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These are notes taken from an introduction by John Morgan who was the editor for Virtual
Fundamental Cycles in Symplectic Topology. The book comes from a 2014 workshop at the
Simons Center for Geometry and Physics, titled Moduli Spaces of Pseudo-holomorphic curves
and their applications to Symplectic Topology. The contributors to this book are Dusa McDuff,
Mohammad Tehrani, Kenji Fukaya, and Dominic Joyce.

1 Introduction

Let (M2n, ω) be a symplectic manifold with Jω being the space of compatible almost complex
structures. Recall that this space is contractible. Then if we consider the moduli space of
J0-holomorphic curves of genus g with k marked points (which is equivalent to considering
a quotient by automorphisms), we can ask what happens if we change J0. That is, what
happens to Mg,k(J0) if we replaced this with a path J(t) ∈ Jω connecting J0 and J1. I
think that if the path passes through only regular ACS, we then get a cobordism W with
∂W = Mg,k(J0) t Mg,k(J1). We might not always get a cobordism in this manner though
when J(t) isn’t a regular path. On the other hand, the cobordism class of Mg,k(J0) is an
invariant of (M,ω).

Now, the dimension of these moduli spaces can be computed with the Riemann-Roch the-
orem or more generally, Atiyah-Singer index theorem. However, to apply these theorems, we
need transversality. When we make additional assumptions such as monotonicity or semi-
positivity, then we are guaranteed transversality for generic J . Without these assumptions,
we have obstructions to transversality arising from ramified multiple covers of transversal so-
lutions. The formal dimensions of these covers can be negative whilst the spaces themselves
are nonempty. Thus, virtual techniques were introduced to handle such issues.

2 Example

2.1 Transversality

Let (X2n, ω) be a symplectic manifold. Let M0,3 be the space of all maps u : S2 → X with
three marked points: 0, 1,∞. We fix a 2-cycle α; we can further require that the maps u satisfy
u∗[S

2] = α. Call this space M0,3(α). We’ll assume that

〈c1(TX), α〉 =

∫
[α]

c1 =

∫
S2

u∗c1 > 0.

Then the dimension is dimM0,3(α) = 2〈c1, α〉 + 2n. There is also an evaluation map ev :
M0,3(α)→ X ×X ×X which sends u 7→ (u(0), u(1), u(∞)). We choose cycles Q1, Q2, Q3 ⊂ X
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such that
3∑
i=1

(2n− dimQi) = 2〈c1, α〉+ 2n.

Then, the formal dimension of the moduli space M0,3(α;Q1, Q2, Q3) := {u ∈ M0,3(α) :
(u(0), u(1), u(∞)) ∈ Q1 × Q2 × Q3} is zero. For generic J ∈ Jω, the assumption 〈c1, α〉 > 0
gives us transversality.

2.2 Compactness

However,M0,3(α;Q1, Q2, Q3) is not necessarily compact. For example, we can have a sequence
{ui} ∈ M0,3(α;Q1, Q2, Q3) which has a subsequence limiting to a union of pair of maps. This
is Gromov’s compactness theorem about stable maps.

Here in the picture, we have that limui(0) = z0 ∈ Q1 and similarly for the other two points.
The um : S2 → X is a map with four marked points; there’s this extra point zn. ub : S2 → X
is a map with one marked point: z′n and it’s identified with zn. Let αm = (um)∗[S

2] and
αb = (ub)∗[S

2]. Then, α = αm + αb. Observe that (um; z0, z1, z∞, zn) ∈ M0,4(αm;Q1, Q2, Q3)
and (ub, z

′
n) ∈M0,1(αb). The virtual dimensions of the moduli spaces are given by

dimM0,4(αm;Q1, Q2, Q3) = 2〈c1, αm〉+ 2n+ 2−
3∑
i=1

(2n− dimQi)

dimM0,1(αb) = 2〈c1, αb〉+ 2n− 4.

How shall we explain this +2 and -4 in the dimension formulae? (S2, z0, z1, z∞, zn) of um
has a 2-dim moduli space while (S2, z′n) of ub has an automorphism group of dim 4. I think
we just want holomorphic maps f : S2 = C ∪ {∞} → S2 which are just rational maps. But
we also want them to be injective so that leaves maps of the form f(z) = az + b with a, b ∈ C.
Hence, dim = 4. We now observe that:

dimM0,4(αm;Q1, Q2, Q3) + dimM0,1(αb)− 2n

=2〈c1, αm〉+ 2n+ 2−
3∑
i=1

(2n− dimQi) + 2〈c1, αb〉+ 2n− 4− 2n.
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Since α = αm + αb and we have this condition on our Qi’s, we find that the sum of the two
dimensions minus 2n is, in the end, −2. This means that if we have transversality, then these
configurations do not appear. Thus, to obtain compactness, we’ll like the limiting moduli to
be cut ou tranversally and therefore, be empty.

Unfortunately, M0,1(αb) is not transversal for generic almost complex structure. Consider
when αb = kα′b with 2〈c1, α′b〉 < 0. Then, there can be a J-holomorphic curve with 2〈c1, α′b〉 +
2n− 4 ≥ 0 but 2〈c1, αb = kα′b〉 + 2n− 4 < 0. For example, this occurs when n = 3, k = 2 and
〈c1, α′b〉 = −1. Then the first is 0, the second is −2.

Because the first inequality allows says the dimension is non-negative, we cannot conclude
that the moduli space M0,1(α

′
b) is empty via a dimension count approach. In fact, it could be

nonempty for all ACS. Moreover, if u′ ∈M0,1(α
′
b), then we will have u(z) := u′(zk) ∈M0,1(αb);

soM0,1(αb) 6= ∅. So this spaceM0,1(αb) has negative virtual dimension but is also nonempty
for all almost complex structures. It cannot be cut out transversally.

3 Virtual Techniques

The conclusion is that we have no hope of perturbing the ACS to get transversality in order to
obtain a fundamental class of the moduli space, when there are such multiple covers of formally
negative dimension. So we need some virtual fundamental chain or cycle techniques.

The advantage to this is that we can resolve the issue in almost every situation. The
disadvantage is that we now use Q instead of Z. This means that the Gromov-Witten invariants
are fractions. But this isn’t so novel; the Euler number of an orbifold is generally in Q. Recall,
an orbifold is locally like U/Γ where U = B(r, 0) ⊂ Rn and Γ is a finite group which acts
orthogonally (so is an isometry).

Example 3.1. Let X be an orbifold defined as the union of C/Z2 and C/Z3. We identify
[z2] ∈ C/Z2 and [w3] = [1/z2] ∈ C/Z3. X has two singular points: z = 0 ∈ C/Z2 and
w = 0 ∈ C/Z3.

There exists a vector field vanishing only at z and w; due to the non-trivial isotopy, we
count these with multiplicity 1/2 and 1/3. So then the Euler number is 1/2 + 1/3 = 5/6.

3.1 Techniques from Virtual Fundamental Cycles in Symplectic
Topology

The versions of virtual techniques that McDuff, Fukaya, and Joyce use have some differences
but fundamentally, follow three steps.

1. Represent a moduli space locally as a zero set of certain section s of an orbibundle E → U
where U is an orbifold.

2. Regard such a local description of the moduli space as a “coordinate chart” of a certain
geometric object and introduce an appropriate notion of “coordinate change.”

3. Do one of the following

(a) Either “Perturb” the section s in a way compatible with the coordinate changes
so that it becomes transversal to the zero section and then glue the zero sets of
perturbed sections in “various coordinate charts” by the coordinate change (McDuff
and Fukaya’s approach);

(b) Or develop and use general techniques from “derived topology” to produce a funda-
mental chain or cycle from the geometric object in Step 2 (Joyce’s approach).
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It is worth pointing out that the arguments for Step 3 use only the formal properties of the
geometric objects constructed in Step 2.

3.2 Another View

Another process I was told about by Mark McLean comes from a paper by B. Siebert (1996):
Gromov-Witten invariants of general symplectic manifolds.

If we consider stable nodal J-holomorphic curves into a symplectic manifold (M,ω) of genus
g with k marked points representing a homology class β ∈ H2(M,Z) up to automorphisms,
we obtain a moduli space, usually denoted Mg,k(J, β). This space is compact under Gromov
convergence. Though it is an orbifold because we can have multiply covered curves, we can still
give it a fundamental class.

Let m = 2(c1(β)+(n−3)(1−g)+k) which is the virtual dimension ofMg,k(J, β). The claim
is that there is a class called [M]vir in the dual of Čech cohomology: Ȟm(M,Q)∗. Apparently,
the proper way to consider this is via strong homology but not many people take this view.

Anyways, how do we construct the virtual fundamental class? We make use of a theorem
by Siebert:

Theorem 3.2. (Siebert, ’96) There exists a “natural” topological orbibundle π : E → B where
B is an oriented space, with a continuous section s such thatMg,k(J, β) = s−1(0). The bundle
is unique up to some stabilization operation.

The idea is that this is some finite dimensional approximation of the section ∂̄J of some
Banach bundle. Moreover, 2 dimM − dimE = m. The construction is then to take neighbor-
hoods Ui ⊂ E of s−1(0) such that

⋂∞ Ui = s−1(0). Let Ai ∈ Ȟm(Ui,Q)∗ be the intersection
product of the Borel-Moore homology of [B ∩ Ui] with [s(B) ∩ Ui]. Here, we’re thinking of B
as the zero section of E in the first class. Then the virtual fundamental class is

[Mg,k(J, β)] = lim−→
i∈N

Ai ∈ lim−→
i∈N

Ȟm(Ui,Q)∗ ∼= Ȟm(s−1(0),Q)∗.

To reiterate, the basic idea is to use these Ui to approximate s−1(0), which by Siebert’s theorem,
is Mg,k(J, β).
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