in a real analysis class.

3. Next, we prove that the Y_n from above satisfy $Y_n \in W^{1,p}(w_{\nu,\rho_n}^*TM)$ for all p > 2 and also $\lim \|Y_n\|_{1,p} = 0$. Since these $\tilde{\ell}_n = \exp Y_n$ are solutions of the Floer equation with finite energy, they satisfy an exponential decay property. Then, we can use some results from ch. 8 concerning exponential decay of C^2 solutions to the linearized Floer equation along a solution. The exponential decay results will allow us to conclude Lemma 9.6.13: for all $(s,t) \in \mathbb{R} \times S^1$

$$\max\left\{\|Y_n(s,t)\|, \left\|\frac{\partial Y_n}{\partial s}(s,t)\right\|, \left\|\frac{\partial Y_n}{\partial t}(s,t)\right\|\right\} \le Ke^{-\delta|s|}.$$

From this, we can conclude that $Y_n \in W^{1,p}$ because

$$K^p \int_{-\infty}^{\infty} e^{-\delta p|s|} \, ds = 2K^p \int_0^{\infty} e^{-\delta ps} \, ds = \frac{2K^p}{\delta p} < \infty.$$

To obtain the result that $||Y_n||_{1,p} \to 0$, the authors use some technical lemmas whose proofs are saved for ch. 13.

4. So we have a sequence ℓ_n of the same form as solutions produced by the Newton-Picard method. We would like to see that for n large enough, that the Y_n in fact, are identical with solutions produced by Newton-Picard. To do this, we will need to generalize the method slightly to work when we vary n.

Let $F = \mathcal{F} \circ \exp$ and L = dF. Recall that before, we gave a decomposition $W^{1,p} = \ker L \oplus W_{\rho_n}^{\perp}$ and looked for a solution in a slice. We'll do the same here by giving a decomposition and then use a contracting map $\varphi_n : h_n + W_{\rho_n}^{\perp} \to h_n + W_{\rho_n}^{\perp}$ where $h_n \in B(0, \epsilon_0) \cap \ker L$. The contracting map will have a unique fixed point $\gamma_n(h)$ which is a solution in the sense that $F\gamma_n(h) = 0$; so $\exp_{w_{\nu},\rho_n}\gamma_h(h) \in \mathcal{M}(x, z)$.

As promised, for large n, $Y_n = \gamma_h(h)$; the proof of this claim relies on knowing that lim $||Y_n||_{1,p} = 0$. With this knowledge in mind, we're able to say more about our solutions Y_n . What is most germane is that the map $h \mapsto \gamma_n(h)$ is continuous. Having continuity of this map, we can form a connectedness argument to finally conclude that for large n, $\ell_n = \pi \circ \tilde{\ell}_n \in \text{Im } \hat{\psi}_{\nu}$. By step 1, then for larger n, $\ell_n \in \text{Im } \hat{\psi}$.

Remark: The proof for continuity of $h \mapsto \gamma_n(h)$ is fun. Let \overline{F} : ker $L \oplus W^{\perp} \to L^p$, defined by $\overline{F}(h, w) = F(h+w)$. Then $\overline{F}(h, \gamma_n(h) - h) = 0$ because $F\gamma_n(h) = 0$. Showing that $(d\overline{F})_{\gamma_n(h)}$ is invertible will allow us to apply the Implicit Function Theorem to conclude that $h \mapsto \gamma_n(h) - h$ is a continuous map and therefore, so is $h \mapsto \gamma_n(h)$. As a reminder, we'll state the Implicit Function Theorem from multivariate calculus but applies for manifolds and Banach spaces.

Theorem 2.7 (Implicit Function Theorem). Let $f : \mathbb{R}^n \oplus \mathbb{R}^m \to \mathbb{R}^m$ be smooth. Suppose that $f(x_0, y_0) = 0$ where $x_0 \in \mathbb{R}^n, y_0 \in \mathbb{R}^m$. Then, if $(df)_{(x_0, y_0)}$ is invertible, there exists a neighborhood of (x_0, y_0) , call it $U \subset \mathbb{R}^n$, and a **continuous** map $g : U \to \mathbb{R}^m$, such that $g(x_0) = y_0$ and for $x \in U$, f(x, g(x)) = 0.